首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
New form taxa of insect ovipositions on aquatic plant leaves Quereuxia from the Campanian locality of Udurchukan (Amur Region) are described. Endophytic ovipositions Paleoovoidus flabellatus sp. nov. and P. arcuatus sp. nov. do not differ in shape from ovipositions of recent damselflies. Exophytic ovipositions Palaexovoidus ovoideus gen. et sp. nov., P. catenulatus sp. nov., P. multus sp. nov., and P. amplus sp. nov. belong to insects that develop in the water, probably dragonflies of the suborder Anisoptera. A new family Palaexovoididae fam. nov. is erected.  相似文献   

2.
If present in large numbers, as during migration, herbivorous waterfowlmay reduce the amount of submerged vegetation. Because the vegetation is a keyfactor in shallow eutrophic lakes, removal of the green biomass can be expectedto affect also other biota that depend on the vegetation. We conducted anexperiment to determine how the abundance of chironomids andPisidium sp. were affected by intense foraging ofwaterfowlon the submerged plant Potamogeton pectinatus. This wasdone in Lake Ringsjön in southern Sweden, during the autumn migration ofthe birds. Three treatments, replicated six times, were used: (i) closed cagesthat excluded all waterfowl, (ii) semi-open cages that excluded only largewaterfowl (geese and swans), and (iii) open plots where all waterfowl couldfreely enter. Waterfowl densities were monitored during the experiment. Theresults suggest that the foraging of large waterfowl (swans) had a clearlynegative effect on macroinvertebrate abundance and aboveground biomass ofP. pectinatus. At the end of the experiment, the densityofchironomids was about 46% lower in the open than in the closed cages. Ingeneral, the density of Pisidium sp. tended to be lower inthe open plots. Small waterfowl alone did not seem to affect either thevegetation or macroinvertebrates. We suggest that thePisidium sp. was influenced at an early stage of grazing,when waterfowl foraged on aboveground biomass, whereas chironomids wereaffectedat a later stage, when swans were digging for below-ground tubers.  相似文献   

3.
There are gaps in our understanding of plant responses under different insect phytophagy modes and their subsequent effects on the insect herbivores’ performance at late season. Here we compared different types of insect feeding by an aphid, Lipaphis erysimi, and a lepidopteran, Plutella xylostella, and how this affected defensive metabolites in leaves of 2 Brassica species when plants gain maturity. Thiocyanate concentrations after P. xylostella and L. erysimi feeding activities were the same. Total phenolics was higher after the phloem feeder feeding than the folivore activity. The plants compensatory responses (i.e., tolerance) to L. erysimi feeding was significantly higher than the responses to P. xylostella. This study showed that L. erysimi had higher carbon than P. xylostella whereas nitrogen in P. xylostella was 1.42 times that in L. erysimi. Population size of the phloem feeder was not affected by plant species or insect coexistence. However, there was no correlation between plant defensive metabolites and both insects’ population size and biomass. This suggests that plant root biomass and tolerance index after different insect herbivory modes are not necessarily unidirectional. Importantly, the interaction between the folivore and the phloem feeder insects is asymmetric and the phloem feeder might be a trickier problem for plants than the folivore. Moreover, as both plants’ common and special defenses decreased under interspecific interference, we suggest that specialist insect herbivores can be more challenged in ecosystems in which plants are not involved in interspecific interference.  相似文献   

4.
Rainbow trout (Oncorhynchus mykiss) and other salmonids have been widely stocked into upland streams throughout the world to provide a basis for sport fisheries, but the effects of such introductions on indigenous and endemic aquatic insect assemblages are poorly documented. In this study, we examine the impact of rainbow trout on the indigenous and endemic entomofauna of upland streams in Kokee State Park, Kauai, Hawaii, with particular emphasis on the potential threat trout pose to populations of endemic damselflies in the genus Megalagrion. Rainbow trout were introduced into the upland streams of Kauai beginning in the 1920s, with over 60 years of subsequent restocking. This study indicates, however, that streams in this area still maintain diverse populations of Megalagrion damselflies and other indigenous and endemic aquatic insects, both in catchments containing naturally reproducing trout populations and in catchments lacking rainbow trout. Our results indicate that the indigenous and endemic aquatic insect communities in the streams under study compare favorably in terms of density and taxonomic richness with other isolated and unimpacted streams elsewhere in Hawaii, and retain high densities and relative percentages of indigenous and endemic aquatic insect taxa. Our results demonstrate that the threats posed by conspicuous introduced species such as trout should not simply be assumed a priori on the basis of postulated negative interactions, because this may divert limited resources from programs aimed at control of other, potentially more destructive introduced taxa such as inconspicuous poeciliid fishes.  相似文献   

