首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于叶绿体DNA trnT-trnF序列研究祁连圆柏的谱系地理学   总被引:4,自引:0,他引:4  
由于青藏高原的地貌效应,第四纪冰期气候的反复变化应对现今该地区生物的地理分布及其居群遗传结构产生重大影响。本文对这一地区特有分布物种祁连圆柏Juniperus przewalskii Kom.整个分布区内20居群392个个体的trnT-trnF序列变化进行了研究;共发现3种单倍型(haplotype),构成两种地理区域:高原台面上的居群主要固定Hap A,而Hap A、Hap B和Hap C在高原边缘居群均有分布。所有居群总的遗传多样性HT = 0.511,GST= 0.847。在低海拔的高原边缘,Hap A、Hap B和Hap C高频率固定在不同的居群中,表明可能存在多个不同的避难所,居群反复缩小和扩张的瓶颈效应造成了遗传多样性的丢失。而边缘的一个居群含有两种相似单倍型频率则可能是冰期后迁移融合而成或者该居群在冰期经受的瓶颈作用更弱。高原台面东部间断分布的居群只固定Hap A,表明它们可能经历了冰期后共同的回迁过程和由此产生的奠基者效应。我们的研究结果表明祁连圆柏在冰期可能存在多个避难所,瓶颈效应和奠基者效应造成了这些居群现在的遗传多样性分布式样。  相似文献   

2.
Meng L  Yang R  Abbott RJ  Miehe G  Hu T  Liu J 《Molecular ecology》2007,16(19):4128-4137
The disjunct distribution of forests in the Qinghai-Tibetan Plateau (QTP) and adjacent Helan Shan and Daqing Shan highlands provides an excellent model to examine vegetation shifts, glacial refugia and gene flow of key species in this complex landscape region in response to past climatic oscillations and human disturbance. In this study, we examined maternally inherited mitochondrial DNA (nad1 intron b/c and nad5 intron 1) and paternally inherited chloroplast DNA (trnC-trnD) sequence variation within a dominant forest species, Picea crassifolia Kom. We recovered nine mitotypes and two chlorotypes in a survey of 442 individuals from 32 populations sampled throughout the species' range. Significant mitochondrial DNA population subdivision was detected (G(ST) = 0.512; N(ST) = 0.679), suggesting low levels of recurrent gene flow through seeds among populations and significant phylogeographical structure (N(ST) > GST, P < 0.05). Plateau haplotypes differed in sequence from those in the adjacent highlands, suggesting a long period of allopatric fragmentation between the species in the two regions and the presence of independent refugia in each region during Quaternary glaciations. On the QTP platform, all but one of the disjunct populations surveyed were fixed for the same mitotype, while most populations at the plateau edge contained more than one haplotype with the mitotype that was fixed in plateau platform populations always present at high frequency. This distribution pattern suggests that present-day disjunct populations on the QTP platform experienced a common recolonization history. The same phylogeographical pattern, however, was not detected for paternally inherited chloroplast DNA haplotypes. Two chlorotypes were distributed throughout the range of the species with little geographical population differentiation (G(ST) = N(ST) = 0.093). This provides evidence for highly efficient pollen-mediated gene flow among isolated forest patches, both within and between the QTP and adjacent highland populations. A lack of isolation to pollen-mediated gene flow between forests on the QTP and adjacent highlands is surprising given that the Tengger Desert has been a geographical barrier between these two regions for approximately the last 1.8 million years.  相似文献   

3.
第四纪冰期气候的反复变化对青藏高原及邻近地区植物的种群地理分布及种群遗传结构产生了巨大的影响。本研究对青藏高原东北部及其邻近地区无苞香蒲(Typha laxmannii)的15个种群148个个体的叶绿体rpl32-trnL间隔区和核基因(植物螯合肽合成酶, PS)进行测序, 共发现2个叶绿体单倍型和8个核基因单倍型。所有的单倍型被共享, 高原种群没有特有的单倍型。邻近地区种群的叶绿体遗传多样性和核基因遗传多样性分别是高原种群的4倍和2倍。高原种群的遗传分化水平明显高于邻近地区种群, 其中高原种群的遗传分化主要存在于东部种群与西部种群之间。研究结果表明, 冰期后从多个避难所回迁至高原台面和由此产生的奠基者效应造成了无苞香蒲在青藏高原东北及邻近地区目前的遗传多样性和基因谱系地理分布格局。  相似文献   

