首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
重组水蛭素的突变及突变体部分性质研究   总被引:4,自引:0,他引:4  
以基因突变结合动力学分析的方法研究了水蛭素空间结构及其与凝血酶的相互作用.采用基因定点突变和随机突变的方法得到两个重组水蛭素突变体,并从抗酰胺水解活性,抗凝血酶活力和稳定性三个方面,比较研究了重组水蛭素rHV2中47位和11位两个氨基酸残基对其稳定性和抑制能力的影响.将rHV2中Gln11和Asn47分别突变为His11和Lys47后,rHV2-H11生物活力降低30%,rHV2-K47生物活力提高61%.测定抑制常数Ki表明,rHV2-H11突变体Ki值升高14倍,rHV2-K47突变体Ki值降低14倍,两个突变体的热稳定性均有所增强,rHV2-H11在酸性和碱性条件的稳定性降低.分析实验结果,可以认为:①47位的Lys可能是通过氢键和静电两种作用力同时影响着水蛭素的三维结构和其与凝血酶的结合.②11位氨基酸可能是水蛭素分子中另一个重要位点.  相似文献   

2.
Amino acid substitutions within the amino-terminal 5 residues of the thrombin-specific inhibitor hirudin dramatically alter its ability to inhibit the thrombin-catalyzed hydrolysis of both a chromogenic substrate and fibrinogen. Replacing the highly conserved Tyr-3 residue with Trp or Phe increases hirudin's affinity for thrombin 3-6-fold (decreases the inhibition constant, Ki) whereas Thr results in a 450-fold increase in Ki. A more extensive modification involving deletion of the amino-terminal Val, and Tyr-3----Val, Thr-4----Gln, and Asp-5----Ile replacement, results in a large reduction in thrombin inhibitory activity corresponding to greater than a 10(7)-fold increase in Ki and a 10(3)-fold increase in IC50, using D-Phe-L-pipecolyl-Arg-p-nitroanilide (S-2238) and fibrinogen, respectively, as substrates. Kinetic analysis of these mutant proteins and synthetic peptide fragments and available structural information on thrombin and hirudin derived from protein crystallography and two-dimensional NMR studies indicate that the amino-terminal region of hirudin binds at the apolar binding/active site region of thrombin, with Tyr-3 occupying the S3 specificity site. The large effect of these modifications on hirudin activity suggests that alteration of the amino-terminal segment can destabilize the interaction of other regions of hirudin with thrombin.  相似文献   

3.
The interaction of hirudin with the dysfunctional enzymes thrombin Quick I and II has been investigated. Natural and recombinant hirudin caused nonlinear competitive inhibition of thrombin Quick I. The results were consistent with thrombin Quick I existing in two forms that have different affinities for hirudin. The affinities of these forms for natural hirudin were respectively 10(4)- and 10(6)-fold lower than that of alpha-thrombin. In contrast, truncated hirudin molecules lacking the C-terminal tail of the molecule caused linear inhibition of thrombin Quick I. These results indicate that different modes of interaction of the two forms of thrombin Quick I with the C-terminal tail of hirudin were the cause of the nonlinear inhibition. Comparison of the dissociation constants of thrombin Quick I with the truncated and full-length forms of hirudin suggested that the interactions that normally occur between the C-terminal tail of hirudin and thrombin were completely disrupted with the low-affinity form of thrombin Quick I. Thrombin Quick II displayed an affinity for natural hirudin that was 10(3)-fold lower than that observed with alpha-thrombin. In contrast, it bound a mutant hirudin with altered N-terminal amino acids only 16-fold less tightly. These results are discussed in terms of structural alterations in the active-site cleft in thrombin Quick II.  相似文献   

4.
嵌合水蛭肽的构建与活性分析   总被引:3,自引:0,他引:3  
血管成形术或动脉粥样斑块破裂等因素所致血管壁损伤而引起的血栓形成过程中 ,血小板的激活和凝血酶的形成起着关键作用 .因此 ,抗血小板和抗凝是治疗血栓的两个重要方面 .血小板膜糖蛋白GPⅡb Ⅲa受体拮抗剂 ,如含Arg Gly Asp(RGD)序列的多肽 ,在临床上已显示了良好的抗血小板  相似文献   

