首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Abundance patterns during 6–7 years and orchid visitation were determined for 51 species of the 57 local euglossine bees. Male bees were counted at 3 chemical attractants presented in the same manner each month. Sites were separated by 75 km but included wet Atlantic forest at 500 m elevation, moist forest at 180 m near Barro Colorado Island, and cloud forest at 900 m near the Pacific ocean. 1. From 15 to 30 euglossine species of 4 genera were active in each month and site; monthly species number and general bee abundance were positively correlated. Many species had 3 annual abundance peaks (range 1–4) and were active throughout the year, but peak annual abundances rarely occurred during late wet or early dry seasons. In contrast, Eufriesea generally were present as adults only 1–2 months in a year. 2. Euglossine populations were exceptionally stable. Species at each site were more stable than any known insect population, and stability and abundance were positively associated. However, year-to-year population stability and the degree of seasonality were not correlated. Among the three sites, the more diverse (species rich) bee assemblages displayed lower stability; these were the wetter and upland sites. 3. The most abundant bees visited more orchid species. Eg. and El. each visited and average of 4 orchid species (range 0–13); Ex. and Ef. visited 0–3. Stable populations did not visit more or fewer orchid species than did unstable populations. 4. Less than 68% of species at each site visited orchid flowers; less than a few dozen of the 100–800 bees counted in a day carried orchid pollinaria. Over 20% of the euglossine species never were seen with pollinaria at any site and probably seldom visit orchids in central Panama. 5. Most bee species visited 1 or no fragrance orchids in a given habitat. Orchids tended to utilize common pollinators that seldom included more than 1 species, and they utilized stable or unstable, seasonal or aseasonal bees. However, the most stable and abundant bee, Eg. imperialis, rarely pollinated orchids; fewer than 10 of ca. 20000 bees carried pollinaria. 6. Orchids may interact primarily with discrete seasonal bee population peaks-probably the emerging adults. Although specialized orchid preferences are implicated for species that visit few or no local orchids but pollinate other species and carry pollinaria in other areas, euglossine bees do not need orchids to survive or reproduce.  相似文献   

2.
Specificity and mutual dependency of the orchid-euglossine bee interaction   总被引:1,自引:0,他引:1  
Seasonal and geographic relationships, and host pollinator specificities are examined for indications of interdependency in the orchid-euglossine bee interaction. The orchids are dependent on the bees for pollination, and their flowering seasonality corresponds well with peak activity of their pollinators. However, there is little evidence that the bees are dependent on these fragrance hosts. The orchids tap the majority of euglossine species and individuals for pollinator services during any given season, but most of those bee species that temporarily lack orchid fragrance hosts persist in the area, continually emerge from nests, and seek floral fragrance compounds. Pollinator specificity occurs in less than half of the orchids, and host specificity is rare. Geographic distributions of nearly all orchid-pollinator pairs are not mutually inclusive. Moreover, nearly a third of the local male euglossine bee species censused are not pollinators of any fragrance orchids in the area. Local alternative fragrance sources occur. The orchid-male euglossine bee interaction does not appear to represent a mutually obligatory relationship. The orchids may have exploited a preexisting behavioural phenomenon of the bees, and reciprocal evolutionary responses may not have occurred.  相似文献   

