首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Control of the growth and differentiation of neural stem cells is fundamental to brain development and is largely dependent on the Notch signaling pathway. The mechanism by which the activity of Notch is regulated during brain development has remained unclear, however. Fbxw7 (also known as Fbw7, SEL-10, hCdc4, or hAgo) is the F-box protein subunit of an Skp1-Cul1-F-box protein (SCF)-type ubiquitin ligase complex that plays a central role in the degradation of Notch family members. We now show that mice with brain-specific deletion of Fbxw7 (Nestin-Cre/Fbxw7(F/F) mice) die shortly after birth with morphological abnormalities of the brain and the absence of suckling behavior. The maintenance of neural stem cells was sustained in association with the accumulation of Notch1 and Notch3, as well as up-regulation of Notch target genes in the mutant mice. Astrogenesis was also enhanced in the mutant mice in vivo, and the differentiation of neural progenitor cells was skewed toward astrocytes rather than neurons in vitro, with the latter effect being reversed by treatment of the cells with a pharmacological inhibitor of the Notch signaling pathway. Our results thus implicate Fbxw7 as a key regulator of the maintenance and differentiation of neural stem cells in the brain.  相似文献   

4.
Alopecia areata (AA) is a disorder primarily affecting the hair and nails in which associated autoimmune or atopic disease is common. Genetically, it is a complex trait with evidence of a role for genes of the major histocompatibility complex (MHC), the interleukin-1 cluster and chromosome 21 in the pathogenesis. The strongest association is with HLA class II alleles, although whether this indicates a direct contribution to the pathogenesis or results merely from linkage disequilibrium with nearby disease genes is unknown. Notch4 is a recently defined gene in the HLA class III region. Notch signalling is a direct determinant of keratinocyte growth arrest and entry into differentiation. A possible role for Notch in hair growth has been indicated by transgenic mouse findings that activation of the Notch pathway in the hair cortex leads to aberrant differentiation of adjacent hair-shaft layers. Notch4 is therefore a plausible candidate gene for AA. We have examined two polymorphisms in the coding sequence of the Notch4 gene at positions +1297 and +3063 in a case-control study of 116 AA patients and 142 ethnically matched, healthy control subjects. The initial analysis showed a significant association of AA in the overall data set with the Notch4(T+1297C) polymorphism (P<0.001) but not with Notch4(A+3063G). To confirm this association, we genotyped an additional 62 patients and found that the risk for disease was higher in Notch4(+1297C) homozygotes [odds ratio (OR) 3.43 (1.63, 7.19)] than in heterozygotes [OR 2.58 (1.57, 4.24)]. On classifying the patients by severity of disease, the association appeared to be confined to the severest form (alopecia universalis) [OR 4.02 (1.64, 9.88), P=0.0014]. These results support previous findings showing that different HLA susceptibility alleles are associated with mild and severe AA.  相似文献   

5.
The Notch signaling pathway is an evolutionarily conserved mechanism that regulates many cell fate decisions. The deltex (dx) gene encodes an E3-ubiquitin ligase that binds to the intracellular domain of the Notch protein and regulates Notch signaling in a positive manner. However, it is still not clear how Dx does this. We generated a transgenic line, GMR-dx, which overexpresses dx in the developing Drosophila eye disc. The GMR-dx line showed a rough-eye phenotype, specific transformation of a photoreceptor cell (R3 to R4), and a rotation defect in the ommatidia. This phenotype was suppressed in combination with a dx loss-of-function mutant, indicating that it was due to a dx gain-of-function. We previously reported that overexpression of Dx results in the stabilization of Notch in late endosomes. Here, we found that three motifs in Dx, a region that binds to Notch, a proline-rich motif and a RING-H2 finger, were required for this stabilization, although the relative activity of these variants in this assay did not always correspond to the severity of the rough-eye phenotype. In an attempt to identify novel genes of the Notch pathway, we tested a large collection of chromosomal deficiencies for the ability to modify the eye phenotypes of the GMR-dx line. Twelve genomic segments that enhanced the rough-eye phenotype of GMR-dx were identified. To evaluate the specificity of these interactions, we then determined whether the deletions also interacted with the wing phenotypes associated with a loss-of-function mutation of dx, dx24. Analyses based on whole-genome information allowed us to conclude that we have identified two novel loci that probably include uncharacterized genes involved in Dx-mediated Notch signaling.  相似文献   

