首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
土壤甲烷代谢微生物影响甲烷的产生和氧化,然而关于林型对土壤中甲烷代谢微生物群落结构影响的研究较少。采用基因芯片GeoChip 3.0研究了湿地松人工林和马尾松人工林土壤甲烷代谢微生物群落结构特征。结果如下,(1)两种林型的甲烷代谢微生物群落结构存在极显著差异(P=0.008),林型能解释其34.9%的变异;(2)产甲烷菌(包含甲基辅酶M还原α亚基基因mcrA的微生物)的优势菌群发生了变化,湿地松人工林的的优势菌为Methanocorpusculum labreanum Z,马尾松人工林的优势菌群除Methanocorpusculum labreanum Z外,还包括产甲烷古菌和Methanosarcina mazei Gol;(3)甲烷营养菌(包含甲烷单加氧酶基因pmoA基因的微生物)的优势菌为Ⅱ型,有3种不可培养细菌只在湿地松人工林检测到,在马尾松人工林中未检测到;(4)mcrA基因丰度或同源基因数量与土壤容重正相关,与土壤粘粒含量呈显著负相关;pmoA基因信号强度或多样性指数与土壤全碳含量、全磷含量和速效氮含量显著正相关。总之,相比本地种马尾松人工林,引进种湿地松人工林的土壤甲烷代谢微生物群落结构发生了显著变化。  相似文献   

2.
长白山北坡阔叶红松林和暗针叶林的土壤水分物理性质   总被引:17,自引:1,他引:16  
对长白山北坡阔叶红松林和暗针叶林的土壤水分物理性质进行了观测和对比分析.结果表明:两种森林类型的土壤容重和各种孔隙度随土壤深度的变化趋势相同,即随着土壤深度的增加,容重和毛管孔隙度逐渐增加,总孔隙度和非毛管孔隙度逐渐降低;两种森林类型土壤物理性质的差异比较明显,阔叶红松林0~100 cm土层的平均土壤容重、总孔隙度、毛管孔隙度和非毛管孔隙度分别为1.41 g·cm-3、52.31%、46.11%和6.20%,暗针叶林地土壤分别为0.98 g·cm-3、50.65%、40.32%和10.33%;阔叶红松林和暗针叶林地土壤100 cm土层贮水能力相差较大,分别为619.89和1 033.05 t·hm-2.两种森林类型的土壤水分特征曲线与一般土壤水分特征曲线相一致.  相似文献   

3.
Monochamus galloprovincialis Olivier beetles vector the causal agent of pine wilt disease (PWD), nematode Bursaphelenchus xylophilus (Steiner and Bührer) Nickle, in Europe. Traps and attractants have been optimized for the capture of M. galloprovincialis, increasing the possibility of developing methods of lowering its population in PWD‐affected areas with the aim of either eradicating the disease or containing the spread of it. To evaluate the effectiveness of such mass‐trapping campaigns, two sets of experiments were carried out in 2010 and 2013. The release of 353 laboratory‐reared beetles in the experimental area of 2010 facilitated the evaluation of capture–mark–recapture (CMR) procedures in the calculation of population abundance estimates using the POPAN formulation of the Jolly–Seber model, a prerequisite for the assessment of mass trapping. Abundance estimates derived from best‐fitting parameters fell within one standard error of the real figures, proving the method appropriate. In 2013, four trap densities were tested in six 36 ha plots. To evaluate the removed proportions, the local beetle population was estimated in a contiguous 260 ha study area. A superpopulation of 21 319 individuals could be calculated from the CMR data, corresponding to a rough density of 82 individuals per hectare. Evaluated trapping densities removed 4.66%, 20.50%, 33.33% and 59.80% of M. galloprovincialis population at 0.02, 0.11, 0.25 and 0.44 traps/ha, respectively, thus the estimated 95% removal would occur at 0.82 traps/ha. These results suggest that substantial reduction of M. galloprovincialis abundances might be achieved via mass trapping and that this represents a very promising management method for the containment or eventual eradication of B. xylophilus at the areas affected by the PWD.  相似文献   