5.
Ecosystem development in different types of littoral enclosures   总被引:2,自引:2,他引:0  
Vermaat  J. E.  Hootsmans  M. J. M.  van Dijk  G. M. 《Hydrobiologia》1990,200(1):391-398
Macrophyte growth was studied in two enclosure types (gauze and polythene) in a homogeneousPotamogeton pectinatus bed in Lake Veluwe (The Netherlands). The gauze was expected to allow for sufficient exchange with the lake to maintain similar seston densities, the polythene was expected to exclude fish activity and most water exchange. Polythene enclosures held higher totalP. pectinatus biomass (ash-free dry weight, AFDW) than the lake, gauze enclosures were intermediate. The enclosures had a higher abundance of other macrophyte species (Chara sp.,Potamogeton pusillus) than the lake. Seston ash content was not but seston AFDW, periphyton ash content and AFDW were lower in polythene than in gauze enclosures. The difference in plant biomass between gauze and polythene may be attributed to a difference in periphyton density and in seston AFDW due to zooplankton grazing (Rotatoria andDaphnia densities were higher in polythene enclosures). Since seston and periphyton AFDW and ash content were similar in lake and gauze enclosures, the intermediate macrophyte biomass in the gauze enclosures may be explained by reduced wave action and mechanical stress. Alternatively, phytoplankton inhibition by allelopathic excretions from the macrophytes may have caused the high macrophyte biomass in the polythene, and an absence of sediment-disturbing fish the intermediate biomass in the gauze enclosures. Creation of sheltered areas may favour macrophyte growth through both mechanisms and we conclude that this can be an important tool in littoral biomanipulation.  相似文献   

6.
Chimpanzees (Pan troglodytes) are well-known to eat invertebrates, especially social insects, across Africa, but allopatric bonobos (P. paniscus) are not. Bonobo insectivory is sparsely documented and apparently sporadic. However, the availability to bonobos of social insect prey and raw materials with which to make tools to exploit them is unknown. Here, we test a set of hypotheses that relates to questions of presence, abundance, density, and distribution of taxa that Pan consume and of vegetation suitable for making extractive foraging tools. We worked at Lui Kotal, Democratic Republic of Congo, where unprovisioned bonobos live in intact forest, far from villages. We collected insect and fecal specimens, transected for prey and assessed raw materials, and monitored mounds of Macrotermes. All but 1 of the major taxa of relevant termites, ants, and (stinging) honey bees were present. The 3 main taxa of insects that chimpanzees elsewhere eat —Macrotermes (fungus-growing termites), Dorylus (Anomma; army or driver ants), and Apis (honey bees)— were abundant and widespread, and usually at densities exceeding those at well-known chimpanzee study-sites. Similarly, woody and nonwoody vegetation suitable for making fishing probes was common at mounds of Macrotermes. There is no obvious ecological reason why bonobos should not use elementary technology in extractive foraging, e.g., termite-fish, ant-fish, ant-dip, honey-dip, to obtain social insects.  相似文献   

7.
This paper studies the impacts of antemortem ingestion of alcoholic beverages by the domestic rabbit, Oryctolagus cuniculus L., on postmortem successional patterns of insects during winter and summer 2018 in Riyadh, Saudi Arabia. Insect samples were collected from the carcasses of rabbits fed alcoholic beverages as well as untreated rabbits for 15 days postmortem during two successional studies in each season. The results showed that, during both seasons, the decomposition process for the carcasses of rabbits fed alcoholic beverages antemortem was one to two days longer. The results also showed, however, that alcoholic beverages did not affect insect succession patterns in either season. In fact, the number of insects appeared to be influenced by the ambient temperature during the two seasons, with 4415 insects in the winter compared to 1033 insects in the summer. In total, 30 insect taxa were collected during the winter study from the carcasses of rabbits fed alcoholic beverages antemortem; while 26 of these same taxa were collected from the carcasses of the untreated rabbits. Among the treated rabbits, those fed 25 ml alcoholic beverages treated attracted the highest number of insect taxa (24 taxa). In the summer study, 21 insect taxa were collected in total, 19 from the carcasses of the alcohol-treated rabbits and 13 from untreated rabbits. Among the treated rabbits, those fed 50 ml alcoholic beverages attracted the highest number of insect taxa (14 taxa). These results contribute to the understanding of the factors affecting the use of insects in medical investigations, given that alcoholic beverages are a common addictive agent.  相似文献   