6.
The kuzbanian gene encodes a metalloprotease of the ADAM family that is involved in Notch signalling. However, its precise role is a matter of controversy. While original reports concluded that kuz is required on the receiving side of the Notch signalling pathway, a more recent report suggests that Kuz is required on the signal-emitting side for the generation of an active secreted form of the ligand Delta. In this scenario, kuz should act cell non-autonomously. A third possibility is that Kuz is required on the signal-emitting as well as the receiving side. Here I present the clonal analysis of kuz in Drosophila wing. The results show that Kuz acts on the receiving side of the pathway and is not required for Delta signalling. This further confirms the hypothesis that Kuz is required for the release of the intracellular domain of Notch that transduces the signal to the nucleus. The presented results complement recent data that indicate that Kuz can perform the S2 proteolytic cleavage of the Notch receptor that is required for its activation.  相似文献   

7.
8.
In the Drosophila embryo, the mesectoderm corresponds to a single row of cells abutting the mesoderm. It is specified by the expression of the single-minded (sim) gene. The information that precisely positions the sim-expressing cells along the dorso-ventral axis is incompletely understood. Previous studies have shown that Dorsal and Twist activate sim expression in a large ventral domain, while two negative regulators, Snail (Sna) and Suppressor of Hairless [Su(H)], repress sim expression in the mesoderm and neuroectoderm, respectively. Repression by Su(H) is relieved in the presumptive mesectoderm by Notch signaling. In this paper, we show that Sna also has a positive regulatory function on sim expression in the presumptive mesectoderm. This positive effect of Sna depends on the Su(H)-binding sites within the sim promoter, suggesting that Sna regulates Notch signaling. In addition, we find that Delta is endocytosed together with the extracellular domain of Notch. The endocytosis of Delta is only seen in the mesoderm and requires the activity of the sna and neuralized (neur) genes. Interestingly, the Neur-mediated endocytosis of Delta has recently been shown to be sufficient for the non-autonomous activation of Notch target genes in wing imaginal discs. We therefore propose a novel model in which Sna positions the mesectoderm via its dual regulatory activity. In this model, Sna cell-autonomously represses sim expression in the mesoderm and relieves Su(H)-dependent repression in a cell non-autonomous fashion by promoting the Neur-dependent endocytosis of Delta in the mesoderm.  相似文献   

9.
10.
BACKGROUND: Members of the Notch family of receptors mediate a process known as lateral inhibition that plays a prominent role in the suppression of cell fates during development. This function is triggered by a ligand, Delta, and is implemented by the release of the intracellular domain of Notch from the membrane and by its interaction with the protein Suppressor of Hairless [Su(H)] in the nucleus. There is evidence that Notch can also signal independently of Su(H). In particular, in Drosophila, there is evidence that a Su(H)-independent activity of Notch is associated with Wingless signaling. RESULTS: We report that Ubx(VM)B, a visceral mesoderm-specific enhancer of the Ubx gene of Drosophila, is sensitive to Notch signaling. In the absence of Notch, but not of Su(H), the enhancer becomes activated earlier and over a wider domain than in the wild type. Furthermore, the removal of Notch reduces the requirement for Disheveled-mediated Wingless signaling to activate this enhancer. This response to Notch is likely to be mediated by the dTcf binding sites in the Ubx(VM)B enhancer. CONCLUSIONS: Our results show that, in Drosophila, an activity of Notch that is likely to be independent of Su(H) inhibits Wingless signaling on Ubx(VM)B. A possible target of this activity is dTcf. As dTcf has been shown to be capable of repressing Wingless targets, our results suggest that this repressive activity may be regulated by Notch. Finally, we suggest that Wingless signaling is composed of two steps, a down-regulation of a Su(H)-independent Notch activity that modulates the activity of dTcf and a canonical Wingless signaling event that regulates the activity of Armadillo and its interaction with dTcf.  相似文献   

11.
The Caenorhabditis elegans sel-10 protein is structurally similar to E3 ubiquitin ligases and is a negative regulator of Notch (lin-12) and presenilin signaling. In this report, we characterize the mammalian Sel-10 homolog (mSel-10) and analyze its effects on Notch signaling. We find that mSel-10 localizes to the cell nucleus, and that it physically interacts with the Notch 1 intracellular domain (IC) and reduces Notch 1 IC-mediated activation of the HES 1 promoter. Notch 1 IC is ubiquitinated by mSel-10, and ubiquitination requires the presence of the most carboxyl-terminal region of the Notch IC, including the PEST domain. In the presence of the proteasome inhibitor MG132, the amount of Notch 1 IC and its level of ubiquitination are increased. Interestingly, this accumulation of Notch 1 IC in the presence of MG132 is accompanied by decreased activation of the HES 1 promoter, suggesting that ubiquitinated Notch 1 IC is a less potent transactivator. Finally, we show that mSel-10 itself is ubiquitinated and degraded by the proteasome. In conclusion, these data reveal the importance of ubiquitination and proteasome-mediated degradation for the activity and turnover of Notch ICs, and demonstrate that mSel-10 plays a key role in this process.  相似文献   

