首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular bridges that link the LH surge with functional changes in cumulus cells that possess few LH receptors are being unraveled. Herein we document that epidermal growth factor (EGF)-like factors amphiregulin (Areg), epiregulin (Ereg), and betacellulin (Btc) are induced in cumulus oocyte complexes (COCs) by autocrine and paracrine mechanisms that involve the actions of prostaglandins (PGs) and progesterone receptor (PGR). Areg and Ereg mRNA and protein levels were reduced significantly in COCs and ovaries collected from prostaglandin synthase 2 (Ptgs2) null mice and Pgr null (PRKO) mice at 4 h and 8 h after human chorionic gonadotropin, respectively. In cultured COCs, FSH/forskolin induced Areg mRNA within 0.5 h that peaked at 4 h, a process blocked by inhibitors of p38MAPK (SB203580), MAPK kinase (MEK) 1 (PD98059), and PTGS2 (NS398) but not protein kinase A (PKA) (KT5720). Conversely, AREG but not FSH induced Ptsg2 mRNA at 0.5 h with peak expression of Ptgs2 and Areg mRNAs at 4 h, processes blocked by the EGF receptor tyrosine kinase inhibitor AG1478 (AG), PD98059, and NS398. PGE2 reversed the inhibitory effects of AG on AREG-induced expression of Areg but not Ptgs2, placing Ptgs2 downstream of EGF-R signaling. Phorbol 12-myristate 13-acetate (PMA) and adenovirally expressed PGRA synergistically induced Areg mRNA in granulosa cells. In COCs, AREG not only induced genes that impact matrix formation but also genes involved in steroidogenesis (StAR, Cyp11a1) and immune cell-like functions (Pdcd1, Runx1, Cd52). Collectively, FSH-mediated induction of Areg mRNA via p38MAPK precedes AREG induction of Ptgs2 mRNA via ERK1/2. PGs acting via PTGER2 in cumulus cells provide a secondary, autocrine pathway to regulate expression of Areg in COCs showing critical functional links between G protein-coupled receptor and growth factor receptor pathways in ovulating follicles.  相似文献   

2.
3.
4.
5.
Degradation of activated ERBB receptors is an important mechanism for signal attenuation. However, compared with epidermal growth factor (EGF) receptor, the ERBB2/ERBB3 signaling pair is considered to be attenuation-deficient. The ERBB2/ERBB3 ligands of the neuregulin family rely on an EGF-like domain for signaling and are generated from larger membrane-bound precursors. In contrast to EGF, which is processed to yield a 6-kDa peptide ligand, mature neuregulins retain a variety of segments N-terminal to the EGF-like domain. Here we evaluate the role of the N-terminal domain of neuregulin 1 in signaling and turnover of ERBB2/ERBB3. Our data suggest that whereas the EGF-like domain of neuregulin 1 is required and sufficient for the formation of active receptor heterodimers, the presence of the N-terminal Ig-like domain is required for efficient signal attenuation. This manifests itself for both ERBB2 and ERBB3 but is more pronounced and coupled directly to degradation for ERBB3. When stimulated with only the EGF-like domain, ERBB3 shows degradation rates comparable with constitutive turnover, but stimulation with full-length neuregulin 1 resulted in receptor degradation at rates that are comparable with activated EGF receptor. Most of the enhancement in down-regulation was maintained after replacing the Ig-like domain with a thioredoxin protein of comparable size but different amino acid composition, suggesting that the physical presence but not specific properties of the Ig-like domain are needed. This sequence-independent effect of the N-terminal domain correlates with an enhanced ability of full-size neuregulin 1 to disrupt higher order oligomers of the ERBB3 extracellular domains in vitro.  相似文献   