4.
Monochamus sutor (Linnaeus) (Coleoptera: Cerambycidae) is a secondary wood borer that has been hypothesized as capable of transmitting Bursaphelenchus xylophilus, the causal agent of pine wilt disease (PWD). This fact supposes a risk of spread of PWD over Europe and has created an urgent need for effective tools to detect and monitor both the nematode and the insect species that vectors it. Recent reporting of 2‐undecyloxy‐1‐ethanol as the M. sutor male‐produced aggregation pheromone has opened the possibility of developing an efficient lure for this species. It is known that some European bark beetle pheromone compounds and host volatiles kairomonally attract this species. Besides, smoke volatiles from burnt trees might play a role in M. sutor host location. In this work, field trapping experiments during 3 years in three countries (Spain, Sweden and Austria), aimed to develop an efficient pheromone‐kairomone lure operative for M. sutor management were carried out. Electroantennographic responses by M. sutor to Ips pheromones and to the Pityogenes chalcographus pheromone chalcogran were also studied. GC‐EAG recording showed that M. sutor males and females clearly responded to ipsenol and ipsdienol, and females also responded to 2‐methyl‐3‐buten‐2‐ol. Chalcogran elicited a response to M. sutor female antennae. In field tests, ipsenol was the most attractive kairomone to both sexes of M. sutor, whereas ipsdienol, cis‐verbenol and 2‐methyl‐3‐buten‐2‐ol were attractive and chalcogran was unattractive. When combined with the pheromone, most bark beetle kairomones increased catches of both sexes although chalcogran was completely ineffective. Thus, ipsenol was the strongest individual kairomone for M. sutor and the best single kairomone to be combined with the pheromone. Smoke volatile blends tested in Spain and Austria did not elicit responses, suggesting that these compounds are likely not involved in host finding by this species.  相似文献   

5.
王轶浩  王彦辉  李振华  王耀建 《生态学报》2021,41(16):6542-6551
马尾松林是三峡库区防护林体系中最重要的森林类型,然而以往对结构更为复杂的马尾松天然次生林的生态水文效应研究还很不足,限制着全面了解和准确评价库区森林发挥的涵养水源服务功能。以重庆铁山坪的马尾松天然次生林为对象,采用定位监测结合室内测定的实验方法,系统研究了林冠层、林下草本层、枯落物层、土壤层的水文特征。结果表明:(1)2010-2011年马尾林穿透雨量、干流量、林冠截留量分别占总降雨量(1972.39 mm)的84.66%、0.26%和15.07%,且均与次降雨量呈显著正相关(P<0.01),其中干流在次降雨量达到5 mm时产生;林冠截留量随次降雨量增大而逐渐达到饱和(6 mm左右)。(2)林下草本植物的地上生物量达1.32 t/hm2,其持水率随浸水时间呈对数函数增加(P<0.01),最大持水量为0.61 mm。(3)枯落物贮存量达10.74 t/hm2,未分解、半分解、未分解与半分解混合枯落物的最大持水率为183.76%、206.31%和197.62%,未分解与半分解层枯落物的最大持水能力达1.44 mm。(4)0-80 cm土层的饱和贮水量达334.75 mm,其中滞留贮水量达49.08 mm,占饱和贮水量14.66%。马尾松天然次生林各作用层的降雨截持及贮水作用明显,其中尤以土壤层贮水能力最强。研究结果可为三峡库区森林涵养水源服务功能模拟与评价提供重要参考依据。  相似文献   

6.
The pine wood nematode (Bursaphelenchus xylophilus), which causes the symptoms of pine wilt disease, is recognized worldwide as a major forest pest. It was introduced into Portugal in 1999. It is transmitted between trees almost exclusively by longhorn beetles of the genus Monochamus, including, in particular, M. galloprovincialis (Coleoptera: Cerambycidae) in maritime pine forests. Accurate estimates of the flight capacity of this insect vector are required if we are to understand and predict the spread of pine wilt disease in Europe. Using computer‐linked flight mills, we evaluated the distance flown, the flight probability and speed of M. galloprovincialis throughout adulthood and investigated the effects of age, sex and body weight on these flight performances, which are proxies for dispersal capacity. The within‐population variability of flight performance in M. galloprovincialis was high, with a mean distance of 16 km flown over the lifetime of the beetle. Age and body weight had a significant positive effect on flight capacity, but there was no difference in performance between males and females. These findings have important implications for managing the spread of the pine wood nematode in European forests.  相似文献   

