首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
2.
Myristica fragrans is a traditional herbal medicine and has been shown to alleviate the development of atherosclerosis.However,the anti-atherogenic mechanisms of M.fragrans are still to be addressed.In this study,we explored the effect of M.fragrans on lipid metabolism and inflammation and its mechanisms in THP-1-derived macrophages.The quantitative polymerase chain reaction and western blot analysis results showed that M.fragrans promotes cholesterol efflux from THP-1-derived macrophages and reduces intracellular total cholesterol,cholesterol ester,and free cholesterol contents in a dose-and a time-dependent manner.Further study found that liver X receptor alpha(LXRα)antagonist GGPP significantly blocked the upregulation of ABCA1 expression with M.fragrans treatment.In addition,chromatin immunoprecipitation assay confirmed that GATA binding protein 3(GATA3)can bind to the LXRαpromoter,and inhibition of GATA3 led to the downregulation of LXRαand ATP-binding cassette subfamily A member 1 expression.Furthermore,M.fragrans reduced lipid accumulation,followed by decreasing tumor necrosis factor-α,interleukin(IL)-6,and IL-1βand increasing IL-10 produced by THP-1-derived macrophages.Therefore,M.fragrans is identified as a valuable therapeutic medicine for atherosclerotic cardiovascular disease.  相似文献   

3.
Acyl-CoA:cholesterol acyltransferase (ACAT) catalyzes the formation of cholesteryl estersfrom cholesterol and long-chain fatty-acyl-coenzyme A.At the single-cell level,ACAT serves as a regulatorof intracellular cholesterol homeostasis.In addition,ACAT supplies cholesteryl esters for lipoproteinassembly in the liver and small intestine.Under pathological conditions,the accumulation of cholesterylesters produced by ACAT in macrophages contributes to foam cell formation,a hallmark of the earlystage of atherosclerosis.Several reviews addressing various aspects of ACAT and ACAT inhibitors areavailable [1-8].This review briefly outlines the current knowledge on the biochemical properties of humanACATs,and then focuses on discussing the merit of ACAT as a drug target for pharmaceutical interventionsagainst atherosclerosis.  相似文献   

4.
Acyl coenzyme A:cholesterol acyltransferase 2 (ACAT2) plays an important role in cholesterol absorption. Human ACAT2 is highly expressed in small intestine and fetal liver, but its expression is greatly diminished in adult liver. The full-length human ACAT2 mRNA encodes a protein, designated ACAT2a, with 522 amino acids. We have previously reported the organization of the human ACAT2 gene and the differentiation-dependent promoter activity in intestinal Caco-2 cells. In the current work, two human ACAT2 mRNA variants produced by alternative splicing are cloned and predicted to encode two novel ACAT2 isoforms, named ACAT2b and ACAT2c, with 502 and 379 amino acids, respectively. These mRNA variants differ from ACAT2a mRNA by lack of the exon 4 (ACAT2b mRNA) and exons 4-5 plus 8-9-10 (ACAT2c mRNA). Significantly, comparable amounts of the alternatively spliced ACAT2 mRNA variants were detected by RT- PCR, and Western blot analysis confirmed the presence of their corresponding proteins in human liver and intestine cells. Furthermore, phosphorylation and enzymatic activity analyses demonstrated that the novel isoenzymes ACAT2b and ACAT2c lacked the phosphorylatable site SLLD, and their enzymatic activities reduced to 25%-35% of that of ACAT2a. These evidences indicate that alternative splicing produces two human ACAT2 mRNA variants that encode the novel ACAT2 isoenzymes. Our findings might help to understand the regulation of the ACAT2 gene expression under certain physiological and pathological conditions.  相似文献   

5.
6.
7.
Human gastric cancer MKN-45 cells were transfected with pULB 3238,a plasmid carrying MVMp MS-1 gene with its original P4 promoter replaced by the glucocorticoid inducible promoter MMTV-LTR.After the integration and expression of NS-1 gene,some of the transfectants died,while others remained alive,but the growth features of survived cells were changed.For further study on the antineoplastic function of parvoviral NS-1 protein in vivo,transgenic mice carrying NS-1 genes were established by conventional method.Among 4 founders,one of them was found to be able to transmit the transgene to around 50% of their offsprings.RT-PCR was performed to indicate the expression of NS-1 gene in transgenic mice and its mRNA appeared in a variety of tissues.The expression of integrated NS-1 gene may correlate with the decreased incidence of tumor induced in vivo by chemical carcinogens.  相似文献   

8.
Constitutive expression of hFIX protein in nonhepatocytes was studied. The gene targeting vector was constructed and transferred into HeLa cells. With the detection system of PCR, we demonstrated that the endogenous hFIX promoter was replaced with an hCMV promoter when targeted insertion of the constructor was directed by the sequence homology. The expression of hFIX in the modified HeLa cells, 11.2 ng/106 cell/24 h, strongly suggested that hFIX gene could be activated by a powerful promoter in nonhepatocytes. The results would make it possible to examine the feasibility of re-regulate gene expression by promoter replacement.  相似文献   