6.
We recently identified neuregulin‐1 (NRG1) as a novel target of Notch1 required in Notch‐dependent melanoma growth. ERBB3 and ERBB4, tyrosine kinase receptors specifically activated by NRG1, have been shown to be either elevated in melanoma cell lines and tumors or to be mutated in 20% of melanomas, respectively. While these data support key roles of NRG1 and its receptors in the pathogenesis of melanoma, whether ERBB3 and ERBB4 display redundant or exclusive functions is not known. Here, we show that ERBB3 and ERBB4 inhibition results in distinct outcomes. ERBB3 inhibition ablates the cellular responses to NRG1, results in AKT inactivation and leads to cell growth arrest and apoptotic cell death. In contrast, ERBB4 knockdown mildly affects cell growth, has no effects on cell survival and, importantly, does not alter the responses to NRG1. Finally, we identified ERBB2 as a key coreceptor in NRG1‐dependent ERBB3 signaling. ERBB2 forms a complex with ERBB3, and its inhibition recapitulates the phenotypes observed upon ERBB3 ablation. We propose that an NRG1‐ERBB3‐ERBB2 signaling unit operates in melanoma cells where it promotes growth and survival.  相似文献   

7.
The genes encoding for neuregulin1 (NRG1), a growth factor, and its receptor ErbB4 are both risk factors of major depression disorder and schizophrenia (SZ). They have been implicated in neural development and synaptic plasticity. However, exactly how NRG1 variations lead to SZ remains unclear. Indeed, NRG1 levels are increased in postmortem brain tissues of patients with brain disorders. Here, we studied the effects of high-level NRG1 on dendritic spine development and function. We showed that spine density in the prefrontal cortex and hippocampus was reduced in mice (ctoNrg1) that overexpressed NRG1 in neurons. The frequency of miniature excitatory postsynaptic currents (mEPSCs) was reduced in both brain regions of ctoNrg1 mice. High expression of NRG1 activated LIMK1 and increased cofilin phosphorylation in postsynaptic densities. Spine reduction was attenuated by inhibiting LIMK1 or blocking the NRG1–LIMK1 interaction, or by restoring NRG1 protein level. These results indicate that a normal NRG1 protein level is necessary for spine homeostasis and suggest a pathophysiological mechanism of abnormal spines in relevant brain disorders.Subject terms: Molecular neuroscience, Schizophrenia  相似文献   

8.
The role of granulosa cell conditioned media (CM) containing luteinization stimulator (LS), and the role of EGF in the cumulus expansion of oocyte-cumulus complexes (OCC) isolated from large antral follicles was investigated. The CM were prepared by incubation of granulosa cells isolated from large antral follicles. After 24h incubation, more than 61 or 64% of OCC expanded to the +3 and +4 stage in the presence of CM (50%) or EGF (10ng/ml), respectively. The stimulatory effect of LS and EGF on the cumulus expansion was accompanied by the enhanced hyaluronic acid synthesis. Complete suppression of cumulus expansion stimulated by LS and EGF was observed in the presence of 10 micromol/l genistein (tyrosine kinase inhibitor), in the presence of 10mmol/l LiCl (the inhibitor of inositol 1,4,5-trisphosphate metabolism), and 100 micromol/l gallopamil, verapamil and norverapamil (calcium channel blockers). Stimulatory effect of EGF on the cumulus expansion of OCC isolated from large follicles was accompanied by the increased cumulus cell progesterone production. However, EGF did not affect the progesterone production by OCC isolated from small follicles. To determine whether EGF could modulate the granulosa cell steroidogenesis also, the effect of EGF on granulosa cells isolated from large (LGC) and small (SGC) follicles was compared. EGF (10ng/ml) failed to affect the progesterone synthesis during 72h culture of SGC but significantly enhanced the LGC progesterone production. Our results indicate that luteinization factor stimulates the cumulus expansion and hyaluronic acid synthesis by the OCC isolated from large antral follicles. The mechanism of LS- and EGF-induced cumulus expansion may involve tyrosine kinase activation and calcium mobilization. In addition, these results indicate the different response of porcine cumulus and granulosa cells originating from small and large follicles on the stimulatory effect of EGF.  相似文献   