8.
Sandsten H  Klaassen M 《Oecologia》2008,156(3):569-576
Compared to terrestrial environments, grazing intensity on belowground plant parts may be particularly strong in aquatic environments, which may have great effects on plant-community structure. We observed that the submerged macrophyte, Potamogeton pectinatus, which mainly reproduces with tubers, often grows at intermediate water depth and that P. perfoliatus, which mainly reproduces with rhizomes and turions, grows in either shallow or deep water. One mechanism behind this distributional pattern may be that swans prefer to feed on P. pectinatus tubers at intermediate water depths. We hypothesised that when swans feed on tubers in the sediment, P. perfoliatus rhizomes and turions may be damaged by the uprooting, whereas the small round tubers of P. pectinatus that escaped herbivory may be more tolerant to this bioturbation. In spring 2000, we transplanted P. perfoliatus rhizomes into a P. pectinatus stand and followed growth in plots protected and unprotected, respectively, from bird foraging. Although swan foraging reduced tuber biomass in unprotected plots, leading to lower P. pectinatus density in spring 2001, this species grew well both in protected and unprotected plots later that summer. In contrast, swan grazing had a dramatic negative effect on P. perfoliatus that persisted throughout the summer of 2001, with close to no plants in the unprotected plots and high densities in the protected plots. Our results demonstrate that herbivorous waterbirds may play a crucial role in the distribution and prevalence of specific plant species. Furthermore, since their grazing benefitted their preferred food source, the interaction between swans and P. pectinatus may be classified as ecologically mutualistic.  相似文献   

9.
Numerous studies have shown that large, herbivorous waterfowl can reduce quantity of aquatic plants during the breeding or wintering season, but relatively few document herbivory effects at staging areas. This study was done to determine if feeding activities of tundra swans (Cygnus columbianus columbianus) and Canada geese (Branta canadensis) had a measurable additive influence on the amount of aquatic plants, primarily muskgrass (Chara vulgaris), wild celery (Vallisneria americana), and sago pondweed (Potamogeton pectinatus), removed during the fall migration period at Long Point, Lake Erie, Ontario. Exclosure experiments done in fall 1998 and 1999 showed that, as compared to ducks and abiotic factors, these two large herbivorous waterfowl did not have any additional impact on above or below ground biomass of those aquatic plants. As expected, however, there were substantial seasonal reductions in above-ground and below-ground biomass of aquatic plants in wetlands that were heavily used by all waterfowl. We suggest that differences in large- and small-scale habitat use, feeding activity, and food preferences between tundra swans and other smaller waterfowl as well as compensatory herbivory contributed to our main finding that large waterfowl did not increase fall reductions of Chara spp, V. Americana, and P. pectinatus biomass.  相似文献   

10.
Two common macrophyte species, Potamogeton perfoliatus L. and Potamogeton pectinatus L. were grown for 12 weeks at shallow depths in sediments contaminated with 1250 or 2500 g Pb or Cu and/or Zn (gDW sediment)-1. Control experiments were run at background levels of 4, 13, and 38 g Pb, Cu and Zn (gDW sediment)-1, respectively. Effects of heavy metals on biomass production and metal uptake and distribution in plants are presented in relation to total amount and plant-available fraction of metals in the sediment.All three studied metals gave reduced biomass production, and the toxicity of the metals decreased in the order Zn>Cu>Pb. The root/shoot biomass ratio increased for P. pectinatus, but decreased for P. perfoliatus with metal treatment. The content of any single metal was higher in shoots than in roots of plants grown on sediments not contaminated with that specific metal, but addition of that metal increased the proportion in roots. The uptake by plants of any of the heavy metals increased with increased metal addition. The magnitude of the plant-available fraction of metals of untreated sediment was Zn>Cu>Pb, and increased in contaminated sediments. Addition of Cu decreased both the plant-available fraction and the total concentration of Zn in the sediment, while increased the uptake of Zn by the plants. The opposite was found for Cu when Zn was added. P. pectinatus accumulated about twice as much Cu as P. perfoliatus. On the other hand, the concentration of Pb was higher in P. perfoliatus than in P. pectinatus, and was negligible in P. pectinatus when cultivated in untreated sediments.  相似文献   