7.
The spread of the pine wood nematode (PWN), Bursaphelenchus xylophylus (Nematoda; Aphelenchoididae), the causal agent of the pine wilt disease, is greatly constrained to the dispersal of its vectors, long‐horned beetles of the Monochamus genus. Disease spread at global and regional scales has been mainly caused by human‐mediated transport, yet at a local scale, the short‐ and long‐distance dispersal behaviour of the beetles determine colonization dynamics. Three mark–release–recapture experiments using commercial traps and lures allowed the parameterization of the dispersal kernel under two landscape fragmentation scenarios for the only known European PWN vector, Monochamus galloprovincialis. The respective release of 171 and 353 laboratory‐reared beetles in continuous pine stands in 2009 and 2010 resulted in 36% and 28% recapture rates, yet, at a fragmented landscape in 2011, only 2% of the released 473 individuals could be recaptured. Recaptures occurred as soon as 7–14 days after their release, in agreement with the requirement of sexual maturation to respond to the pheromone–kairomone attractants. Data from the first two experiments were fitted to one mechanical and two empirical dispersal models, from which the distance dispersal kernels could be computed. Derived estimated radii enclosing 50% and 99% of dispersing M. galloprovincialis under continuous pine stands ranged between 250–532 m and 2344–3495 m depending on the replicate and choice of model. Forecasted recaptures in 2011 resulted in a moderate underestimation of long‐distance dispersal, probably influenced by the high degree of habitat fragmentation. In addition, trapping parameters such as the effective sampling area (0.57–0.76 ha) or the seasonal sampling range (426–645 m) could be derived. Observed results, derived dispersal kernels and trapping parameters provide valuable information for the integrated pest management of PWD. Furthermore, estimated dispersal distances indicate that ongoing clear‐cut measures for eradication in the European Union are likely ineffective in stopping the vectors dispersal.  相似文献   

8.
Monochamus galloprovincialis (Olivier) (Coleoptera: Cerambycidae) is a secondary wood borer that acquired primordial importance since it was identified as the European vector of Bursaphelenchus xylophilus, the causal agent of pine wilt disease (PWD). An effective trapping method is needed as a tool for managing this insect vector and allowing early detection of nematode transportation. Among effective attractants identified in recent years are the specific M. galloprovincialis aggregation pheromone, host pine kairomones such as α‐pinene and bark beetle kairomones like ipsenol and methyl‐butenol. The main objective of this study was to optimize the combination of these volatiles to improve lure attractiveness and specificity. Based on ten complementary field experiments, we found a pheromone dose‐response of trap catches. The best combination of attractants was the aggregation pheromone plus two bark beetle kairomones, ipsenol and methyl‐butenol. Addition of pine terpenes, such as α‐pinene, did not significantly improve M. galloprovincialis trap capture, but did increase catch of non target species, including natural enemies. The use of pine terpenes would be advisable only if priorizing to maximize removal of vectors. While this research has lead to the development a new, highly attractive commercial lure for mature pine sawyers, none of the tested blends were successful in attracting immature pine sawyer adults. Further investigation is needed to develop attractants for these beetles.  相似文献   

9.
Giant sequoia (Sequoiadendron giganteum) is an iconic conifer that lives in relict populations on the western slopes of the California Sierra Nevada. In these settings, it is unusual among the dominant trees in that it associates with arbuscular mycorrhizal fungi rather than ectomycorrhizal fungi. However, it is unclear whether differences in microbial associations extend more broadly to nonmycorrhizal components of the soil microbial community. To address this question, we used next‐generation amplicon sequencing to characterize bacterial/archaeal and fungal microbiomes in bulk soil (0–5 cm) beneath giant sequoia and co‐occurring sugar pine (Pinus lambertiana) individuals. We did this across two groves with distinct parent material in Yosemite National Park, USA. We found tree‐associated differences were apparent despite a strong grove effect. Bacterial/archaeal richness was greater beneath giant sequoia than sugar pine, with a core community double the size. The tree species also harbored compositionally distinct fungal communities. This pattern depended on grove but was associated with a consistently elevated relative abundance of Hygrocybe species beneath giant sequoia. Compositional differences between host trees correlated with soil pH and soil moisture. We conclude that the effects of giant sequoia extend beyond mycorrhizal mutualists to include the broader community and that some but not all host tree differences are grove‐dependent.  相似文献   