9.
Gonadotropins, steroids and growth factors stimulate or inhibit cumulus expansion, nuclear maturation, or both, of most mammalian oocytes in vitro. The objective was to evaluate the effects of epidermal growth factor (EGF) and various hormone combinations on in vitro granulosa/cumulus (G-C) expansion and nuclear maturation of domestic dog oocytes derived from advanced preantral and early antral follicles. Follicles were collected after enzymatic digestion of ovarian tissue and cultured for 66 h in F-12/DME with 20% fetal bovine serum, 2mM glutamine and 1% antibiotic-antimycotic (Control). Treatments comprised the following groups; each was cultured both with and without EGF (5 ng/mL): Control, FSH (0.5 microg/mL), LH (5 microg/mL), estradiol-17beta (E2, 1 microg/mL), FSH+LH, and FSH+LH+E2. Granulosa/cumulus expansion was scored on a scale of 0 (no expansion) to +3 (maximum expansion). The interaction between EGF and hormone treatment affected (P=0.011) maximum G-C expansion. With the exception of the E2 group, EGF increased (P<0.05) the proportion of oocytes exhibiting +3 expansion. The synergism of E2 with FSH+LH enhanced maximum G-C expansion; compared to all other treatments, the greatest expansion was observed in the FSH+LH+E2+EGF group (83.5+/-3.5%). When cultured in EGF alone, oocytes failed to reach metaphase I-II (MI-MII) stages. The interaction between EGF and hormone treatment tended (P=0.089) to increase the proportion of oocytes resuming or completing nuclear maturation (GVBD-MII). In addition, supplementing culture media with hormones increased (P=0.010) the GVBD-MII rate. Therefore, EGF in combination with FSH and LH enhanced G-C expansion of cultured canine oocytes, with no significant effect on the proportion of oocytes derived from advanced preantral and early antral follicles that reached MI-MII.  相似文献   

10.
In order to examine the influence of several steroids on the process of oocyte maturation, denuded (adherent cumulus granulosa cells mechanically removed) and intact (cumulus granulosa cells left attached) porcine oocytes were cultured in the presence or absence of estradiol-17 beta, estradiol-17 alpha, testosterone, cortisol, progesterone, or the nonsteroidal estrogen diethyl stilbestrol (all at 10 microgram/ml) in defined medium that contained either BSA or dextran. Estradiol-17 beta was the only steroid to exert a significant inhibitory effect on the maturation of denuded oocytes, and did so only in BSA supplemented medium. The inhibition was reversible in that oocytes, cultured in steroid-free medium after initial culture in estradiol-17 beta medium, resumed meiotic maturation. Oocytes took up 3H-estradiol-17 beta in both media, although less radiolabel entered oocytes in BSA supplemented medium. The majority of label in the oocytes, when cultured with either medium, was not displaced by excess radioinert estradiol-17 beta or progesterone, nor were the oocytes saturated even when cultured in 10(-6) M estradiol-17 beta. Autoradiography of sectioned oocytes after culture in 3H-estradiol-17 beta has shown that there was no selective accumulation of silver grains over the germinal vesicle as was the case with granulosa cell nuclei. This observation suggests that estradiol-17 beta may not act at the level of the oocyte nucleus.  相似文献   