3.
•Background and Aims Animal-pollinated angiosperms have evolved a variety of signalling mechanisms to attract pollinators. Floral scent is a key component of pollinator attraction, and its chemistry modulates both pollinator behaviour and the formation of plant–pollinator networks. The neotropical orchid genus Gongora exhibits specialized pollinator associations with male orchid bees (Euglossini). Male bees visit orchid flowers to collect volatile chemical compounds that they store in hind-leg pouches to use subsequently during courtship display. Hence, Gongora floral scent compounds simultaneously serve as signalling molecules and pollinator rewards. Furthermore, because floral scent acts as the predominant reproductive isolating barrier among lineages, it has been hypothesized that chemical traits are highly species specific. A comparative analysis of intra- and inter-specific variation of floral scent chemistry was conducted to investigate the evolutionary patterns across the genus.•Methods Gas chromatography–mass spectrometry (GC-MS) was used to analyse the floral scent of 78 individuals belonging to 28 different species of Gongora from two of the three major lineages sampled across the neotropical region. Multidimensional scaling and indicator value analyses were implemented to investigate the patterns of chemical diversity within and among taxonomic groups at various geographic scales. Additionally, pollinator observations were conducted on a sympatric community of Gongora orchids exhibiting distinct floral scent phenotypes.•Key Results A total of 83 floral volatiles, mainly terpenes and aromatic compounds, were detected. Many of the identified compounds are common across diverse angiosperm families (e.g. cineole, eugenol, β-ocimene, β-pinene and terpinen-4-ol), while others are relatively rare outside euglossine bee-pollinated orchid lineages. Additionally, 29 volatiles were identified that are known to attract and elicit collection behaviour in male bees. Floral scent traits were less variable within species than between species, and the analysis revealed exceptional levels of cryptic diversity. Gongora species were divided into 15 fragrance groups based on shared compounds. Fragrance groups indicate that floral scent variation is not predicted by taxonomic rank or biogeographic region.•Conclusions Gongora orchids emit a diverse array of scent molecules that are largely species specific, and closely related taxa exhibit qualitatively and quantitatively divergent chemical profiles. It is shown that within a community, Gongora scent chemotypes are correlated with near non-overlapping bee pollinator assemblies. The results lend support to the hypothesis that floral scent traits regulate the architecture of bee pollinator associations. Thus, Gongora provides unique opportunities to examine the interplay between floral traits and pollinator specialization in plant–pollinator mutualisms.  相似文献   

4.
Recent reports of pollinator declines have stirred interest in investigating the impacts of habitat exploitation on the conservation of pollinator and plant communities. An important prerequisite to tailor conservation action is to understand the drivers and patterns of species-rich communities, and how they change in space and time during a whole season. To account for this, we surveyed wild bees and flowering plants using standardized transects in 11 natural habitat fragments of an IUCN important plant area along the coast of Israel. We used phylogeny- and taxon-based methods of community structure analyses to study the assembly processes of bee communities, and investigated the effects of several landscape parameters on bee diversity using generalized linear models (GLMs). Our results illustrate that natural habitat sites comprised significantly higher species richness compared to disturbed habitat sites, and show that even the smallest habitat fragments harbored unique bee assemblages, with significant species replacement (turnover) found in both space and time. Our GLMs indicated that flower diversity, and semi-natural habitat within 500 m of habitat fragments were important drivers of bee diversity, but we found no evidence for a species—area relationship among sites. Finally, we document a case of phylogenetic overdispersion despite low species richness, which highlights the importance of accounting for phylogenetic diversity rather than only species richness to reach a more fine-grained understanding of pollinator diversity. This, in turn, is pivotal to developing conservation actions to protect these essential pollinators and their interaction with rare and endemic plant species in this highly threatened ecosystem.  相似文献   

5.
In order to understand the implications of agriculture on the environment, ecosystem health must be measured. Observing the presence of a biological indicator within an ecosystem is one such method. In this study, male euglossine bees were observed using as attractant cineole 1:8, at adjacent organic (La Paz) and conventional (La Carena) coffee farms near the Northern Barranca River, San Ramón, Alajuela, Costa Rica. Simultaneous data collections were conducted on both farms in April 2004 (late-dry season) and June 2004 (early-rainy season) and combined with the findings of August 2004 (mid-rainy season). These observations show that orchid bees are a viable bio-indicator of organic farm health on a seasonal basis. In the dry season there was no significant difference in orchid bee abundance between the two farms. There is a strong tendency for more bees during the rainy season, suggesting that orchid bee abundance is linked to seasonality and forest access.  相似文献   

6.
  1. Wild bees provide invaluable ecosystem services in agricultural landscapes such as pollination. However, in recent decades, pollinator biodiversity, especially in wild bees, is declining on a global scale, with potentially far‐reaching consequences for crop production. Thus, there is an urgent need to determine whether wild bees are present in agricultural systems, such as fruit orchards.
  2. In the present study, we examined the wild bee fauna at species and community levels during the period of bee activity (May to August) in apple and high‐bush blueberry orchards in New England.
  3. Bee communities are crop‐specific and dominated by very few species, which fluctuate according to crop and season. The blueberry associated bee fauna was more diverse. In apple, communities were phylogenetically clustered at the genus level and dominated by solitary ground nesting bees within the genus Andrena. Species fluctuated widely in presence and abundance throughout the season, leading to differences in community composition and functional trait structure.
  4. The results obtained in the present study show that apple and blueberry harbour a distinct and diverse bee fauna that performs vital pollination services in orchards. Our results provide essential baseline data for wild bees in blueberry and apple orchards and this can be used to improve management and conservation strategies for wild bee preservation in these crops.
  相似文献   