9.
Recent studies have suggested that antibodies can catalyze the generation of unknown oxidantsincluding hydrogen peroxide (H_2O_2) and ozone (O_3) from singlet oxygen (~1O_2) and water.This study is aimedto detect the effect of antibody-catalyzed water oxidation on atherosclerosis.Our results showed that bothH_2O_2 and O_ were produced in human leukemia THP-1 monocytes incubated with human immunoglobulin Gand phorbol myristate acetate.In the THP-1 monocytes incubated with human immunoglobulin G,phorbolmyristate acetate and low density lipoprotein the intracellular total cholesterol,free cholesterol,cholesterylester and lipid peroxides clearly increased,and a larger number of foam cells were observed by oil red Ostaining.The accumulation of all intracellular lipids was significantly inhibited by vinylbenzoic acid,and onlyslightly affected by catalase.These findings suggested that the production of O_3,rather than H_2O_2,might beinvolved in the pathogenesis of atherosclerosis through the antibody-catalyzed water oxidation pathway.  相似文献   

10.
11.
High levels of the inflammatory cytokine tumor necrosis factor-α (TNF-α) are present in atherosclerotic lesions. TNF-α regulates expression of multiple genes involved in various stages of atherosclerosis, and it exhibits proatherosclerotic and antiatherosclerotic properties. ACAT catalyzes the formation of cholesteryl esters (CE) in monocytes/macrophages, and it promotes the foam cell formation at the early stage of atherosclerosis. We hypothesize that TNF-α may be involved in regulating the ACAT gene expression in monocytes/macrophages. In this article, we show that in cultured, differentiating human monocytes, TNF-α enhances the expression of the ACAT1 but not ACAT2 gene, increases the cholesteryl ester accumulation, and promotes the lipid-laden cell formation. Several other proinflammatory cytokines tested do not affect the ACAT1 gene expression. The stimulation effect is consistent with a receptor-dependent process, and is blocked by using nuclear factor-kappa B (NF-kappa B) inhibitors. A functional and unique NF-kappa B element located within the human ACAT1 gene proximal promoter is required to mediate the action of TNF-α. Our data demonstrate that TNF-α, through the NF-kappa B pathway, specifically enhances the expression of human ACAT1 gene to promote the CE-laden cell formation from the differentiating monocytes, and our data support the hypothesis that TNF-α is proatherosclerotic during early phase of lesion development.  相似文献   

12.
The human monocytic leukemia cell line, THP-1, shares many properties with human monocyte-derived macrophages and might be a useful model for studying foam cell formation in vitro. Therefore, we examined the ability of THP-1 cells to accumulate cholesteryl esters, the hallmark feature of foam cells, in response to culture with native low density lipoprotein (LDL), modified LDL, and platelets. THP-1 cells stored more cholesteryl esters than macrophages in response to 200 micrograms/ml of LDL. Down-regulation of LDL receptors occurred in macrophages at lower LDL concentrations than in THP-1 cells. Phorbol ester-treated THP-1 cells stored more cholesteryl esters than human macrophages in response to 25-200 micrograms/ml of acetylated LDL. Because we have previously demonstrated that activated platelets enhanced macrophage cholesteryl ester storage, we examined the ability of THP-1 cells to store cholesteryl esters in response to coculture with platelets. Compared with macrophages, dividing THP-1 cells and phorbol ester-treated THP-1 cells accumulated only 50% and 33% as much cholesteryl esters, respectively. Furthermore, although platelets induced a 90% reduction in cholesterol synthesis in macrophages by day 5, cholesterol synthesis in THP-1 cells and phorbol ester-treated THP-1 cells was inhibited less than 50% by platelets. Nevertheless, both THP-1 cells and macrophages responded to platelets by increasing their secretion of apolipoprotein E. Therefore, we conclude that dividing THP-1 cells and phorbol ester-treated THP-1 cells are capable of forming foam cells in response to physiologic doses of both LDL and acetylated LDL, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effects of low-density lipoprotein (LDL) and chylomicron remnants on lipid accumulation in human monocyte-derived macrophages (HMDMs) and in macrophages derived from the human monocyte cell line THP-1 were compared. The HMDMs or THP-1 macrophages were incubated with LDL, oxidized LDL (oxLDL), chylomicron remnant-like particles (CMR-LPs), or oxidized CMR-LPs (oxCMR-LPs), and the amount and type of lipid accumulated were determined. As expected, the lipid content of both cell types was increased markedly by oxLDL but not LDL, and this was due to a rise in cholesterol, cholesteryl ester (CE), and triacylglycerol (TG) levels. In contrast, both CMR-LPs and oxCMR-LPs caused a considerable increase in cellular lipid in HMDMs and THP-1 macrophages, but in this case there was a greater rise in the TG than in the cholesterol or CE content. Lipid accumulation in response to oxLDL, CMR-LPs, and oxCMR-LPs was prevented by the ACAT inhibitor CI976 in HMDMs but not in THP-1 macrophages, where TG levels remained markedly elevated. The rate of incorporation of [(3)H]oleate into CE and TG in THP-1 macrophages was increased by oxLDL, CMR-LPs, and oxCMR-LPs, but incorporation into TG was increased to a greater extent with CMR-LPs and oxCMR-LPs compared with oxLDL. These results demonstrate that both CMR-LPs and oxCMR-LPs cause lipid accumulation in human macrophages comparable to that seen with oxLDL and that oxidation of the remnant particles does not enhance this effect. They also demonstrate that a greater proportion of the lipid accumulated in response to CMR-LPs compared with oxLDL is TG rather than cholesterol or CE and that this is associated with a higher rate of TG synthesis. This study, therefore, provides further evidence to suggest that chylomicron remnants have a role in foam cell formation that is distinct from that of oxLDL.  相似文献   