5.
Thrombin is a serine protease that plays a central role in blood coagulation. It is inhibited by hirudin, a polypeptide of 65 amino acids, through the formation of a tight, noncovalent complex. Tetragonal crystals of the complex formed between human alpha-thrombin and recombinant hirudin (variant 1) have been grown and the crystal structure of this complex has been determined to a resolution of 2.95 A. This structure shows that hirudin inhibits thrombin by a previously unobserved mechanism. In contrast to other inhibitors of serine proteases, the specificity of hirudin is not due to interaction with the primary specificity pocket of thrombin, but rather through binding at sites both close to and distant from the active site. The carboxyl tail of hirudin (residues 48-65) wraps around thrombin along the putative fibrinogen secondary binding site. This long groove extends from the active site cleft and is flanked by the thrombin loops 35-39 and 70-80. Hirudin makes a number of ionic and hydrophobic interactions with thrombin in this area. Furthermore hirudin binds with its N-terminal three residues Val, Val, Tyr to the thrombin active site cleft. Val1 occupies the position P2 and Tyr3 approximately the position P3 of the synthetic inhibitor D-Phe-Pro-ArgCH2Cl. Thus the hirudin polypeptide chain runs in a direction opposite to that expected for fibrinogen and that observed for the substrate-like inhibitor D-Phe-Pro-ArgCH2Cl.  相似文献   

6.
The kinetic mechanism of the inhibition of alpha-thrombin by hirudin was analyzed using the hirudin-derived fragments hirudin(1-47) and hirudin(45-65). Previously, these fragments have been shown to interact with alpha-thrombin at distinct sites inhibiting thrombin-mediated clot formation. Binding to the active site the N-terminal fragment hirudin(1-47) competitively inhibits hydrolysis of the substrates Tos-Gly-Pro-Arg-NH-Mec (Tos, tosyl; NH-Mec, 4-methylcoumaryl-7-amide) and fibrinogen with Ki values of 420 +/- 18 nM and 460 +/- 25 nM, respectively. Interacting with the anion-binding site of alpha-thrombin the C-terminal fragment competitively inhibits the hydrolysis of fibrinogen with a Ki of 760 +/- 40 nM. It was found, however, that this fragment acts as a hyperbolic uncompetitive inhibitor with respect to the hydrolysis of the peptide-NH-Mec substrate. According to the Botts-Morales scheme for enzyme inhibition, the parameters Ki = 710 +/- 38 nM, K'i = 348 +/- 22 nM, as well as alpha = beta = 0.49 of thrombin inhibition by the C-terminal fragment hirudin(45-65), were obtained. The results are discussed in terms of the interaction of hirudin and thrombin.  相似文献   

7.
Unlike the European leechHirudo medicinalis, the Asian jawed leechHirudinaria manillensis is specialized for feeding on mammalian blood. In the salivary glands of both these leeches, there is a potent inhibitor of thrombin, called hirudin, which acts as an anticoagulant. We have reported previously the isolation and purification of a variant of hirudin, called bufrudin, from the head portions ofHirudinaria. In the present study, the complete amino acid sequence of bufrudin was determined by automated Edman degradation of peptide fragments generated after cleavage of protein with trypsin or thermolysin. Comparison of the primary structure of bufrudin, with hirudin HV1, show about 70% sequence identity with deletion of two amino acids, but the key amino acids at the C-terminus, involved in the inhibition of thrombin, are conserved. However, similar sequence comparison of bufrudin with hirullin P18, a hirudin variant isolated from the same leech species but from whole leech, instead of heads, reveals even less sequence identity of about 60%. From the amino acid sequence, it is suggested that the conformation of the C-terminal portion of bufrudin may be significantly different from hirullin P18, but similar to hirudin HV1, upon its interaction with thrombin. These results indicate that, as withHirudo leech, various isoforms of hirudin also exist inHirudinaria leech, with a significant change occurring in the structure of the molecule during the evolution of leeches.  相似文献   