7.
In this study, we compare orchid bee communities surveyed in four forest remnants of the Atlantic Forest and four reforested areas characterized by seasonal semi-deciduous forest vegetation in different successional stages (mature and secondary vegetation), located in southern Brazil. The sizes of forest remnants and reforested areas varied from 32.1 to 583.9 ha and from 11.3 to 33.3 ha, respectively. All reforested areas were located near one forest remnant. During samplings, totaling nine per study area, euglossine males were attracted to eight scent baits and captured with bait trap and entomological nets. Each forest remnant and its respective reforested area were sampled simultaneously by two collectors. We collected 435 males belonging to nine species of orchid bees distributed in four genera. The number of individuals and species did not differ significantly between different areas, except for a reforested area (size 33.3 ha), which was located far from its respective forest remnant. Our findings also revealed an apparent association between an orchid bee species (Euglossa annectans Dressler 1982) and the most preserved area surveyed in our study, suggesting that this bee is a potential indicator of good habitat quality in recuperating or preserved areas. Our results suggest that reforested habitats located near forest remnants have a higher probability of having reinstated their euglossine communities.  相似文献   

8.
Cochleanthes lipscombiae is pollinated by large male and female euglossine bees. The flowers lack pollinator rewards, but attract bees searching for nectar. The euglossines extend their long tongues and crawl into the gullet-flower. The bees probe the back-swept lateral sepals for nectar. Pollination occurs as a pollinarium laden bee backs out, deposits pollinia on the stigma, and obtains a new pollinarium load by dislodging the anther. Some related orchid species have similar morphological characteristics as those essential to the pollination mechanism of C. lipscombiae. These features may have taxonomic significance at the generic level. Cochleanthes lipscombiae may be a floral mimic of a sympatric legume, but may also receive exploratory visits by bees searching for food resources. The latter may be young, recently emerged naive bees, or individuals seeking new nectar hosts during a period of rapid host species turnover.  相似文献   

9.
Biodiversity buffers pollination from changes in environmental conditions   总被引:1,自引:0,他引:1  
A hypothesized underlying principle of the diversity‐functioning relationship is that functional groups respond differently to environmental change. Over 3 years, we investigated how pollinator diversity contributes to the magnitude of pollination service through spatial complementarity and differential response to high winds in California almond orchards. We found honey bees preferentially visited the top sections of the tree. Where wild pollinators were present, they showed spatial complementarity to honey bees and visited the bottom tree sections more frequently. As wind speed increased, honey bees' spatial preference shifted toward the bottom tree sections. In high winds (>2.5 m s?1), orchards with low pollinator diversity (honey bees only) received almost no flower visits. In orchards with high pollinator diversity, visitation decreased to a lesser extent as wild bee visitation was unaffected by high winds. Our results demonstrate how spatial complementarity in diverse communities can help buffer pollination services to environmental changes like wind speed.  相似文献   

10.
Wild bees provide important pollination services to agroecoystems, but the mechanisms which underlie their contribution to ecosystem functioning—and, therefore, their importance in maintaining and enhancing these services—remain unclear. We evaluated several mechanisms through which wild bees contribute to crop productivity, the stability of pollinator visitation, and the efficiency of individual pollinators in a highly bee-pollination dependent plant, highbush blueberry. We surveyed the bee community (through transect sampling and pan trapping) and measured pollination of both open- and singly-visited flowers. We found that the abundance of managed honey bees, Apis mellifera, and wild-bee richness were equally important in describing resulting open pollination. Wild-bee richness was a better predictor of pollination than wild-bee abundance. We also found evidence suggesting pollinator visitation (and subsequent pollination) are stabilized through the differential response of bee taxa to weather (i.e., response diversity). Variation in the individual visit efficiency of A. mellifera and the southeastern blueberry bee, Habropoda laboriosa, a wild specialist, was not associated with changes in the pollinator community. Our findings add to a growing literature that diverse pollinator communities provide more stable and productive ecosystem services.  相似文献   