10.
Novel associations between exotic pathogens and native insects may result in major ecological and economical losses. In Europe, Monochamus galloprovincialis (Olivier) (Coleoptera: Cerambycidae) is the only known vector of the exotic pine wood nematode Bursaphelenchus xylophilus (Steiner & Buhrer) Nickle (Nematoda: Aphelenchoididae), the causal agent of pine wilt disease (PWD). Transportation of goods containing nematode‐infested beetles is the main pathway for the spread of the disease. In this scenario, management actions involving early detection and eradication are critical to stop further spread by the vector. Although dispersal of mature M. galloprovincialis has been successfully tracked using commercial baits and traps, dispersal ability of immature individuals is poorly understood. Sexual maturation and other physiological traits related to dispersal were studied for newly emerged M. galloprovincialis after different shoot‐feeding spans. Sexual maturation was complete after on average 12 (males) or 13 (females) feeding days. Monochamus galloprovincialis adults emerged with an average of 10% lipid and 23.8% (males) or 29.9% (females) pterothorax muscle content, and these percentages did not change significantly during shoot feeding. Microtomography images of wing muscle structures at different maturation stages confirmed these results. Emerged adults that were kept unfed survived an average of 12 days in the lab. The ability of unfed immature insects to fly through hostless terrain was studied by marking and releasing newly emerged insects from a crop area located up to 3 km away from two small pine stands. The longest flown distance recorded was 2 km. Fitted regressions indicated that immature insects could have travelled up to 3 109 m to reach the experimental stands. We found that M. galloprovincialis emerge with well‐developed thoracic muscles and energy reserves that enable them to sustain long flights over non‐forested areas. These findings should aid managers and policy makers in devising sound procedures in areas where the risk of introducing PWD is high.  相似文献   

11.
Although the effects of gap formation resulting from thinning on microclimate, plant generation and understory plant community have been well documented, the impact of thinning on soil microbial community and related ecological functions of forests particularly in subalpine coniferous region is largely unknown. Here, the effects of thinning on soil microbial abundance and community structure using phospholipid fatty acid (PLFA) in pine plantations were investigated 6 years after thinning. The experimental treatments consisted of two distinct‐sized gaps (30 m2 or 80 m2 in size) resulting from thinning, with closed canopy (free of thinning) as control. Soil temperature as well as the biomass of actinomycete and unspecific bacteria was sensitive to gap formation, but all these variables were only responsive to medium gap. Nonmetric multidimensional scaling confirmed that soil microbial community was responsive to gap size. In addition, gap size exerted contrasting effect on bacteria‐feeding nematode and fungi‐feeding nematodes. In conclusion, thinning‐induced gap size would affect soil microbial community through changing soil temperature or the abundance of fungi‐feeding nematodes.  相似文献   

12.
Litterfall dynamics (production, seasonality and nutrient composition) are key factors influencing nutrient cycling. Leaf litter characteristics are modified by species composition, site conditions and water availability. However, significant evidence on how large‐scale, global circulation patterns affect ecophysiological processes at tree and ecosystem level remains scarce due to the difficulty in separating the combined influence of different factors on local climate and tree phenology. To fill this gap, we studied links between leaf litter dynamics with climate and other forest processes, such as tree‐ring width (TRW) and intrinsic water‐use efficiency (iWUE) in two mixtures of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) in the south‐western Pyrenees. Temporal series (18 years) of litterfall production and elemental chemical composition were decomposed following the ensemble empirical mode decomposition method and relationships with local climate, large‐scale climatic indices, TRW and Scots pine's iWUE were assessed. Temporal trends in N:P ratios indicated increasing P limitation of soil microbes, thus affecting nutrient availability, as the ecological succession from a pine‐dominated to a beech‐dominated forest took place. A significant influence of large‐scale patterns on tree‐level ecophysiology was explained through the impact of the North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) on water availability. Positive NAO and negative ENSO were related to dry conditions and, consequently, to early needle shedding and increased N:P ratio of both species. Autumn storm activity appears to be related to premature leaf abscission of European beech. Significant cascading effects from large‐scale patterns on local weather influenced pine TRW and iWUE. These variables also responded to leaf stoichiometry fallen 3 years prior to tree‐ring formation. Our results provide evidence of the cascading effect that variability in global climate circulation patterns can have on ecophysiological processes and stand dynamics in mixed forests.  相似文献   