4.
The Qinghai–Tibet Plateau (QTP) has been considered as one of the most sensitive regions to climate change on Earth, and the growth and distribution of alpine species on this plateau have been suggested to depend greatly on their ability to survive within a small range of temperatures. However, the responses of most species in the QTP to the Quaternary climatic oscillation remain largely unknown. We sequenced two cpDNA fragments and nrITS to examine genetic variations in 22 natural populations across the range of distribution in this region to investigate the phylogeographical distributional pattern of Gentiana straminea (Gentianaceae) in the QTP. The high haplotype diversity from populations on the platform suggested the existence of intraspecific diversification. Molecular dating estimated that all haplotypes have differentiated before the Last Glacial Maximum (LGM). Moreover, the haplotype distribution map based on both cpDNA and nrDNA data suggested expansions from QTP to its outer edges. Finally, ecological niche modeling further demonstrated the glacial survival of this species on the platform and continuous expansion to the platform edge. These findings imply that G. straminea should have experienced initial diversification, glacial survival on the platform, and continuous expansion to the QTP edge during the glacial period.  相似文献   

5.
We investigated range-wide phylogeographic variation in three European ash species (Fraxinus sp., Oleaceae). Chloroplast DNA (cpDNA) microsatellites were typed in the thermophilous Fraxinus angustifolia and Fraxinus ornus and the observed haplotypes and the geographic distribution of diversity were compared to cpDNA data previously obtained in the more cold-tolerant Fraxinus excelsior. We found wide-ranging haplotype sharing between the phylogenetically close F. angustifolia and F. excelsior, suggesting hybridization (i) in common glacial refuges in the Iberian Peninsula, northern Italy, the eastern and/or Dinaric Alps and the Balkan Peninsula, and/or (ii) during postglacial recolonization. The data allowed us to propose additional glacial refuges for F. angustifolia in southern Italy and in Turkey, and populations from the latter region were particularly polymorphic. There was evidence for refuge areas in Italy, the Balkan Peninsula and Turkey for F. ornus, which did not share any single chloroplast haplotype with the other species. In both F. angustifolia and F. ornus, cpDNA diversity (h(S) = 0.027 and h(S) = 0.009, respectively) was lower and fixation levels (G(ST) = 0.964 and G(ST) = 0.983, respectively) higher than in sympatric F. excelsior (h(S) = 0.096, G(ST) = 0.870). These diversity patterns could be due to temperature tolerance or the demographic history.  相似文献   

6.
Sagittaria trifolia L. is a perennial, erect herb that is confined to ponds, rice fields, ditches, and freshwater wetlands. Using chloroplast DNA (cpDNA) atpB-rbcL intergenic spacer sequences, we studied the phylogeographic pattern and demographic history of S. trifolia with 108 samples from 42 populations representing the entire geographic range in China. Twenty-seven haplotypes were characterized and two of them were widely distributed in the populations. In the minimum-spanning network, all tip haplotypes were unique to a particular population, while the interior nodes represented widespread haplotypes. Nested clade analysis (NCA) of cpDNA haplotypes indicated that long distance dispersal characterized the post-glacial recolonization of S. trifolia in China. No specific refugia areas were suggested because genetic differentiation was low among the sampled regions and among populations within regions although a large number of the haplotypes were unique to a single population. The present data support that the unique haplotypes in individual population most likely represent recent mutational derivatives after long distance dispersal rather than the relics in refugia. These results for S. trifolia represent the first phylogeographic analysis of a widespread marsh herb in China and support the importance of long distance dispersal events in the post-glacial migrations of plants.  相似文献   

7.
Phylogeographical and mismatch analysis of chloroplast DNA (cpDNA) variation were used to infer the temporal dynamics of distributional and demographic history of Taiwan fir (Cunninghamia konishii). We examined 64 and 52 trees from 17 populations of C. konishii and 14 provenances of C. lanceolata, respectively, by sequencing three intergenic spacers and one intron using cpDNA universal primers. Of the aligned 1888 base pairs (bp) sequence, 30 varied among 28 haplotypes, which consisted of three transitions, 14 transversions and 13 indels. One ancestral haplotype was found in 86 individuals across the surveyed range of both species, C. konishii and C. lanceolata, which was distributed in all populations and provenances. The 28 haplotypes also included 15 C. konishii specific and 12 C. lanceolata-specific haplotypes. Ancestral haplotype was found fixed in five populations of C. konishii and five provenances of C. lanceolata. Other haplotypes occurred mainly as singletons. The levels of population differentiation studied are relatively low in both Cunninghamia species. The nucleotide diversity (theta) of chloroplast DNA sequences within C. konishii was slightly higher than that of C. lanceolata. Excess in singletons as well as star-like phylogeny of haplotypes suggested no clearcut migration patterns of C. konishii after glacial maximum. One probable demographic history of C. konishii is the postglacial population growth of C. konishii after a glacial bottleneck event. This inference is supported by the combined results of fossil pollen record, low nucleotide diversity, significant Tajima's d-value, phylogeographical analysis and unimodal mismatch distribution. Similarities and discrepancies between our results and those of Lu et al. (2001) are discussed.  相似文献   