8.
Unlike the European leechHirudo medicinalis, the Asian jawed leechHirudinaria manillensis is specialized for feeding on mammalian blood. In the salivary glands of both these leeches, there is a potent inhibitor of thrombin, called hirudin, which acts as an anticoagulant. We have reported previously the isolation and purification of a variant of hirudin, called bufrudin, from the head portions ofHirudinaria. In the present study, the complete amino acid sequence of bufrudin was determined by automated Edman degradation of peptide fragments generated after cleavage of protein with trypsin or thermolysin. Comparison of the primary structure of bufrudin, with hirudin HV1, show about 70% sequence identity with deletion of two amino acids, but the key amino acids at the C-terminus, involved in the inhibition of thrombin, are conserved. However, similar sequence comparison of bufrudin with hirullin P18, a hirudin variant isolated from the same leech species but from whole leech, instead of heads, reveals even less sequence identity of about 60%. From the amino acid sequence, it is suggested that the conformation of the C-terminal portion of bufrudin may be significantly different from hirullin P18, but similar to hirudin HV1, upon its interaction with thrombin. These results indicate that, as withHirudo leech, various isoforms of hirudin also exist inHirudinaria leech, with a significant change occurring in the structure of the molecule during the evolution of leeches.  相似文献   

9.
Huntingtin (Htt) mutation causes Huntington's disease.Sequence analysis of Htt revealed apossible thrombin cleavage site in the N-terminal region of Htt.In order to investigate if thrombin can eleaveHtt,we expressed the N-terminal fragment (1-969) of wild-type (wt) Htt (Htt 1-969) in MCF-7 cells andstudied its cleavage pattern by thrombin in vitro.An expression plasmid pcDNA3-Htt-18Q-969 was used totransfect MCF-cells and Htt 1-969 expression was confirmed with immunofluorescence.Cell lysates wereincubated with thrombin (1 U/ml, 10 U/ml,and 30 U/ml) for 1 h in the presence or absence of hirudin,athrombin inhibitor.Htt fragments were separated by sodium dodecylsulfate-polyacrylamide gel electrophoresis(SDS-PAGE) and detected with anti-Htt antibodies. An Htt fragment with molecular mass of approximately80 kDa was produced after incubation with thrombin.The size of this Htt fragment was anticipated bymolecular mass generated from thrombin-mediated cleavage at the amino acid 183 in the Htt.Production ofan 80 kDa fragment was inhibited by hirudin. This study provides the first evidence that Htt is cleaved bythrombin in vitro at amino acid 183.If endogenous thrombin cleaves Htt in vivo,the physiological significanceof thrombin-mediated cleavage of Htt should be further investigated.  相似文献   

10.
Six lysyl residues of human thrombin (LysB21, LysB52, LysB65, LysB106, LysB107 and LysB154) have been previously shown to participate in the binding site of hirudin, a thrombin-specific inhibitor [(1989) J. Biol. Chem. 264, 7141-7146]. In this report, we attempted to delineate the region of hirudin which binds to these basic amino acids of thrombin. Using the N-terminal core domains (r-Hir1-43 and r-Hir1-52) derived from recombinant hirudins and synthetic C-terminal peptides (Hir40-65 and Hir52-65)--all fragments form complexes with thrombin--we are able to demonstrate that the structural elements of hirudin which account for the shielding of these 6 lysyl residues are exclusively located within the acidic C-terminal region. Since hirudin C-terminal peptides were shown to bind to a non-catalytic site of thrombin and inhibit its interaction with fibrinogen [(1987) FEBS Lett. 211, 10-16], our data consequently imply that these 6 lysyl residues are constituents of the fibrinogen recognition site of thrombin.  相似文献   

11.
To find out minimal sizes of the proteinase inhibitor proteins hirudin and eglin necessary for their biological activity the inhibitors were incubated with exopeptidases. From the incubation mixtures shortened derivatives were isolated and characterized. Eglin c can be N-terminally shortened by up to 6 amino-acid residues without any loss of affinity towards chymotrypsin. The complex of thrombin with hirudin lacking 3 C-terminal amino-acid residues showed a 15-20-fold increased Ki value as found previously for desulfato-hirudin and desulfato-hirudin shortened by 2 amino-acid residues. Obviously, the C-terminal part of the hirudin molecule has a positive influence on its affinity to thrombin.  相似文献   