14.
In macrophages, the accumulation of cholesteryl esters synthesized by acyl-coenzyme A: cholesterol acyltransferase 1(ACAT1) plays a crucial role in foam cell formation, a hallmark of early atherosclerotic lesions. It is suggested that Chlamydia pneumoniae (C. pneumoniae) induces foam cell formation. However, the mechanism of foam cell formation induced by C. pneumoniae has not been fully elucidated. In this study, we found that C. pneumoniae increased the expression of acyl-coenzyme A: cholesterol acyltransferase 1(ACAT1) mRNA and protein in a dose-dependent manner in THP-1-derived macrophages exposed to low density lipoprotein (LDL). In addition, C. pneumoniae dose-dependently suppressed the expression of peroxisome proliferator-activated receptor gamma (PPAR γ) mRNA and protein. Rosiglitazone, a specific PPAR γ agonist, not only dose-dependently alleviated the down-regulation of PPAR γ expression by C. pneumoniae infection, but also dose-dependently inhibited the C. pneumoniae-induced ACAT1 expression. Furthermore, higher doses of rosiglitazone (10 and 20 μM) suppressed the C. pneumoniae-induced foam cell formation from morphological (Oil red O staining) and biochemical (zymochemistry method) criteria. These results first demonstrate that C. pneumoniae induces macrophage-derived foam cell formation by up-regulating ACAT1 expression via PPAR γ-dependent pathway, which may contribute to its pro-atherogenic properties.  相似文献   

15.
Reduction of the lipid burden of atherosclerotic lesion-associated macrophage foam cells is a logical strategy to reduce the plaque volume. Since extracellular cholesterol acceptor-mediated cholesterol efflux is the only recognized mechanism of cholesterol removal from foam cells and this process is rate limited at the level of intracellular cholesterol ester hydrolysis, a reaction catalyzed by neutral cholesteryl ester hydrolase (CEH), we examined the hypothesis that CEH overexpression in the human macrophage monocyte/macrophage cell line THP1 results in increased cholesterol efflux, as well as decreased cellular cholesterol ester accumulation. We generated THP1-CEH cells with stable integration of human macrophage CEH cDNA driven by the cytomegalovirus promoter. Compared with wild-type THP1 cells (THP1-WT), THP1-CEH cells showed increased CEH mRNA expression and increased CEH activity. Efflux of free or unesterified cholesterol by acetylated LDL-loaded THP1-CEH cells to ApoA-I by an ABCA1-dependent pathway or to HDL by an ABCG1-dependent pathway was significantly higher than that in THP1-WT cells. In addition, THP1-CEH cells accumulated significantly lower amount of esterified cholesterol. CEH overexpression, therefore, not only enhances cholesterol efflux but also reduces cellular accumulation of cholesteryl esters. Taken together, these data provide evidence for evaluating CEH expression in human macrophages as a potential target for attenuation of foam cell formation and regression of atherosclerotic plaques. lipoproteins; lipid burden; foam cells  相似文献   