8.
Chloroplast DNA (cpDNA) is most often maternally inherited and highly conserved leading to previous observation of little to no sequence variation. Comparing cpDNA haplotypes have provided valuable insight into the establishment and migration of polyploid populations. However, to use chloroplast haplotypes to their full potential intrapopulational variation needs to be addressed. In this study, cpDNA haplotype variation was surveyed within 16 natural populations of prairie cordgrass (Spartina pectinata Link) located east of the 100th west meridian and north of the 35th north parallel in the U.S.A. using two non-coding, polymorphic chloroplast regions. Two main clades were defined with subclades as follows: haplotype 1 and haplotype 2A and 2B. It was discovered that seven populations showed intrapopulational chloroplast genome variation. Of the total amount of variation, 95.5% occurred within the octoploid populations and 4.5% occurred within the tetraploid populations. Both variant haplotypes, 2A and 2B, were found in a larger sampling of one of the natural populations, but no variation was found in a mixed ploidy population. The intrapopulational cpDNA variation we found in this study cannot directly be related to mechanisms of introduction of the non-native populations into native populations. Therefore, this cpDNA variation could be novel natural variation that has been fixed as the octoploid populations were established and moved northwest. This analysis provides insight into determining the usefulness of indels and single nucleotide polymorphisms for population identification and may provide information in regards to the origin of chloroplast variation and its subsequent fixation and establishment in natural prairie cordgrass populations.  相似文献   

9.
Chloroplast DNA diversity in Prunus spinosa, a common shrub of European deciduous forests, was assessed using the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) technique. Thirty-two haplotypes were detected in 25 populations spread across the European continent. Ten haplotypes were shared by two or more populations, and 22 were private. The major proportion of the total cpDNA diversity (H(T) = 0.73) was located within the populations (H(S) = 0.49), and differentiation between populations was low (G(ST) = 0.33) compared with other forest species. Haplotype diversity was higher in southern Europe than in northern Europe, indicating probable localization of glacial refugia in southern Europe. The minimum-length spanning tree of haplotypes showed incongruency between the phylogeny of haplotypes and their geographic locations. This might be the result of intensive seed movements following recolonization, which thereby erased the phylogeographic structure in P. spinosa.  相似文献   

10.
Aim We analysed variation in chloroplast DNA (cpDNA) in red maple (Acer rubrum L.) and silver maple (Acer saccharinum L.) across a large part of their geographic ranges. Acer rubrum is one of the most common and morphologically variable deciduous trees of eastern North America, while its sister species A. saccharinum has a more restricted habitat distribution and displays markedly less morphological variation. Our objective was to infer the impact of biogeographic history on cpDNA diversity and phylogeographic structure in both species. Location Deciduous forests of eastern North America. Methods We sequenced 1289 to 1645 bp of non‐coding cpDNA from A. rubrum (n = 258) and A. saccharinum (n = 83). Maximum parsimony networks and spatial analysis of molecular variance (SAMOVA) were used to analyse phylogeographic structure. Rarefaction analyses were used to compare genetic diversity. Results A total of 40 cpDNA haplotypes were recovered from A. rubrum (38 haplotypes) and A. saccharinum (7 haplotypes). Five of the seven A. saccharinum haplotypes were shared with nearby samples of A. rubrum. SAMOVA recovered four phylogeographic groups for A. rubrum in: (1) south‐eastern USA, (2) the Gulf and south‐eastern Coastal Plain, (3) the lower Mississippi River Valley, and (4) the central and northern regions of eastern North America. Acer saccharinum had significantly lower haplotype diversity than A. rubrum, and novel haplotypes in post‐glaciated northern limits of its range were shared with A. rubrum. Main conclusions This is the first study of A. rubrum to report a distinct phylogeographic group centred on the lower Mississippi River, and the first to examine data comparatively with A. saccharinum. We hypothesized that A. rubrum would display stronger phylogeographic structure and greater haplotype diversity than A. saccharinum because of its greater geographic range, and ecological and morphological variation. This hypothesis was supported by the cpDNA analysis. The sharing of cpDNA and chloroplast simple sequence repeat (cpSSR) haplotypes in areas of geographic overlap provides evidence of introgression, which led to an increase in haplotype diversity in both species, and to novel phylogeographic structure in A. rubrum. We recommend that introgression be considered, along with other potential causes, as an explanation for the phylogeographic structure of cpDNA in plants.  相似文献   