11.
North American Midwestern oak (Quercus spp.) savannas are rare fire‐dependent ecosystems that can support high levels of biodiversity and are the focus of considerable restoration effort due to widespread fire suppression. Due to the predominance of understory forbs in oak savannas, many of which require insect pollination, restoration practices should be evaluated for their potential impacts on pollinator communities. We evaluated bee community responses during the first 2 years of experimental restoration of fire‐suppressed oak savanna in southern Michigan. We used unmanaged references and two different restoration methods (burning only and burning with thinning) to examine the effects of restoration intensity on the abundance, diversity, and functional groups of bees. We found that thinning and burning rapidly increased bee abundance, richness, and Shannon's diversity, relative to unmanaged references, whereas burn‐only restoration largely failed to do so. Thinning and burning also resulted in a distinct bee community after two seasons, while bee communities in burn‐only restoration plots were similar to those from unmanaged references. Differences in bee diversity and community structure between treatments may be due to the influence of restoration on nesting resources, which is reflected in the differential captures of various nesting guilds. Overall, oak savanna restoration by thinning and burning had positive effects on bee diversity, while burning alone only increased bee abundance. We thus illustrate how restoration strategies that typically target plants have broader‐reaching biodiversity benefits. Although restoring savannas through burning alone may eventually shift bee communities, coupling thinning with burning will influence pollinator communities over the shorter term.  相似文献   

12.
Pollinators provide an important class of ecological services for crop plants and native species in many ecosystems, including the tallgrass prairie, and their conservation is essential to sustaining prairie remnants. In Iowa these remnants are typically either block-shaped or long, linear strips along transportation routes. In this study we examined differences in the butterfly, bee, and forb community composition in linear and block prairie remnants, determined correlations between species diversity among butterflies, bees and forbs in the 20 prairie remnants sampled, and examined correlations of community similarity among butterflies, bees and forbs. Correspondence analysis showed that distinct communities exist for butterflies and forbs in block versus linear sites and discriminant analysis showed that the bee and forb communities in block and linear sites can be distinguished on the basis of a few species. Diversity of one group was a poor predictor of diversity in another, except for a significant inverse relationship between bees and butterflies. These two pollinator taxa may be responding very differently to microhabitat components within fragmented ecosystems. Our studies show that there need to be differences in conservation strategies for bees and butterflies to maintain both pollinator communities.  相似文献   

13.
Habitat restoration is a key measure to counteract negative impacts on biodiversity from habitat loss and fragmentation. To assess success in restoring not only biodiversity, but also functionality of communities, we should take into account the re‐assembly of species trait composition across taxa. Attaining such functional restoration would depend on the landscape context, vegetation structure, and time since restoration. We assessed how trait composition of plant and pollinator (bee and hoverfly) communities differ between abandoned, restored (formerly abandoned) or continuously grazed (intact) semi‐natural pastures. In restored pastures, we also explored trait composition in relation to landscape context, vegetation structure, and pasture management history. Abandoned pastures differed from intact and restored pastures in trait composition of plant communities, and as expected, had lower abundances of species with traits associated with grazing adaptations. Further, plant trait composition in restored pastures became increasingly similar to that in intact pastures with increasing time since restoration. On the contrary, the trait composition of pollinator communities in both abandoned and restored pastures remained similar to intact pastures. The trait composition for both bees and hoverflies was influenced by flower abundance and, for bees, by connectivity to other intact grasslands in the landscape. The divergent responses across organism groups appeared to be mainly related to the limited dispersal ability and long individual life span in plants, the high mobility of pollinators, and the dependency of semi‐natural habitat for bees. Our results, encompassing restoration effects on trait composition for multiple taxa along a gradient in both time (time since restoration) and space (connectivity), reveal how interacting communities of plants and pollinators are shaped by different trait–environmental relationships. Complete functional restoration of pastures needs for more detailed assessments of both plants dispersal in time and of resources available within pollinator dispersal range.  相似文献   