16.
Formation of foam cells is a hallmark at the initial stages of atherosclerosis. Monocytes attracted by pro‐inflammatory stimuli attach to the inflamed vascular endothelium and penetrate to the arterial intima where they differentiate to macrophages. Intimal macrophages phagocytize oxidized low‐density lipoproteins (oxLDL). Several scavenger receptors (SR), including CD36, SR‐A1 and lectin‐like oxLDL receptor‐1 (LOX‐1), mediate oxLDL uptake. In late endosomes/lysosomes of macrophages, oxLDL are catabolysed. Lysosomal acid lipase (LAL) hydrolyses cholesterol esters that are enriched in LDL to free cholesterol and free fatty acids. In the endoplasmic reticulum (ER), acyl coenzyme A: cholesterol acyltransferase‐1 (ACAT1) in turn catalyses esterification of cholesterol to store cholesterol esters as lipid droplets in the ER of macrophages. Neutral cholesteryl ester hydrolases nCEH and NCEH1 are involved in a secondary hydrolysis of cholesterol esters to liberate free cholesterol that could be then out‐flowed from macrophages by cholesterol ATP‐binding cassette (ABC) transporters ABCA1 and ABCG1 and SR‐BI. In atherosclerosis, disruption of lipid homoeostasis in macrophages leads to cholesterol accumulation and formation of foam cells.  相似文献   

17.
In order to elucidate the antiatherogenic effects of pioglitazone (a peroxisome proliferator-activated receptor [PPAR]gamma agonist with PPARalpha agonistic activity) and rosiglitazone (a more selective PPARgamma agonist), we examined gene expression and cholesteryl ester accumulation in THP-1-derived macrophages. Pioglitazone enhanced the mRNA expression of the proatherogenic factors CD36 and adipophilin, but was approximately 10 times less potent than rosiglitazone. The potencies of the two agents appeared to correspond to their PPARgamma agonistic activities in this respect. However, both agents were similarly potent in enhancing the mRNA expression of the antiatherogenic factors liver X receptor alpha and ATP-binding cassette-transporter A1. Furthermore, both agents enhanced cholesteryl ester hydrolase mRNA expression and inhibited acyl-CoA cholesterol acyltransferase-1 mRNA expression and cholesteryl ester accumulation in macrophages. In this respect, their potencies appeared to correspond to their PPARalpha agonistic activities. These results suggest that pioglitazone has an equally beneficial effect on antiatherogenic events to rosiglitazone, despite being almost 10 times less potent than a PPARgamma agonist.  相似文献   

18.
Macrophage foam cells in atherosclerotic lesions accumulate substantial cholesterol stores within large, swollen lysosomes. Previous studies with mildly oxidized low density lipoprotein (OxLDL)-treated THP-1 macrophages suggest an initial buildup of free cholesterol (FC), followed by an inhibition of lysosomal cholesteryl ester (CE) hydrolysis and a subsequent lysosomal accumulation of unhydrolyzed lipoprotein CE. We examined whether other potential sources of cholesterol found within atherosclerotic lesions could also induce similar lysosomal accumulation. Biochemical analysis combined with microscopic analysis showed that treatment of THP-1 macrophages with aggregated low density lipoprotein (AggLDL) or CE-rich lipid dispersions (DISP) produced a similar lysosomal accumulation of both FC and CE. Co-treatment with an ACAT inhibitor, CP113,818, confirmed that the CE accumulation was primarily the result of the inhibition of lysosomal CE hydrolysis. The rate of unhydrolyzed CE buildup was more rapid with DISP than with AggLDL. However, with both treatments, FC appeared to accumulate in lysosomes before the inhibition in hydrolysis and CE accumulation, a sequence shared with mildly OxLDL. Thus, lysosomal accumulation of FC and CE can be attributable to more general mechanisms than just the inhibition of hydrolysis by oxidized lipids.  相似文献   

19.
Chlamydia pneumoniae (C. pneumoniae) induces macrophage-derived foam cell formation, a hallmark of early atherosclerosis, in the presence of low density lipoprotein (LDL). However, its mechanisms have yet to be elucidated. In this study we examined the effects of live, heat-killed and UV-inactivated C. pneumoniae on cholesterol metabolism in THP-1-derived macrophages and the role of c-Jun NH2 terminal kinase (JNK), which may participate in the C. pneumoniae-induced disruption of intracellular cholesterol homeostasis. We investigated whether SP600125, a special JNK inhibitor, affects the expression of peroxisome proliferator-activated receptor gamma (PPARγ), and also its downstream target genes Acyl-CoA cholesterol acyltransferase-1 (ACAT1), ATP-binding cassette transporter A1 and G1 (ABCA1/G1) in human THP-1 macrophages infected with C. pneumoniae. In this paper we found that both live and inactivated C. pneumoniae infection induce intracellular cholesterol accumulation and foam cell formation. C. pneumoniae infection increased the expression of ACAT1 and decreased the expression of ABCA1/G1, all of which facilitated cholesterol accumulation and promoted macrophage-derived foam cell formation. However, these responses were attenuated by SP600125 in a dose-dependent manner. These results demonstrate for the first time that both live and inactivated C. pneumoniae infections disturb cholesterol homeostasis in human THP-1 macrophages and C. pneumoniae infection disturbs cholesterol homeostasis via JNK-PPARγ dependent signal transduction pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号