11.
Quercus petraea, Quercus pubescens and Quercus robur are closely related and interfertile white oaks native to Switzerland. The three species are known to share identical cpDNA haplotypes, which are indicative of the postglacial recolonization history of populations. Only two haplotypes are common in Switzerland. We compared variation of cpDNA and of isozymes in 28 oak populations from Switzerland in order to assess the impact of the postglacial population history on current genetic structures of nuclear controlled isozyme gene loci. Species delineation was based on Principal Component Analysis of leaf morphological traits. The species status of populations was reflected at isozyme gene loci, but differentiation between populations with different cpDNA haplotypes and hence different recolonization history was very low at enzyme gene loci for all species. Thus, glacial and postglacial population history was not reflected at nuclear gene loci on the temporal and spatial scale covered by the present study. Extensive gene flow through pollen among populations is likely to have blurred a previously existing genetic differentiation at biparentally inherited gene loci that possibly evolved in the different glacial refugia of the above mentioned cpDNA haplotypes.  相似文献   

12.
Patterns of chloroplast DNA (cpDNA) variation were studied in eight white oak species by sampling 345 populations throughout Europe. The detection of polymorphisms by restriction analysis of PCR-amplified cpDNA fragments allowed the identification of 23 haplotypes that were phylogenetically ordered. A systematic hybridization and introgression between the eight species studied is evident. The levels of subdivision for unordered (G(ST)) and ordered (N(ST)) alleles are very high and close (0.83 and 0.85). A new statistical approach to the quantitative study of phylogeography is presented, which relies on the coefficients of differentiation G(ST) and N(ST) and the Mantel's test. Based on pairwise comparisons between populations, the significance of the difference between both coefficients is evaluated at a global and a local scale. The mapped distribution of the haplotypes indicates the probable routes of postglacial recolonization followed by oak populations that had persisted in southern refugia, especially in the Iberian peninsula, Italy and the Balkans. Most cpDNA polymorphisms appear to be anterior to the beginning of the last recolonization. A subset of the preexisting haplotypes have merely expanded north, while others were left behind in the south.  相似文献   

13.
High chloroplast DNA (cpDNA) diversity was found within and among populations of Prunus spinosa sampled from seven European deciduous forests. A study of 12% of the total chloroplast genome detected 44 mutations, which were distributed over 24 haplotypes; four were common to two or more populations and the rest were unique haplotypes. The most-abundant and widely distributed haplotype was H2 (frequency = 41% approximately). Six of the seven populations were polymorphic. All of the six polymorphic populations had ”private” haplotypes (frequency < 5%) in addition to common haplotypes. The UPGMA dendrogram demonstrated a correlation between populations and their geographical locations. The total diversity was high (hT = 0.824) and a major portion of it was within populations (hs = 0.663). The level of population subdivision for unordered alleles was low (GST = 19.5%) and for ordered alleles was lower (NST = 13.6%). No phylogeographic structure could be demonstrated in the present geographical scale. High polymorphism in the cpDNA of P. spinosa has to be considered carefully when planning phylogenetic studies involving this species. Received: 20 September 1999 / Accepted: 10 November 1999  相似文献   

14.
Whether alpine plant species survived Pleistocene glaciations in situ on high alpine nunatak mountains is still under debate. To test this hypothesis, Senecio halleri, a high alpine and endemic species with a narrow distribution range in the European Alps, was chosen as a model organism. Polymerase chain reaction-restriction fragment length polymorphisms of chloroplast DNA (cpDNA PCR-RFLPs) were used in a phylogeographic analysis of 14 populations of S. halleri, covering its total distribution area. The results of haplotype diversity and distribution gave evidence of in situ glacial survival on siliceous central-alpine nunatak mountains in two areas, southwest and northeast of the Aosta valley. According to the absence of genetic differentiation between these two nunatak areas (based on amova), nested clade analysis implied a history of preglacial gene flow, in situ survival and extinction of intermediate populations during glaciation and postglacial stepwise recolonization of peripheral and intermediate areas.  相似文献   