14.
Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental crisis. More diverse plant communities have been postulated to represent a larger functional trait‐space, more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations, we found that the association between butterflies and their host plants is highly phylogenetically structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured turnover of plant traits as well as environmental variables.  相似文献   

15.
The proliferation of oil palm plantations has led to dramatic changes in tropical landscapes across the globe. However, relatively little is known about the effects of oil palm expansion on biodiversity, especially in key ecosystem-service providing organisms like pollinators. Rapid land use change is exacerbated by limited knowledge of the mechanisms causing biodiversity decline in the tropics, particularly those involving landscape features. We examined these mechanisms by undertaking a survey of orchid bees, a well-known group of Neotropical pollinators, across forest and oil palm plantations in Costa Rica. We used chemical baits to survey the community in four regions: continuous forest sites, oil palm sites immediately adjacent to forest, oil palm sites 2km from forest, and oil palm sites greater than 5km from forest. We found that although orchid bees are present in all environments, orchid bee communities diverged across the gradient, and community richness, abundance, and similarity to forest declined as distance from forest increased. In addition, mean phylogenetic distance of the orchid bee community declined and was more clustered in oil palm. Community traits also differed with individuals in oil palm having shorter average tongue length and larger average geographic range size than those in the forest. Our results indicate two key features about Neotropical landscapes that contain oil palm: 1) oil palm is selectively permeable to orchid bees and 2) orchid bee communities in oil palm have distinct phylogenetic and trait structure compared to communities in forest. These results suggest that conservation and management efforts in oil palm-cultivating regions should focus on landscape features.  相似文献   

16.
Amazonian rainforests are among the most species‐rich terrestrial habitats on Earth. The aim of this study was to analyze phylogenetic diversity (PD) patterns of orchid bee assemblages along a latitudinal gradient of 15° from northern Peru to central Bolivia and to relate them to climatic factors and geological history. We expanded an existing phylogeny of orchid bees and analyzed the PD of 15 orchid bee assemblages along a latitudinal gradient using mean pair‐wise phylogenetic distance. The resulting pattern was correlated to climatic factors and elevation. We found a hump‐shaped pattern of PD that peaked in central Peru and decreased towards the equatorial and especially towards the southern, subtropical sites. The decrease in PD towards higher latitudes is a common pattern found in many taxa, which in our case correlates with increasing climatic seasonality. However, the decrease towards the equatorial sites is unusual and may be related to a particular historic event: the northern sites with low PD are situated in the area of the former Lake Pebas, which covered western Amazonia until 3 mya. After the lake disappeared orchid bees mainly belonging to two distantly related species groups apparently colonized the region and diversified, which led to the comparatively low observed PD. In contrast, in central Peru, no in situ radiations were detected, hence the assemblages were composed of species from diverse phylogenetic lineages. Additionally, we identified multiple phylogenetically independent radiations of regionally restricted Euglossa species along the latitudinal gradient that, according to a published, dated phylogeny, diversified roughly 3–1 mya. The hump‐shaped latitudinal pattern of PD of the orchid bees of western Amazonia thus appears to have resulted from a preponderance of early divergent lineages in central Peru and of young radiations from distantly related clades colonizing higher latitudes, possibly triggered by historic climate fluctuations and major geological events.  相似文献   

17.
The production of diverse and affordable agricultural crop species depends on pollination services provided by bees. Indeed, the proportion of pollinator‐dependent crops is increasing globally. Agriculture relies heavily on the domesticated honeybee; the services provided by this single species are under threat and becoming increasingly costly. Importantly, the free pollination services provided by diverse wild bee communities have been shown to be sufficient for high agricultural yields in some systems. However, stable, functional wild bee communities require floral resources, such as pollen and nectar, throughout their active season, not just when crop species are in flower. To target floral provisioning efforts to conserve and support native and managed bee species, we apply network theoretical methods incorporating plant and pollinator phenologies. Using a two‐year dataset comprising interactions between bees (superfamily Apoidea, Anthophila) and 25 native perennial plant species in floral provisioning habitat, we identify plant and bee species that provide a key and central role to the stability of the structure of this community. We also examine three specific case studies: how provisioning habitat can provide temporally continuous support for honeybees (Apis mellifera) and bumblebees (Bombus impatiens), and how resource supplementation strategies might be designed for a single genus of important orchard pollinators (Osmia). This framework could be used to provide native bee communities with additional, well‐targeted floral resources to ensure that they not only survive, but also thrive.  相似文献   