13.
A historically unprecedented mountain pine beetle (MPB) outbreak affected western Montana during the past decade. We examined radial growth rates (AD 1860–2007/8) of co‐occurring mature healthy and MPB‐infected ponderosa pine trees collected at two sites (Cabin Gulch and Kitchen Gulch) in western Montana and: (1) compared basal area increment (BAI) values within populations and between sites; (2) used carbon isotope analysis to calculate intrinsic water‐use efficiency (iWUE) at Cabin Gulch; and (3) compared climate‐growth responses using a suite of monthly climatic variables. BAI values within populations and between sites were similar until the last 20–30 years, at which point the visually healthy populations had consistently higher BAI values (22–34%) than the MPB‐infected trees. These results suggest that growth rates two–three decades prior to the current outbreak diverged between our selected populations, with the slower‐growing trees being more vulnerable to beetle infestation. Both samples from Cabin Gulch experienced upward trends in iWUE, with significant regime shifts toward higher iWUE beginning in 1955–59 for the visually healthy trees and 1960–64 for the MPB‐infected trees. Drought tolerance also varied between the two populations with the visually healthy trees having higher growth rates than MPB‐infected trees prior to infection during a multi‐decadal period of drying summertime conditions. Intrinsic water‐use efficiency significantly increased for both populations during the past 150 years, but there were no significant differences between the visually healthy and MPB‐infected chronologies.  相似文献   

14.
The pine weevil (Hylobius abietis, Coleoptera: Curculionidae) is an important pest of conifer seedlings in Europe. Despite its economic importance, little is known about the composition of its gut microbial community and the role it plays in mediating the weevil's ability to utilize conifers as a food source. Here, we characterized the gut bacterial communities of different populations of H. abietis across Europe and compared them to those of other beetles that occupy similar ecological niches. We demonstrate that the microbial community of H. abietis is similar at higher taxonomic levels (family and genus) across locations in Europe, with Wolbachia as the dominant microbe, followed by Enterobacteria and Firmicutes. Despite this similarity, we observed consistent differences between countries and locations, but not sexes. Our meta‐analysis demonstrates that the gut bacterial community of the pine weevil is very similar to that of bark beetles that also exploit conifers as a food source. The Enterobacteriaceae symbionts of both host taxa are especially closely related phylogenetically. Conversely, the microbiota of H. abietis is distinct from that of closely related weevils feeding on nonconifer food sources, suggesting that the microbial community of the pine weevil is determined by the environment and may be relevant to host ecology. Furthermore, several H. abietis‐associated members of the Enterobacteriaceae family are known to contain genes involved in terpenoid degradation. As such, we hypothesize that the gut microbial community is important for the utilization of conifer seedlings as a food source, either through the detoxification of plant secondary metabolites or through the supplementation of essential nutrients.  相似文献   

15.
The primary objective of many longleaf pine (Pinus palustris) restoration programs is to enhance or restore habitat for wildlife dependent on herbaceous plant communities. Because herbaceous cover is inversely related to canopy cover, restoration programs often place restrictions on longleaf pine planting density. However, the influence of planting density on understory plant communities has been inadequately evaluated. Therefore, we initiated a study to examine the relative influences of planting density and other factors on overall understory composition and forage availability for white‐tailed deer (Odocoileus virginianus) and northern bobwhite (Colinus virginianus) in nine longleaf pine stands throughout the Coastal Plain of Alabama during 2017–2018. We found that coverage of herbaceous plants decreased 3.5%, coverage of woody plants decreased 2.4%, and coverage of northern bobwhite forage plants decreased 1.9% for each 1 m2/ha increase in longleaf pine basal area. However, planting density was not a significant predictor of current basal area, nor coverage of any functional group of plants we examined, likely because current longleaf pine density averaged only 46% (range = 30–64%) of seedling planting density. We did not detect an effect of prescribed fire on stand condition or understory plant communities, likely due to variability in fire timing and frequency. Our findings related to planting density were likely a function of low longleaf pine survival, which is not uncommon. Because of this and the inherent variability in growth rates for young longleaf pine stands, restoration programs should consider placing greater emphasis on post‐planting monitoring and management than planting density.  相似文献   