12.
13.
Notch is a transmembrane receptor that mediates the cell-cell interactions necessary for many cell-fate decisions. Endocytic trafficking of Notch plays important roles in the activation and downregulation of this receptor. A Drosophila O-FucT-1 homolog, encoded by O-fut1, catalyzes the O-fucosylation of Notch, a modification essential for Notch signaling and ligand binding. It was recently proposed that O-fut1 acts as a chaperon for Notch in the endoplasmic reticulum and is required for Notch to exit the endoplasmic reticulum. Here, we report that O-fut1 has additional functions in the endocytic transportation of Notch. O-fut1 was indispensable for the constitutive transportation of Notch from the plasma membrane to the early endosome, which we show was independent of the O-fucosyltransferase activity of O-fut1. We also found that O-fut1 promoted the turnover of Notch, which consequently downregulated Notch signaling. O-fut1 formed a stable complex with the extracellular domain of Notch. In addition, O-fut1 protein added to conditioned medium and endocytosed was sufficient to rescue normal Notch transportation to the early endosome in O-fut1 knockdown cells. Thus, an extracellular interaction between Notch and O-fut1 is essential for the normal endocytic transportation of Notch. We propose that O-fut1 is the first example, except for ligands, of a molecule that is required extracellularly for receptor transportation by endocytosis.  相似文献   

14.
Notch, a cell surface receptor, is required for producing different types of cells during development of Drosophila melanogaster. Notch activates expression of one set of genes in response to ligand Delta and another set of genes in response to ligand Wingless. The means by which Notch initiates these different intracellular activities was examined in this study. Cultured cells expressing Notch were treated with Delta or Wingless, and the effect on Notch was examined by Western blotting. Treatment of cells with Delta resulted in accumulation of approximately 120-kDa Notch intracellular domain molecules in the cytoplasmic fraction. This form of Notch did not accumulate in cells treated with Wingless, but the approximately 350-kDa full-length Notch molecules accumulated. These results indicate that N responds differently to binding by Delta and Wingless, and suggest that although the Delta signal is transduced by the Notch intracellular domain released from the plasma membrane, the Wingless signal is transduced by the Notch intracellular domain associated with the plasma membrane.  相似文献   

15.
Intramembranous "gamma-secretase" processing of beta-amyloid precursor protein (APP) and other transmembrane proteins, including Notch, is mediated by a macromolecular complex consisting of presenilins (PSs), nicastrin (NCT), APH-1, and PEN-2. We now demonstrate that in cells coexpressing PS1, APH-1, and NCT, full-length PS1 accumulates to high levels and is fairly stable. Upon expression of PEN-2, the levels of PS1 holoprotein are significantly reduced, commensurate with an elevation in levels of PS1 fragments. These findings suggest that APH-1 and NCT are necessary for stabilization of full-length PS1 and that PEN-2 is critical for the proteolysis of stabilized PS1. In N2a and 293 cell lines that stably overexpress PS1, APH-1, NCT, and PEN-2, PS1 fragment levels are elevated by up to 10-fold over endogenous levels. In these cells, we find a marked accumulation of the APP-CTF gamma (AICD) fragment and a concomitant reduction in levels of both APP-CTF beta and CTF alpha. Moreover, the production of the gamma-secretase-generated Notch S3/NICD derivative is modestly elevated. However, we failed to observe a corresponding increase in levels of secreted A beta peptides in the medium of these cells. These results lead us to conclude that, although the PS1, APH-1, NCT, and PEN-2 are essential for gamma-secretase activity, the proteolysis of APP-CTF and Notch S2/NEXT are differentially regulated and require the activity of additional cofactors that promote production of AICD, NICD, and A beta.  相似文献   

16.
Notch signaling involves the proteolytic cleavage of the transmembrane Notch receptor after binding to its transmembrane ligands. Jagged-1 also undergoes proteolytic cleavage by gamma-secretase and releases an intracellular fragment. In this study, we have demonstrated that the Jagged-1 intracellular domain (JICD) inhibits Notch1 signaling via a reduction in the protein stability of the Notch1 intracellular domain (Notch1-IC). The formation of the Notch1-IC-RBP-Jk-Mastermind complex is prevented in the presence of JICD, via a physical interaction. Furthermore, JICD accelerates the protein degradation of Notch1-IC via Fbw7-dependent proteasomal pathway. These results indicate that JICD functions as a negative regulator in Notch1 signaling via the promotion of Notch1-IC degradation.  相似文献   