12.
For the identification of the primary binding site of hirudin for thrombin we generated hirudin mutants with site directed amino acid substitutions with the help of recombinant DNA technology. Preliminary results indicate, that lys (47) may be directly involved in the hirudin-thrombin interaction: 1. The mutant glu (47) shows a Ki-value which is increased by two orders of magnitude (1.6.10(-9) M); 2. Incubation of mutant ala(48) with endoproteinase lys-C results in proteolysis of the newly formed peptide bond lys(47)-ala(48), whereas all other peptide bonds (lys-X) are not accessible.  相似文献   

13.
X-ray diffraction studies of human thrombin revealed that compared with trypsin, two insertions (B and C) potentially limit access to the active site groove. When amino acids Glu146, Thr147, and Trp148, adjacent to the C-insertion (autolysis loop), are deleted the resulting thrombin (des-ETW) has dramatically altered interaction with serine protease inhibitors. Whereas des-ETW resists antithrombin III inactivation with a rate constant (Kon) approximately 350-fold slower than for thrombin, des-ETW is remarkably sensitive to the Kunitz inhibitors, with inhibition constants (Ki) decreased from 2.6 microM to 34 nM for the soybean trypsin inhibitor and from 52 microM to 1.8 microM for the bovine pancreatic trypsin inhibitor. The affinity for hirudin (Ki = 5.6 pM) is weakened at least 30-fold compared with recombinant thrombin. The mutation affects the charge stabilizing system and the primary binding pocket of thrombin as depicted by a decrease in Kon for diisopropylfluorophosphate (9.5-fold) and for N alpha-p-tosyl-L-lysine-chloromethyl ketone (51-fold) and a 39-fold increase in the Ki for benzamidine. With peptidyl p-nitroanilide substrates, the des-ETW deletion results in changes in the Michaelis (Km) and/or catalytic (kcat) constants, worsened as much as 85-fold (Km) or 100-fold (kcat). The specific clotting activity of des-ETW is less than 5% that of thrombin and the kcat/Km for protein C activation in the absence of cofactor less than 2%. Thrombomodulin binds to des-ETW with a dissociation constant of approximately 2.5 nM and partially restores its ability to activate protein C since, in the presence of the cofactor, kcat/Km rises to 6.5% that of thrombin. This study suggests that the ETW motif of thrombin prevents (directly or indirectly) its interaction with the two Kunitz inhibitors and is not essential for the thrombomodulin-mediated enhancement of protein C activation.  相似文献   

14.
Recombinant hirudin variant-2(Lys47), was found to be a competitive inhibitor of human alpha-thrombin with respect to peptidyl p-nitroanilide substrates. These results contrast with those of Degryse and coworkers that suggest that recombinant hirudin variant-2(Lys47) inhibited thrombin by a noncompetitive mechanism [Degryse et al. (1989) Protein Engng, 2, 459-465]. gamma-Thrombin, which can arise from alpha-thrombin by autolysis, was shown to have an affinity for recombinant hirudin variant-2(Lys47) that was four orders of magnitude lower than that of alpha-thrombin. It was demonstrated that the apparent noncompetitive mechanism observed previously was probably caused by a contamination of the thrombin preparation by gamma-thrombin. Comparison of the inhibition of alpha-thrombin by recombinant hirudins variant-2(Lys47) and variant-1, which differ from one another in eight out of 65 amino acids, indicated that the two variants have essentially the same kinetic parameters.  相似文献   

15.
The purification and identification of recombinant hirudin (r-hirudin) (rHV2-Lys47) and its several C-terminal proteolytic degradation derivatives, produced by Pichia pastoris, were described. The high-purity rHV2-Lys47 of above 99% and its three degradation products were obtained by a straightforward two-step chromatography procedure, a combination of cation exchange and reverse phase chromatography, with a recovery yield of 74% for hirudin. The purified rHV2 had the predicted N-terminal amino acid sequence and the derivatives were the degradation products of hirudin, short of one to three amino acid residues at C-terminal.  相似文献   