16.
Since red pine (Pinus densiflora Sieb. et Zucc.) often forms sparse forest floors where herbaceous plants do not grow well, allelopathy of red pine was investigated. A growth inhibitory substance was isolated from an aqueous methanol extract of red pine needles and determined by spectral data as abscisic acid-β-d-glucopyranosyl ester (ABA-GE). This substance inhibited root and shoot growth of cress and E. crus-galli seedlings at concentrations greater than 0.1 μM. The concentrations required for 50% growth inhibition on roots and shoots of cress were 0.23 and 0.61 μM, respectively, and those of E. crus-galli were 1.1 and 2.8 μM, respectively. The activity of ABA-β-d-glucosidase, which liberates free ABA from ABA-GE, in cress and E. crus-galli seedlings was 13–29 nmol mg−1 protein min−1. Endogenous concentration of ABA-GE in the pine needles was 4.1–21.5 μmol kg−1 and the concentration in soil water of the pine forest was 2.5 μM. The effectiveness of ABA-GE on growth inhibition and the occurrence of ABA-GE in pine needles and soil water suggest ABA-GE may play an important role in the allelopathy of red pine resulting in the formation of sparse forest floors.  相似文献   

17.
Intercropping switchgrass (Panicum virgatum L.) with loblolly pine (Pinus taeda L.) has been proposed for producing bioenergy feedstock in the southeastern United States. This study investigated switchgrass growth and pine–switchgrass interactions at two established experimental fields (7‐year‐old Lenoir site and 5‐year‐old Carteret site) located on the coastal plain of eastern United States. Position effects (edge and center of switchgrass alley in intercropping plots) and treatment effects (intercropping vs. grass‐only) on aboveground switchgrass growth were evaluated. Interspecific interactions with respect to capturing resources (light, soil water, and nitrogen) were investigated by measuring photosynthetically active radiation (PAR) above grass canopy, soil moisture, and soil mineral nitrogen contents. Switchgrass growth was significantly (P = 0.001) affected by treatments in Lenoir and by position (P < 0.0001) in both study sites. Relative to the center, PAR above grass canopy at edge in both sites was about 48% less during the growing season. Soil water content during the growing season at the edge of grass alley was significantly (P = 0.0001) lower by 23% than at the center in Lenoir, while no significant (P = 0.42) difference was observed in Carteret, in spite of more grass growth at center at both sites. Soil mineral nitrogen content at the center of intercropping plots in Lenoir (no fertilization during 2015) was significantly (P < 0.07) lower than at the edge during the peak of growing season (June, July, and August), but not during early and late parts of growing season (May, September, and November). Position effects on soil water and mineral nitrogen were less evident under conditions with higher external inputs (rainfall and fertilization) and lower plant uptake during nongrowing seasons. Results from this study contributed to a better understanding of above‐ and belowground pine–switchgrass interactions which is necessary to properly manage this new cultivation system for bioenergy production in the southeastern United States.  相似文献   