11.
The first data on the ecology of rudd (Scardinius erythrophthalmus) introduced to the Iberian peninsula are presented. The habitat and diet variation of rudd were studied in Lake Banyoles (Spain), an oligotrophic karstic lake dominated by exotic fish species. Rudd were strictly littoral and the diet was based on detritus and plant material. The most important animal prey were the cladocerans Daphnia longispinaand Scapholeberis rammneri, amphipods and several late stages of nematoceran dipterans. Rudd were more zooplanktivorous in spring and autumn and less in summer. There was also a size-dependent diet shift, from microcrustaceans to macroinvertebrates. The diet of rudd was also distinguished by the importance of plant material and various small neustonic invertebrates, particularly S. rammneriand late stages of nematocerans, showing a strong resource partitioning with other fish species. The degree of herbivory in Lake Banyoles was lower than usual.  相似文献   

12.
The effects of different nitrogen (N) fertilization rates (0, 45, 90, and 168 kg N/ha), plant nitrogen concentration, and plant biomass on abundance and population growth of diamondback moth, Plutella xylostella (L.), cabbage looper, Trichoplusia ni (Hübner), cabbage budworm, Hellula phidilealis (Walker), imported cabbageworm, Artogeia rapae (L.), and cross-striped cabbageworm, Evergestis rimosalis (Guenée), were investigated in Homestead and Sanford, Florida in 1987. The effects of these factors on the parasitization of P. xylostella were also examined. In Homestead, abundance of most insect pests and parasitized P. xylostella increased with an increase in the level of N applied and with an increase in plant biomass. Similar results were found in Sanford, although results were not consistently significant. Abundance of most insect pests was significantly positively correlated with plant N concentration. Multiple regression analyses indicated that foliar biomass was significantly more important than N fertilization rate and subsequent plant N concentration at predicting abundance of insect pests and parasitized P. xylostella on cabbage.  相似文献   

13.
Soil‐dwelling insects commonly co‐occur and feed simultaneously on belowground plant parts, yet patterns of damage and consequences for plant and insect performance remain poorly characterized. We tested how two species of root‐feeding insects affect the performance of a perennial plant and the mass and survival of both conspecific and heterospecific insects. Because root damage is expected to impair roots’ ability to take up nutrients, we also evaluated how soil fertility alters belowground plant–insect and insect–insect interactions. Specifically, we grew common milkweed Asclepias syriaca in low or high nutrient soil and added seven densities of milkweed beetles Tetraopes tetraophthalmus, wireworms (mainly Hypnoides abbreviatus), or both species. The location and severity of root damage was species‐specific: Tetraopes caused 59% more damage to main roots than wireworms, and wireworms caused almost seven times more damage to fine roots than Tetraopes. Tetraopes damage decreased shoot, main root and fine root biomass, however substantial damage by wireworms did not decrease any component of plant biomass. With the addition of soil nutrients, main root biomass increased three times more, and fine root biomass increased five times more when wireworms were present than when Tetraopes were present. We detected an interactive effect of insect identity and nutrient availability on insect mass. Under high nutrients, wireworm mass decreased 19% overall and was unaffected by the presence of Tetraopes. In contrast, Tetraopes mass increased 114% overall and was significantly higher when wireworms were also present. Survival of wireworms decreased in the presence of Tetraopes, and both species’ survival was negatively correlated with conspecific density. We conclude that insect identity, density and soil nutrients are important in mediating the patterns and consequences of root damage, and suggest that these factors may account for some of the contradictory plant responses to belowground herbivory reported in the literature.  相似文献   