16.
Hirudin, isolated from the European leech Hirudo medicinalis, is a potent inhibitor of thrombin, forming an almost irreversible thrombin-hirudin complex. Previously, we have shown that the carboxyl terminus of hirudin (residues 45-65) inhibits clotting activity and without binding to the catalytic site of thrombin. In the present study, a series of peptides corresponding to this carboxyl-terminal region of hirudin have been synthesized, and their anticoagulant activity and binding properties to thrombin were examined. Binding was assessed by their ability to displace 125I-hirudin 45-65 from Sepharose-immobilized thrombin and by isolation of peptide-thrombin complexes. We show that the carboxyl-terminal 10 amino acid residues 56-65 (Phe-Glu-Glu-Ile-Pro-Glu-Glu-Tyr-Leu-Gln) are minimally required for binding to thrombin and inhibition of clotting. Phe-56 was critical for maintaining anticoagulant activity as demonstrated by the loss of activity when Phe-56 was substituted with D-Phe, Glu, or Leu. In addition, we found that the binding of the carboxyl-terminal peptide of hirudin with thrombin was associated with a significant conformational change of thrombin as judged by circular dichroism. This conformational change might be responsible for the loss of clotting activity of thrombin.  相似文献   

17.
A novel class of synthetic, multisite-directed thrombin inhibitors, known as hirunorms, has been described recently. These compounds were designed to mimic the binding mode of hirudin, and they have been proven to be very strong and selective thrombin inhibitors. Here we report the crystal structure of the complex formed by human alpha-thrombin and hirunorm V, a 26-residue polypeptide containing non-natural amino acids, determined at 2.1 A resolution and refined to an R-factor of 0.176. The structure reveals that the inhibitor binding mode is distinctive of a true hirudin mimetic, and it highlights the molecular basis of the high inhibitory potency (Ki is in the picomolar range) and the strong selectivity of hirunorm V. Hirunorm V interacts through the N-terminal tetrapeptide with the thrombin active site in a nonsubstrate mode; at the same time, this inhibitor specifically binds through the C-terminal segment to the fibrinogen recognition exosite. The backbone of the N-terminal tetrapeptide Chg1"-Val2"-2-Nal3"-Thr4" (Chg, cyclohexyl-glycine; 2-Nal, beta-(2-naphthyl)-alanine) forms a short beta-strand parallel to thrombin main-chain residues Ser214-Gly219. The Chg1" side chain fills the S2 subsite, Val2" is located at the entrance of S1, whereas 2-Nal3" side chain occupies the aryl-binding site. Such backbone orientation is very close to that observed for the N-terminal residues of hirudin, and it is similar to that of the synthetic retro-binding peptide BMS-183507, but it is opposite to the proposed binding mode of fibrinogen and of small synthetic substrates. Hirunorm V C-terminal segment binds to the fibrinogen recognition exosite, similarly to what observed for hirudin C-termninal tail and related compounds. The linker polypeptide segment connecting hirunorm V N-and C-terminal regions is not observable in the electron density maps. The crystallographic analysis proves the correctness of the design and it provides a compelling proof on the interaction mechanism for this novel class of high potency multisite-directed synthetic thrombin inhibitors.  相似文献   

18.
Thrombomodulin is an endothelial cell surface receptor for thrombin that acts as a physiological anticoagulant. The properties of recombinant human thrombomodulin were studied in COS-7, CHO, CV-1, and K562 cell lines. Thrombomodulin was expressed on the cell surface as shown by the acquisition of thrombin-dependent protein C activation. Like native thrombomodulin, recombinant thrombomodulin contained N-linked oligosaccharides, had Mr approximately 100,000, and was inhibited or immunoprecipitated by anti-thrombomodulin antibodies. Binding studies demonstrated that nonrecombinant thrombomodulin expressed by A549 carcinoma cells and recombinant thrombomodulin expressed by CV-1 and K562 cells had similar Kd's for thrombin of 1.3 nM, 3.3 nM, and 4.7 nM, respectively. The Kd for DIP-thrombin binding to recombinant thrombomodulin on CV-1(18A) cells was identical with that of thrombin. Increasing concentrations of hirudin or fibrinogen progressively inhibited the binding of 125I-DIP-thrombin, while factor Va did not inhibit binding. Three synthetic peptides were tested for ability to inhibit DIP-thrombin binding. Both the hirudin peptide Hir53-64 and the thrombomodulin fifth-EGF-domain peptide Tm426-444 displaced DIP-thrombin from thrombomodulin, but the factor V peptide FacV30-43 which is similar in composition and charge to Hir53-64 showed no binding inhibition. The data exclude the significant formation of a ternary complex consisting of thrombin, thrombomodulin, and hirudin. These studies are consistent with a model in which thrombomodulin, hirudin, and fibrinogen compete for binding to DIP-thrombin at the same site.  相似文献   