15.
Aim Palaeontologial data suggest that all temperate forest species in northern China migrated southwards during the Last Glacial Maximum (LGM) and recolonized post‐glacially within the Holocene. We tested this assumption using phylogeographical studies of a temperate deciduous shrub species (Ostryopsis davidiana Decne., Betulaceae), which has a wide distribution in northern China. Location Northern China. Methods We sequenced two chloroplast DNA (cpDNA) fragments (trnL–trnF and psbA–trnH, together about 1300 bp in length) of 294 plants from 21 populations across the total distribution range of this species. We used maximum parsimony and haplotype network methods to construct phylogenetic relationships among haplotypes. Results The analysis of cpDNA variation identified eight haplotypes. A single haplotype was fixed in all populations except for one population that was polymorphic, having two haplotypes. The population subdivisions were extremely high (GST = 0.972 and NST = 0.974), suggesting very low gene flow between populations. Haplotypes clustered into two tentative clades, both of which occur in the southern region of the species’ range but only one of which occurs in the northern region. Across the sampled populations, the haplotype distributions were differentiated geographically. Main conclusions Our analyses suggest that multiple refugia were maintained across the range of O. davidiana in both northern (north of the Qing Mountains) and southern (south of the Qing Mountains) regions during the LGM rather than that the species survived only in the south and subsequently colonized northwards. The extremely low within‐population diversity of this species suggests strong bottleneck or founder effects within each fragmented region during the Quaternary climatic oscillations. These findings provide important clues for understanding range shifts and changes in within‐ and/or between‐population genetic diversity of temperate forests in response to past climatic oscillations in northern China.  相似文献   

16.
The phylogeography of Sibiraea angustata, an endemic shrub species, was studied in the Qinghai–Tibet plateau (QTP). We investigated 466 individuals of S. angustata from 39 populations basically covering its total distribution area. Eight haplotypes (A–H) were detected by sequencing the intergenic chloroplast spacer trnS–trnG (600 bp), and one ancestral haplotype (A) was found to be widely distributed. The level of differentiation among populations was very high (GST=0.768; NST=0.850) and a significant phylogeographical structure was revealed (NST>GST). Analysis of molecular variance (AMOVA) similarily revealed a high level of differentiation among populations (84%, FST=0.842), indicating that little gene flow has occurred among populations mutually isolated by high mountains and rivers in the QTP. On the QTP platform there was only one widespread haplotype (A) in most populations, while populations along the eastern and southeastern edges had high diversity and unique haplotypes. Our results suggest that a glacial refugium may have been located on the eastern or southeastern edges of QTP during the last glaciation, and that interglacial and postglacial range expansion occurred from that refugium. Nested clade analysis (NCA) also suggests this scenario, which indicates that the current spatial distribution of cpDNA haplotypes and populations mainly resulted from long distance colonization, possibly coupled with subsequent or past fragmentation followed by range expansion and allopatric fragmentation.  相似文献   

17.
The objective of this study was to examine the spatial genetic relationships of the Lake Qinghai scaleless carp Gymnocypris przewalskii within the Lake Qinghai system, determining whether genetic evidence supports the current taxonomy of Gymnocypris przewalskii przewalskii and Gymnocypris przewalskii ganzihonensis and whether Gymnocypris przewalskii przewalskii are returning to their natal rivers to spawn. Comparison of mitochondrial (control region) variation (42 haplotypes in 203 fish) of G. przewalskii with the postulated ancestral species found in the Yellow River, Gymnocypris eckloni (10 haplotypes in 23 fish), indicated no haplotype sharing, but incomplete lineage sorting. Consistent with the sub-species status, an AMOVA indicated that the Ganzi River population was significantly different from all other river populations (F(ST) = 0·1671, P < 0·001). No genetic structure was found among the other rivers in the Lake Qinghai catchment. An AMOVA of amplified fragment length polymorphism (AFLP) loci, however, revealed significant genetic differences between most spawning populations (F(ST) = 0·0721, P < 0·001). Both mitochondrial and AFLP data found significant differences among G. p. przewalskii, G. p. ganzihonensis and G. eckloni (F(ST) values of 0·1959 and 0·1431, respectively, P < 0·001). Consistent with the incomplete lineage sorting, Structure analysis of AFLP loci showed evidence of five clusters. One cluster is shared among all sample locations, one is unique to G. p. ganzihonensis and G. eckloni, and the others are mostly found in G. p. przewalskii. Genetic evidence therefore supports the current taxonomy, including the sub-species status of G. p. ganzihonensis, and is consistent with natal homing of most Lake Qinghai populations. These findings have significant implications for the conservation and management of this unique and threatened species. The evidence suggests that G. p. przewalskii should be treated as a single population for conservation purposes. Exchangeability of the populations, however, should not be used to promote homogenization of fish spawning in the different rivers. As some degree of genetic divergence was detected in this study, it is recommended that the spawning groups be treated as separate management units.  相似文献   