18.
Wildflower strips are a management practice increasingly used to provide floral resources to wild bees in agroecosystems. Yet, despite known spatiotemporal variation in wild bee communities, the degree to which different wildflower strip species consistently support wild bee communities is poorly understood. Additionally, whether such consistency is related to the functional roles wildflower species play (e.g., in supporting diverse, rare, or unique suites of bee species) has not been considered. Over three years and on four diversified farms, we evaluated spatiotemporal variation in wild bee communities and bee-flower interactions in wildflower strips to better understand the roles of flower strip species in supporting bees. We documented spatiotemporal variation in the abundance, richness, and composition of local wild bee communities. Certain wildflower species consistently supported the highest richness of wild bees across years. These wildflower species were regularly core members of the bee-flower interaction network, visited by both generalist and specialist bees. By contrast, wildflower species supporting the most unique suites of bees were variable in this role among farms. In order to select plant species for wildflower strips that consistently support a high diversity of wild bee communities within farm landscapes, it is useful to consider several different functional roles that plants may play. Whereas a handful of wildflower species may be visited by the majority of local wild bee species, achieving support for the remaining, and perhaps rarer, bee species will require planting additional flower species, which may appear redundant until the spatiotemporal variation in wild bee communities is more thoroughly considered. This functional approach to selecting wildflower species for bee conservation efforts is important for making practical recommendations to land managers and for guiding best management practices in different regions and with diverse management goals.  相似文献   

19.
Fire is a key determinant of tropical savanna structure and functioning. High fire frequencies are expected to assemble closely related species with a restricted range of functional trait values. Here we determined the effect of fire on phylogenetic and functional diversity of woody species and individuals in savanna communities under different fire frequencies. We found phylogenetic signals for one third of the functional traits studied. High numbers of fires simultaneously led to phylogenetic overdispersion and functional clustering when communities were represented by mean trait values with all traits that putatively should be affected or respond to fire. This finding is important, because it shows that the relationship between ecological processes and the phylogenetic structure of communities is not straightforward. Thus, we cannot always assume that close relatives are more similar in their ecological features. However, when considering a different set of traits representing different plant strategies (fire resistance/avoidance, physiological traits and regeneration traits), the results were not always congruent. When asking how communities are assembled in terms of individuals (not species) the outcome was different from the species-based approach, suggesting that the realised trait values – rather than mean species trait values – have an important role in driving community assembly. Thus, intraspecific trait variability should be taken into account if we want fully to improve our mechanistic understanding of assembly rules in plant communities.  相似文献   

20.
Several agri-environment schemes aim to improve pollinator diversity and abundance, including the sowing of wildflower areas. These seed mixes are often either low in floral diversity and target few pollinator species (mainly social bees), or high in floral diversity but with limited evidence of good establishment of the component species. In order to support a greater diversity of wild bees in farmland, we need more diverse seed mixes, containing species shown to support a wide diversity of insect pollinators, with good establishment and long flowering periods. Here we trialled two typical seed mixes, a low-diversity Fabaceae-heavy mix (FAB) and a more diverse wildflower mix (WF), against two novel wildflower mixes, one based on literature sources (LT), and one based on first-hand surveys of pollinator attraction to flowers growing on a wildflower farm (WB). Both new mixes were focussed on plants attractive to wild bee species. Replicated field plots were set up on two farms and monitored over three years. Our novel wildflower mixes had higher floral diversity and abundance than the FAB mix, and began flowering earlier, reaching their floral peak before the FAB mix, potentially providing forage for a broader range of pollinators or those with earlier flight seasons. The high floral abundance in LT and WB was driven by annuals in the first year, and then multiple perennials in the second and third year. We identified five perennials from four families (Daucus carota, Leucanthemum vulgare, Geranium pyrenaicum, Lotus corniculatus and Trifolium hybridum) that established well on both farms, are known to be attractive to a diversity of bee species, and thus could be considered as providing a more taxonomically diverse base for creating future mixes. However, the mixes provided few floral resources in April (needed by early-flying wild bees), and more research is required in this area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号