19.
A Betz  J Hofsteenge  S R Stone 《Biochemistry》1992,31(19):4557-4562
Site-specific substitutions of the first five amino acids of the thrombin inhibitor hirudin have been made and the effects of these substitutions on the kinetics of formation of the thrombin-hirudin complex evaluated. The effects of different substitutions of Val1 indicate that nonpolar interactions play a major role in the binding of this residue. In the second position (Val2), polar amino acids were better accommodated than in the first. The mutant with arginine in the second position bound particularly well to thrombin; its dissociation constant was 9-fold lower than that of wild-type recombinant hirudin. Comparison of the effects of single and double mutations involving Val1 and Val2 indicates that there was no cooperativity in the binding of these two residues. Elimination of the hydrophobic interactions made by the aromatic ring of Tyr3 of hirudin resulted in a large loss of binding energy (12.7 kJ mol-1). Replacement of Thr4 of hirudin by serine and alanine suggested that both the gamma-methyl and the hydroxyl group of the threonine were important in the stabilization of the thrombin-hirudin complex. Replacement of Asp5 of hirudin by alanine and glutamate caused about the same loss in binding energy (5 kJ mol-1). The effects of site-specific substitutions are discussed in terms of the crystal structure of the thrombin-hirudin complex. Molecular modeling provided plausible explanations for many of the observed effects. For instance, such studies suggested that the improved binding of the mutant with arginine in the second position could be due to an interaction of the arginine with the primary specificity pocket.  相似文献   

20.
Anticoagulant activity of synthetic hirudin peptides   总被引:4,自引:0,他引:4  
Synthetic peptides based on the COOH-terminal 21 residues of hirudin were prepared in order to 1) evaluate the role of this segment in hirudin action toward thrombin, 2) define the shortest peptide derivative with anticoagulant activity, and 3) investigate the role of tyrosine sulfation in the peptides' inhibitory activities. A hirudin derivative of 20 amino acids, Hir45-64 (derived from residues 45-64 of the hirudin polypeptide), was found to effect a dose-dependent increase in the activated partial thromboplastin time (APTT) of normal human plasma but to have no measurable inhibitory activity toward thrombin cleavage of a tripeptidyl p-nitroanilide substrate. Anticoagulant activity in hirudin derivatives was comparable in peptides of 20, 16, and 12 residues truncated from the NH2 terminus. Additional truncated peptides prepared by synthesis and carboxypeptidase treatment reveal that the minimal sequence of a hirudin peptide fragment with maximal anticoagulant activity is contained within the sequence: NH2-Asn-Gly-Asp-Phe-Glu-Glu-Ile-Pro-Glu-Glu-Tyr-Leu-COOH. The 12-residue derivative thus identified was reacted with dicyclohexylcarbodiimide in the presence of sulfuric acid to yield a Tyr-sulfated peptide, S-Hir53-64. By comparison to unsulfated peptide, S-Hir53-64 was found to contain a specific inhibitory activity enhanced by one order of magnitude toward increase in APTT and to effect a dose-dependent increase in thrombin time of normal human plasma to yield a 4-fold increase in thrombin time with 2.5 micrograms/ml peptide using 0.8 units/ml alpha-thrombin. Comparison of S-Hir53-64 to hirudin in thrombin time and APTT assays reveals a 50-fold difference in molar specific activities toward inhibition of thrombin. Comparison of antithrombin activities of S-Hir53-64 using a variety of animal thrombins demonstrates greatest inhibitory activity toward murine, rat, and human enzymes and a 10-fold reduced activity toward bovine thrombin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号