11.
Although it has been shown that granulosa cells regulate the growth and meiotic maturation of mammalian oocytes, there is little evidence of a role for the oocyte in the differentiation or function of granulosa cells. To test the hypothesis that the oocyte participates in the regulation of granulosa cell function, oocytes were removed from isolated oocyte-cumulus cell complexes by a microsurgical procedure and oocytectomized complexes were tested for their ability to undergo expansion in response to follicle-stimulating hormone (FSH). FSH increased the levels of intracellular cAMP, the activity of the hyaluronic acid-synthesizing enzyme system, and induced cumulus expansion in intact complexes. In contrast, FSH did not induce increased hyaluronic acid-synthesizing enzyme activity or cumulus expansion in oocytectomized complexes. Therefore, the participation of the oocyte is necessary for the cumulus cells to synthesize hyaluronic acid and undergo cumulus expansion in vitro in response to stimulation with FSH. FSH induced the elevation of intracellular cAMP to the same extent in both intact and oocytectomized complexes and the cAMP analog 8-bromo cyclic adenosine monophosphate (8Br-cAMP) did not stimulate expansion in oocytectomized complexes. Therefore, the influence of the oocyte on cumulus expansion occurs downstream from the elevation of cAMP levels in the cumulus cells. Epidermal growth factor (EGF), a potent stimulator of cumulus expansion in intact complexes, which probably acts by a mechanism at least initially different from FSH, failed to stimulate cumulus expansion after oocytectomy. Next, oocytectomized complexes were either cocultured with germinal vesicle stage denuded oocytes or cultured in medium conditioned by denuded oocytes. In both cases, FSH or EGF stimulated expansion by oocytectomized complexes. The degree of expansion was directly correlated to the number of oocytes used to condition the medium. Contact between the oocyte and the cumulus cells is not necessary for cumulus expansion. Rather, a factor(s) secreted by the oocyte is necessary for the cumulus cells to undergo expansion in response to either FSH or EGF. FSH did not induce expansion of oocytectomized complexes in media conditioned by various somatic cells such as granulosa cells, fibroblasts, and Sertoli cells; by a mixed population of male germ cells; or by spermatozoa. This suggests that the expansion enabling activity is specific to the oocyte. These results demonstrate that the oocyte participates in the regulation of cumulus cell function.  相似文献   

12.
Ovulation is the complex, inflammatory-like process by which the cumulus oocyte complex (COC) is released from a mature, preovulatory follicle through a rupture site at the ovarian surface and requires expression of genes that generate and stabilize the expanded extracellular COC matrix. Gene profiling analyses of COCs at selected time intervals during ovulation revealed that many genes associated with immune related surveillance functions were also induced in cumulus cells. Specifically, cell surface signaling molecules known as pattern recognition receptors that act as sensors of the external environment important for the innate immune system to detect self from nonself or altered self are induced and/or expressed in cumulus cells as well as granulosa cells. These include the complement factor q1, CD14, and the Toll-like receptors (TLRs) 4, 8, and 9 as well as mediators of TLR activation, myeloid differentiation primary response gene 88 and interferon regulatory factor 3. COCs exposed to bacterial lipopolysaccharide exhibit enhanced phosphorylation of p38MAPK, ERK1/2 and nuclear factor-kappaB and increased expression of Il6 and Tnfa target genes, documenting that the TLR pathway is functional. Cumulus cells and granulosa cells also express the scavenger receptors CD36 and scavenger receptor type B1 and exhibited phagocytic uptake of fluorescently tagged bacterial particles. Collectively, these results provide novel evidence that cumulus cells as well as granulosa cells express innate immune related genes that may play critical roles in surveillance and cell survival during the ovulation process.  相似文献   

13.
14.
Activation of the RAS family of small G-proteins is essential for follicle stimulating hormone-induced signaling events and the regulation of target genes in cultured granulosa cells. To analyze the functions of RAS protein in granulosa cells during ovarian follicular development in vivo, we generated conditional knock-in mouse models in which the granulosa cells express a constitutively active KrasG12D. The KrasG12D mutant mice were subfertile and exhibited signs of premature ovarian failure. The mutant ovaries contained numerous abnormal follicle-like structures that were devoid of mitotic and apoptotic cells and cells expressing granulosa cell-specific marker genes. Follicles that proceeded to the antral stage failed to ovulate and expressed reduced levels of ovulation-related genes. The human chorionic gonadotropin-stimulated phosphorylation of ERK1/2 was markedly reduced in mutant cells. Reduced ERK1/2 phosphorylation was due, in part, to increased expression of MKP3, an ERK1/2-specific phosphatase. By contrast, elevated levels of phospho-AKT were evident in granulosa cells of immature KrasG12D mice, even in the absence of hormone treatments, and were associated with the progressive decline of FOXO1 in the abnormal follicle-like structures. Thus, inappropriate activation of KRAS in granulosa cells blocks the granulosa cell differentiation pathway, leading to the persistence of abnormal non-mitotic, non-apoptotic cells rather than tumorigenic cells. Moreover, those follicles that reach the antral stage exhibit impaired responses to hormones, leading to ovulation failure. Transient but not sustained activation of RAS in granulosa cells is therefore crucial for directing normal follicle development and initiating the ovulation process.  相似文献   