17.
The Notch signaling pathway plays an important role in development and physiology. In Drosophila, Notch is activated by its Delta or Serrate ligands, depending in part on the sugar modifications present in its extracellular domain. O-fucosyltransferase-1 (OFUT1) performs the first glycosylation step in this process, O-fucosylating various EGF repeats at the Notch extracellular domain. Besides its O-fucosyltransferase activity, OFUT1 also behaves as a chaperone during Notch synthesis and is able to down regulate Notch by enhancing its endocytosis and degradation. We have reevaluated the roles that O-fucosylation and the synthesis of GDP-fucose play in the regulation of Notch protein stability. Using mutants and the UAS/Gal4 system, we modified in developing tissues the amount of GDP-mannose-deshydratase (GMD), the first enzyme in the synthesis of GDP-fucose. Our results show that GMD activity, and likely the levels of GDP-fucose and O-fucosylation, are essential to stabilize the Notch protein. Notch degradation observed under low GMD expression is absolutely dependent on OFUT1 and this is also observed in Notch Abruptex mutants, which have mutations in some potential O-fucosylated EGF domains. We propose that the GDP-fucose/OFUT1 balance determines the ability of OFUT1 to endocytose and degrade Notch in a manner that is independent of the residues affected by Abruptex mutations in Notch EGF domains.  相似文献   

18.
19.
Notch receptors and their ligands play important roles in both normal animal development and pathogenesis. We show here that the F-box/WD40 repeat protein SEL-10 negatively regulates Notch receptor activity by targeting the intracellular domain of Notch receptors for ubiquitin-mediated protein degradation. Blocking of endogenous SEL-10 activity was done by expression of a dominant-negative form containing only the WD40 repeats. In the case of Notch1, this block leads to an increase in Notch signaling stimulated by either an activated form of the Notch1 receptor or Jagged1-induced signaling through Notch1. Expression of dominant-negative SEL-10 leads to stabilization of the intracellular domain of Notch1. The Notch4 intracellular domain bound to SEL-10, but its activity was not increased as a result of dominant-negative SEL-10 expression. SEL-10 bound Notch4 via the WD40 repeats and bound preferentially to a phosphorylated form of Notch4 in cells. We mapped the region of Notch4 essential for SEL-10 binding to the C-terminal region downstream of the ankyrin repeats. When this C-terminal fragment of Notch4 was expressed in cells, it was highly labile but could be stabilized by the expression of dominant-negative SEL-10. Ubiquitination of Notch1 and Notch4 intracellular domains in vitro was dependent on SEL-10. Although SEL-10 interacts with the intracellular domains of both Notch1 and Notch4, these proteins respond differently to interference with SEL-10 function. Thus, SEL-10 functions to promote the ubiquitination of Notch proteins; however, the fates of these proteins may differ.  相似文献   

20.
Wang Q  Zhao N  Kennard S  Lilly B 《PloS one》2012,7(5):e37365
Notch signaling has been implicated in the regulation of smooth muscle differentiation, but the precise role of Notch receptors is ill defined. Although Notch3 receptor expression is high in smooth muscle, Notch3 mutant mice are viable and display only mild defects in vascular patterning and smooth muscle differentiation. Notch2 is also expressed in smooth muscle and Notch2 mutant mice show cardiovascular abnormalities indicative of smooth muscle defects. Together, these findings infer that Notch2 and Notch3 act together to govern vascular development and smooth muscle differentiation. To address this hypothesis, we characterized the phenotype of mice with a combined deficiency in Notch2 and Notch3. Our results show that when Notch2 and Notch3 genes are simultaneously disrupted, mice die in utero at mid-gestation due to severe vascular abnormalities. Assembly of the vascular network occurs normally as assessed by Pecam1 expression, however smooth muscle cells surrounding the vessels are grossly deficient leading to vascular collapse. In vitro analysis show that both Notch2 and Notch3 robustly activate smooth muscle differentiation genes, and Notch3, but not Notch2 is a target of Notch signaling. These data highlight the combined actions of the Notch receptors in the regulation of vascular development, and suggest that while these receptors exhibit compensatory roles in smooth muscle, their functions are not entirely overlapping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号