14.
To initially describe vegetation structure and spatial variation in plant biomass in a typical alpine wetland of the Qinghai-Tibetan Plateau, net primary productivity and vegetation in relationship to environmental factors were investigated. In 2002, the wetland remained flooded to an average water depth of 25 cm during the growing season, from July to mid-September. We mapped the floodline and vegetation distribution using GPS (global positioning system). Coverage of vegetation in the wetland was 100%, and the vegetation was zonally distributed along a water depth gradient, with three emergent plant zones (Hippuris vulgaris-dominated zone, Scirpus distigmaticus-dominated zone, and Carex allivescers-dominated zone) and one submerged plant zone (Potamogeton pectinatus-dominated zone). Both aboveground and belowground biomass varied temporally within and among the vegetation zones. Further, net primary productivity (NPP) as estimated by peak biomass also differed among the vegetation zones; aboveground NPP was highest in the Carex-dominated zone with shallowest water and lowest in the Potamogeton zone with deepest water. The area occupied by each zone was 73.5% for P. pectinatus, 2.6% for H. vulgaris, 20.5% for S. distigmaticus, and 3.4% for C. allivescers. Morphological features in relationship to gas-transport efficiency of the aerial part differed among the emergent plants. Of the three emergent plants, H. vulgaris, which dominated in the deeper water, showed greater morphological adaptability to deep water than the other two emergent plants.  相似文献   

15.
1. Often, closely related insect species feed on different host plant species, and the tremendous diversity of phytophagous insects is therefore attributed to host plant‐driven speciation. However, for most taxa, host use information comes from field observations of egg‐laying females or feeding caterpillars, which means that the underlying reason for a particular host‐affiliation is not easily determined. 2. Therefore, it is often unclear whether an insect feeds on a certain host because it prefers that plant to alternative hosts, or because the host distribution overlaps with the habitat requirements of the insect. 3. We ask to what extent a divergent host use in the field mirrors the host plant preferences of two closely related butterflies, Pieris napi and Pieris rapae (Pieridae). In nature, P. napi typically occurs in moister habitats than P. rapae. 4. We scanned several microhabitats at a field site in Southern Sweden during multiple years, and collected Pieris eggs from three different plants, Cardamine pratensis (wet meadows), Barbarea vulgaris (drier micro‐habitats) and Alliaria petiolata (intermediate areas). 5. As predicted, P. rapae eggs were more common than P. napi eggs on B. vulgaris, whereas all of the 358 individuals collected from C. pratensis were P. napi, indicating a divergence in host use between the Pieris species. However, under controlled laboratory conditions, both species had virtually identical oviposition preferences, laying eggs on all three plants, notably P. rapae also laying eggs on C. pratensis, indicating that habitat use, not plant preference, drives host plant use in nature.  相似文献   

16.
Abstract Sucking insects constituted 79% of all phytophagous insects collected from woody sprouts in the ground layer of a tropical eucalypt forest. Mobile insect groups such as non-psyllid Hemiptera and Orthoptera were relatively frequent in this environment compared to temperate, Eucalyptus-dominated vegetation. The high fire frequency of the tropical eucalypt forest may favour mobile insect groups. The capture of sucking insects and caterpillars peaked in dry season samples. Other patterns of abundance of phytophagous insect groups showed little consistency in their seasonal trends between host species or between vegetation types within host species. Disparities between chewing insect abundance in daytime samples and the damage chewing insects cause, may result from disproportionate consumption by large, mainly nocturnal insects, such as members of the Orthoptera. In this study, 21% of insect species were specialists on single plant species. This study suggested that insect abundance reflected the growth patterns of woody sprouts after regular burning, rather than that plant growth and development were tuned to the pressures of insect herbivory.  相似文献   

17.
Abstract 1. Several studies have shown that above‐ and belowground insects can interact by influencing each others growth, development, and survival when they feed on the same host‐plant. In natural systems, however, insects can make choices on which plants to oviposit and feed. A field experiment was carried out to determine if root‐feeding insects can influence feeding and oviposition preferences and decisions of naturally colonising foliar‐feeding insects. 2. Using the wild cruciferous plant Brassica nigra and larvae of the cabbage root fly Delia radicum as the belowground root‐feeding insect, naturally colonising populations of foliar‐feeding insects were monitored over the course of a summer season. 3. Groups of root‐infested and root‐uninfested B. nigra plants were placed in a meadow during June, July, and August of 2006 for periods of 3 days. The root‐infested and the root‐uninfested plants were either dispersed evenly or placed in clusters. Once daily, all leaves of each plant were carefully inspected and insects were removed and collected for identification. 4. The flea beetles Phyllotreta spp. and the aphid Brevicoryne brassicae were significantly more abundant on root‐uninfested (control) than on root‐infested plants. However, for B. brassicae this was only apparent when the plants were placed in clusters. Host‐plant selection by the generalist aphid M. persicae and oviposition preference by the specialist butterfly P. rapae, however, were not significantly influenced by root herbivory. 5. The results of this study show that the presence of root‐feeding insects can affect feeding and oviposition preferences of foliar‐feeding insects, even under natural conditions where many other interactions occur simultaneously. The results suggest that root‐feeding insects play a role in the structuring of aboveground communities of insects, but these effects depend on the insect species as well as on the spatial distribution of the root‐feeding insects.  相似文献   