15.
Hypofunction of the N-methyl D-aspartate subtype of glutamate receptor (NMDAR) is hypothesized to be a mechanism underlying cognitive dysfunction in individuals with schizophrenia. For the schizophrenia-linked genes NRG1 and ERBB4, NMDAR hypofunction is thus considered a key detrimental consequence of the excessive NRG1-ErbB4 signaling found in people with schizophrenia. However, we show here that neuregulin 1β-ErbB4 (NRG1β-ErbB4) signaling does not cause general hypofunction of NMDARs. Rather, we find that, in the hippocampus and prefrontal cortex, NRG1β-ErbB4 signaling suppresses the enhancement of synaptic NMDAR currents by the nonreceptor tyrosine kinase Src. NRG1β-ErbB4 signaling prevented induction of long-term potentiation at hippocampal Schaffer collateral-CA1 synapses and suppressed Src-dependent enhancement of NMDAR responses during theta-burst stimulation. Moreover, NRG1β-ErbB4 signaling prevented theta burst-induced phosphorylation of GluN2B by inhibiting Src kinase activity. We propose that NRG1-ErbB4 signaling participates in cognitive dysfunction in schizophrenia by aberrantly suppressing Src-mediated enhancement of synaptic NMDAR function.  相似文献   

16.
The role of granulosa cells in the regulation of mouse ovarian oocyte metabolism was investigated. Fully grown antral oocytes, isolated from surrounding cumulus cells, were cultured on monolayers of preantral granulosa cells in the presence of dbcAMP to prevent the resumption of meiosis. Under these conditions metabolic cooperativity was established between the two cell types as early as 1 hr after seeding. Moreover, cocultured oocytes phosphorylated two polypeptides of 74 and 21 kDa which are normally phosphorylated in follicle-enclosed growing oocytes but not in cumulus cell-enclosed fully grown oocytes at the germinal vesicle stage. When cocultured oocytes were allowed to resume meiosis, the 74 and 21 kDa proteins were synthesized but no longer phosphorylated even though intercellular coupling between the two cell types was maintained during radiolabeling. It appears therefore: a) that the different protein kinase activity of growing and fully grown germinal vesicle-stage mouse oocytes is related to the differentiative state of granulosa cells, and b) that the regulation of oocyte protein phosphorylation activity by granulosa cells is dependent on the meiotic stage of the oocyte.  相似文献   

17.
Amputation of a salamander tail leads to functional spinal cord regeneration through activation of endogenous stem cells. Identifying the signaling pathways that control cell proliferation in these neural stem cells will help elucidate the mechanisms underlying the salamander’s regenerative ability. Here, we show that neuregulin 1 (Nrg1)/ErbB2 signaling is an important pathway in the regulation of neural stem cell proliferation in the spinal cord of the axolotl salamander (Ambystoma mexicanum). Simultaneous localization of nrg1 mRNA and Nrg1 protein was performed by utilizing a hybridization chain reaction fluorescence in situ hybridization (FISH) methodology in tissue sections. Multiplexed FISH also permitted the phenotyping of multiple cell types on a single fixed section allowing the characterization of mRNA expression, protein expression, and tissue architecture. Pharmacological inhibition of ErbB2 showed that intact Nrg1/ErbB2 signaling is critical for adult homeostatic regeneration as well as for injury‐induced spinal cord regeneration. Overall, our results highlight the importance of the NRG1/ErbB2 signaling pathway in neural stem cell proliferation in the axolotl.  相似文献   