18.
Relationships between avian diversity and habitat area are assumed to be positive; however, often little attention has given to how these relationships can be influenced by the habitat structure or quality. In addition, other components of biodiversity, such as functional diversity, are often overlooked in assessing habitat patch value. In the Sandhills Ecoregion of Georgia, USA, we investigated the relationship between avian species richness and functional diversity, forest basal area, and patch size in pine forests using basal area as a surrogate for overstory structure which in turn impacts vegetation structure and determines habitat quality within a patch. We conducted bird surveys in planted mature pine stands, during breeding season of 2011. We used three classes of stand basal area (BA): OS, overstocked (BA ≥ 23 m2/ha); FS, fully/densely stocked (13.8 m2/ha ≤ BA < 23 m2/ha); and MS, moderately stocked (2.3 m2/ha ≤ BA < 13.8 m2/ha). MS patches showed more structural diversity due to higher herbaceous vegetation cover than other two pine stocking classes of patches. Total species richness and functional richness increased with the size of MS patches, whereas functional divergence decreased with the size of OS patches (< 0.05). Functional richness tended to be lower than expected as the size of OS patches increased. Greater richness of pine–grassland species was also found at MS patches. Percent cover of MS patches within a landscape influenced positively the richness of pine–grassland species (< 0.05). Our results suggest that (a) avian species–habitat area relationship can be affected by habitat quality (structural diversity) and varies depending on diversity indices considered, and (b) it is important to maintain moderate or low levels of pine basal area and to preserve large‐sized patches of the level of basal area to enhance both taxonomic and functional diversity in managed pine forests.  相似文献   

19.
Tropical montane forests in the Andes are subjected to deforestation and subsequent transformation into pastures. Abandoned pastures are frequently reforested by planting monoculture timber plantations, resulting in reduced aboveground diversity and changes in soil characteristics compared to primary forests. In this study, we evaluated differences in soil properties (litter layer thickness, pH, water content, and C-to-N ratio) between degraded primary montane forest and monoculture pine (Pinus patula) and alder (Alnus acuminata) plantations and their effects on density, diversity, and community structure of litter and soil-living mesofauna, with focus on oribatid mites (Acariformes). The study was performed in a montane region in the southern Ecuadorian Andes (2,000–2,600 m a.s.l.). C-to-N ratios in the litter and upper 5 cm soil layer were higher in pine plantations, while other soil characteristics were similar between vegetation types. Surprisingly, microbial biomass and density of soil mesofauna in the litter layer did not differ between vegetation types, while density and species richness of oribatid mites were higher in pine plantations. Community structure of oribatid mites differed between vegetation types with only a few species overlapping. The results indicate that quality and diversity of litter were not the major factors regulating the mesofauna community. Instead, soil animals benefited from increased habitat structure in thicker litter layers and potentially increased availability of root-derived resources. Overall, the results suggest that from a soil animal perspective, monoculture plantations are less detrimental than commonly assumed and enrichment of abandoned plantations with native tree species may help to restore tropical montane forests.  相似文献   

20.
Pine wilt disease (PWD ) is considered as the most destructive forest‐invasive alien species in China. We measured gas exchange parameters and foliar carbon isotope ratios (δ13C) of different infection phases of Masson pine in order to investigate the effect of Bursaphelenchus xylophilus infection on photosynthetic responses and resource‐use efficiency. The results showed that net photosynthetic rate (P n), transpiration rate (T ), stomatal conductance (g s), and internal CO 2 concentrations (C i) decreased in the infested trees at photosynthetic photon flux density (PPFD ) levels from 0 to 2,000 μmol m?2 s?1 compared with controls. The maximum net photosynthetic rate (P max) was significantly declined in the infected trees than in controls (<  .05). There also exist significant differences in dark respiration rate (R d) among different infection phases (<  .05), but the value is highest in the middle infection phase, followed by the control and then the terminal infection phase. This indicates that Pinus massoniana plants need to consume more photosynthetic products during the middle infection phase in order to defend against pine sawyer beetle feeding and PWD infection. Isotopic analysis revealed a significant decrease of the foliar δ13C (<  .05), as much as 2.5‰ lower in the infected trees. The mean leaf N content was about 12.94% less in the middle infection phase and 27.06% less in the terminal infection phase, causing a significant increase of the foliar C:N ratio in infested trees. Both of the net photosynthetic rates and foliar δ13C were linearly correlated with the foliar N content. We also found a significant decrease (<  .05) of resource‐use efficiency in PWD ‐induced P. massoniana plants, which can be attributed to the closure of stomatal pores and the inactivation or loss of both Rubisco and other key Calvin cycle enzymes. This study highlights the impact of photosynthetic characteristics, foliar carbon isotope ratios, and resource‐use efficiency of PWD ‐induced trees, which can help identify PWD infestations at the photosynthetic and physiological levels so as to better facilitate management actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号