18.
We investigated the biogeographic history of Kalopanax septemlobus, one of the most widespread temperate tree species in East Asia, using a combined phylogeographic and palaeodistribution modelling approach. Range-wide genetic differentiation at nuclear microsatellites (G'(ST) = 0.709; 2205 samples genotyped at five loci) and chloroplast DNA (G(ST) = 0.697; 576 samples sequenced for 2055 bp at three fragments) was high. A major phylogeographic break in Central China corresponded with those of other temperate species and the spatial delineation of the two temperate forest subkingdoms of East Asia, consistent with the forests having been isolated within both East and West China for multiple glacial-interglacial cycles. Evidence for multiple glacial refugia was found in most of its current range in China, South Japan and the southernmost part of the Korean Peninsula. In contrast, lineage admixture and absence of private alleles and haplotypes in Hokkaido and the northern Korean Peninsula support a postglacial origin of northernmost populations. Although palaeodistribution modelling predicted suitable climate across a land-bridge extending from South Japan to East China during the Last Glacial Maximum, the genetic differentiation of regional populations indicated a limited role of the exposed sea floor as a dispersal corridor at that time. Overall, this study provides evidence that differential impacts of Quaternary climate oscillation associated with landscape heterogeneity have shaped the genetic structure of a wide-ranging temperate tree in East Asia.  相似文献   

19.
Japanese horse chestnut (Aesculus turbinata: Hippocastanaceae) is one of the typical woody plants that grow in temperate riparian forests in the Japanese Archipelago. To analyze the phylogeography of this plant in the Japanese Archipelago, we determined cpDNA haplotypes for 337 samples from 55 populations covering the entire distribution range. Based on 1,313 bp of two spacers, we determined ten haplotypes that are distinguished from adjacent haplotypes by one or two steps. Most of the populations had a single haplotype, suggesting low diversity. Spatial analysis of molecular variance suggested three obvious phylogeographic structures in western Japan, where Japanese horse chestnut is scattered and isolated in mountainous areas. Conversely, no clear phylogeographic structure was observed from the northern to the southern limit of this species, including eastern Japan, where this plant is more common. Rare and private haplotypes were also found in southwestern Japan, where Japanese horse chestnuts are distributed sparsely. These findings imply that western Japan might have maintained a relatively large habitat for A. turbinata during the Quaternary climatic oscillations, while northerly regions could not.  相似文献   

20.
Hamill RM  Doyle D  Duke EJ 《Heredity》2006,97(5):355-365
Fossil evidence shows that populations of species that currently inhabit arctic and boreal regions were not isolated in refugia during glacial periods, but instead maintained populations across large areas of central Europe. These species commonly display little reduction in genetic diversity in northern areas of their range, in contrast to many temperate species. The mountain hare currently inhabits both temperate and arctic-boreal regions. We used nuclear microsatellite and mtDNA sequence data to examine population structure and alternate phylogeographic hypotheses for the mountain hare, that is, temperate type (lower genetic diversity in northern areas) and arctic-boreal type (high northern genetic diversity). Both data sets revealed concordant patterns. Highest allelic richness, expected heterozygosity and mtDNA haplotype diversity were identified in the most northerly subspecies, indicating that this species more closely maps to phylogeographic patterns observed in arctic-boreal rather than temperate species. With regard to population structure, the Alpine and Fennoscandian subspecies were most genetically similar (F(ST) approximately 0.1). These subspecies also clustered together on the mtDNA tree and were assigned with highest likelihood to a common Bayesian cluster. This is consistent with fossil evidence for intermediate populations in the central European plain, persisting well into the postglacial period. In contrast, the geographically close Scottish and Irish populations occupied separate Bayesian clusters, distinct clades on the mtDNA maximum likelihood tree and were genetically divergent from each other (F(ST) > 0.4) indicating the influence of genetic drift, long isolation (possibly dating from the late glacial era) and/or separate postglacial colonisation routes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号