18.
The effects of granulosa cells in maturation media on male pronuclear formation and in vitro development of in vitro-matured and fertilized (IVM-IVF) bovine oocytes were examined. In Experiment 1, cumulus-oocyte complexes (COCs) were aspirated from follicles of slaughterhouse ovaries and classified into 4 morphological categories according to the surrounding cumulus cells: Grade 1 (> 4 layers), Grade 2 (3 to 4 layers), Grade 3 (1 to 2 layers) and Grade 4 (denuded). Oocytes were co-cultured with or without granulosa cells (1 x 10(6) cells/ml) for 21 to 22 h. At 18 and 192 h after insemination, the abilities of oocytes to form a male pronucleus and develop up to the blastocyst stage in vitro were determined, respectively. The presence of granulosa cells during maturation did not affect (P < 0.05) the ability of oocytes in Grades 1 and 2 to form a male pronucleus and to develop to the blastocyst stage in Grades 1 and 4. However, the incidence of male pronuclear formation in Grades 3 and 4 and in vitro development to the blastocyst stage in Grades 2 and 3 was higher (P < 0.05) when COCs were cultured in the presence of granulosa cells than when cultured in the absence of granulosa cells. In Experiment 2, COCs collected by ultrasound-guided aspiration were co-cultured with or without granulosa cells, fertilized and cultured as described above. The incidence of blastocysts at 192 h after insemination was higher (P < 0.05) when COCs were cultured for maturation in the presence of granulosa cells (24%) than in the absence of granulosa cells (12%). These results demonstrate that supplementation of maturation medium with granulosa cells improves the quality of oocytes with relatively few cumulus cell layers, as determined by male pronuclear formation and in vitro development. We also conclude that this supplementation effectively improves the developmental ability of bovine IVM-IVF oocytes that were collected by ultrasound-guided transvaginal aspiration.  相似文献   

19.
The shedding mechanism for the tomoregulin (TR) ectodomain, which contains two follistatin modules and a single epidermal growth factor (EGF)-like domain, remains unclear. Our study provides the first evidence that proinflammatory cytokines, IL-1beta and TNF-alpha, induce TR-ectodomain shedding in cultured A172 human glioma cells, without affecting TR mRNA expression. In addition, it appears that this shedding process is induced via activation of the NF-kappaB signaling pathway; with consequent increase in the production of metalloproteinases. Furthermore, since due to erbB4 tyrosine phosphorylation TR may have functions similar to EGF/neuregulin (NRG) family growth factors, our results suggest that following inflammation-induced injury, increases in TR shedding may contribute to tissue growth and repair in the central nervous system.  相似文献   

20.
Cytochrome P450 lanosterol 14alpha-demethylase (CYP51) is a key enzyme in sterols and steroids biosynthesis that can induce meiotic resumption in mouse oocytes. The present study investigated the expression mechanism and function of CYP51 during FSH-induced mouse cumulus oocyte complexes (COCs) meiotic resumption. FSH increased cAMP-dependent protein kinase (PKA) RIIbeta level and induced cAMP response element-binding protein (CREB) phosphorylation and CYP51 expression in cumulus cells before oocyte meiotic resumption. Moreover, CYP51 and epidermal growth factor (EGF)-like factor [amphiregulin (AR)] expression were blocked by (2)-naphthol-AS-Ephosphate (KG-501) (a drug interrupting the formation of CREB functional complex). KG-501 and RS21607 (a specific inhibitor of CYP51 activity) inhibited oocyte meiotic resumption, which can be partially rescued by progesterone. These two inhibitors also inhibited FSH-induced MAPK phosphorylation. EGF could rescue the suppression by KG-501 but not RS21607. Furthermore, type II PKA analog pairs, N(6)-monobutyryl-cAMP plus 8-bromo-cAMP, increased PKA RIIbeta level and mimicked the action of FSH, including CREB phosphorylation, AR and CYP51 expression, MAPK activation, and oocyte maturation. All these data suggest that CYP51 plays a critical role in FSH-induced meiotic resumption of mouse oocytes. CYP51 and AR gene expression in cumulus cells are triggered by FSH via a type II PKA/CREB-dependent signal pathway. Our study also implicates that CYP51 activity in cumulus cells participates in EGF receptor signaling-regulated oocyte meiotic resumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号