18.
Argentine Potamogeton pectinatus L. was grown in The Netherlands under laboratory conditions at four light intensities (50, 100, 150 and 200 µE m–2 s–1), and photosynthetic performance was evaluated after about 1, 2 and 3 months of growth. At these moments, chlorophyll-a and -b and tissue N and P content were also determined. During the growing period, plant lengths and number of secondary shoots were measured. In the field in Argentina, photosynthetic performance of P. pectinatus was also measured at different light intensities created by artificial shading at various times during the growing season. Field and laboratory photosynthetic results were in good agreement. P. pectinatus showed a significant plasticityin its photosynthesis, rather than in morphology. A fairly constant maximum photosynthetic rate with reduced light enabled the plants to maintain netproduction rates rather unaffected at low light intensities. Still, it can be predicted that increasing turbidity from 1–2 m–1 at present to 3 m–1 could lead to a strongly light-limited growth which should reduce the present weed problem considerably. Such a turbidity increase might be achieved by the introduction of a fairly dense bottom-feeding fish population like Common carp (Cyprinus carpio L.).  相似文献   

19.
The conventional notion is that small-bodied primates should be highly insectivorous in order to obtain protein and other nutrients from a food source that is more easily digestible than plant matter. I studied feeding behavior of Microcebus rufus for 16 months in the east coast rainforest of Ranomafana National Park. I determined the diet primarily through analysis of 334 fecal samples from live-trapped individuals. They consumed a mixed diet basically of fruit and insects year-round. I identified 24 fruits, while 40–52 remain unidentified. Bakerella, a high-lipid epiphytic semiparasitic plant, was in 58% of fecal samples that contained fruit seeds, and was consumed year-round irrespective of general resource availability. It served both as a staple and keystone resource. Fruit was less frequently totally absent from fecal samples of individual mouse lemurs than insect matter was. For Microcebus rufus, fruit may be a primary source of energy, not just complementary to insects. Fruit consumption increased in quantity and diversity during the latter part of the rainy season and the very early part of the dry season, when fruit production was relatively high. This pattern in fruit feeding is similar to that for mouse lemurs in the west coast dry forests and is related to specific nutritional needs dictated by the highly seasonal character of the life cycle. Coleoptera were present in 67% of samples examined and were consumed year-round by the subjects, but insect consumption did not increase during the rainy season when insect abundance was highest.  相似文献   

20.
The study assessed the composition and abundance of insect assemblages associated with two submerged macrophytes, Lagarosiphon ilicifolius and Vallisneria aethiopica, in fishless ponds. Six ponds were used, with each plant occurring singly in two ponds, whilst the remainder had both plants. The insects were sampled using a 500-μm mesh. The number of insect taxa, diversity and total abundance on Lagarosiphon were greater than on Vallisneria when the plants occurred in separate ponds. In ponds comprising both plants, the total insect abundance on Lagarosiphon was greater than on Vallisneria. In all ponds, anisopteran naiads were dominant. Hemicordulia, Diplacodes and Trithemis made up 36.2, 27.1 and 15.2%, respectively, of the total number of insects on Lagarosiphon in single plant ponds. Trithemis was the only odonate in ponds comprised exclusively of Vallisneria and made up 68.7% of insects. In ponds that were cultured with both plants, four anisopteran taxa, Hemicordulia, Diplacodes, Trithemis and Tramea, were collected. In single plant ponds, the body-size class distribution of naiads on Lagarosiphon was characterised by a broader range, with significantly greater numbers of smaller and larger size classes than on Vallisneria (Kolmogorov–Smirnov test, P < 0.05). The study shows that in fishless waters, epiphytic insect assemblages may differ between the two plant species, especially when they are widely separated in space, probably due to greater predator–prey interactions on Vallisneria than on Lagarosiphon. The two plants may also differentially affect water physicochemical conditions, which may possibly influence insect ovipositing behaviour, and so affect insect community assemblage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号