首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A survey was carried out at 156 sites, situated in streams in the province of Overijssel (The Netherlands), to describe the macroinvertebrate assemblages and their environments. Fifty-six environmental variables were measured once at each sampling site. The main aim was to describe a typology of stream for this region.Different multivariate analysis techniques (clustering and ordination) were used in combination with ecological information on individual taxa to derive and describe site groups in terms of taxonomic composition and mean environmental conditions. The resulting site groups were termed cenotypes.Eleven cenotypes were distinguished. Differences between cenotypes were attributed to (combinations of) environmental key factors, namely, dimensions (width and depth), morphological (profile shape) and hydraulic stream characteristics, duration of drought and load of organic material.The typology offers a basis to be used for regional stream management and nature conservation. Efforts to improve stream ecosystems should be directed at the physical and hydraulic conditions.Typological studies are needed (especially in semi-natural landscapes) if we are to better understand, manage and conserve freshwater biota.  相似文献   

2.
3.
We determined the limiting nutrient of phytoplankton in 21 lakes and ponds in Wapusk National Park, Canada, using nutrient enrichment bioassays to assess the response of natural phytoplankton communities to nitrogen and phosphorus additions. The goal was to determine whether these Subarctic lakes and ponds were nutrient (N or P) limited, and to improve the ability to predict future impacts of increased nutrient loading associated with climate change. We found that 38% of lakes were not limited by nitrogen or phosphorus, 26% were co-limited by N and P, 26% were P-limited and 13% were N-limited. TN/TP, DIN/TP and NO3 /TP ratios from each lake were compared to the Redfield ratio to predict the limiting nutrient; however, these predictors only agreed with 29% of the bioassay results, suggesting that nutrient ratios do not provide a true measure of nutrient limitation within this region. The N-limited lakes had significantly different phytoplankton community composition with more chrysophytes and Anabaena sp. compared to all other lakes. N and P limitation of phytoplankton communities within Wapusk National Park lakes and ponds suggests that increased phytoplankton biomass may result in response to increased nutrient loading associated with environmental change.  相似文献   

4.
In small shallow lakes and ponds, the clear-water state can generally be maintained at higher nutrient concentrations compared to larger shallow lakes. The main objective of this study was to identify thresholds for total phosphorus (TP), submerged vegetation cover and zooplankton size that determine biomanipulation success in peri-urban eutrophic ponds. Additionally, the relationship between transparency and TP is discussed with regard to similar relationships and thresholds reported for shallow lakes. Using classification trees, a threshold TP concentration of 0.300 mg P L?1 was determined below which a clear-water state was generally maintained after biomanipulation. When the average TP concentration was >0.300 mg P L?1, the stability of the clear-water state largely depended on the presence of sufficiently large zooplankton (>0.87 mm) or a submerged vegetation cover of >82% at some point during the year. This threshold TP concentration is considerably higher than the threshold of 0.1 mg L?1 which is generally suggested for longer-term success of biomanipulation in shallow lakes. Such threshold nutrient concentration is important when restoring ecological quality in eutrophic small lakes and ponds. Extended follow-up of biomanipulation success in eutrophic ponds could provide more insight into the feasibility of these thresholds on the longer term.  相似文献   

5.
Diatoms as indicators of water quality in some English urban lakes   总被引:1,自引:0,他引:1  
SUMMARY. 1. The paper describes diatom communities from a series of linked urban lakes in relation to water chemistry and uses multivariate statistical techniques to show how indicator groups can he defined.
2. Diatoms are classified into ecological groups using two-way species indicator analysis (TWINSPAN). Each ecological group is associated with a specific range of water-quality conditions. The headwater stream environments are differentiated from the lake habitats at level 1. At level 2 of TWINSPAN. the sampling sites are grouped into five ecological groups, according to their water chemistry and irrespective of the time of year.
3. Detrended correspondence analysis (DCA) and principal components analysis (PCA) provide two statistically independent methods of assessing the environmental gradients along which the ecological groups are distributed. The most important physico-chemical parameters are total hardness, specific conductance and pH, followed by phosphates and nitrates.
4. Ecological groups I-V correspond to an environmental gradient ranging from the forested headwaters, which are acidic, of low specific conductance, total hardness and nutrient content, through the urban lakes, which are alkaline and of relatively high total hardness, specific conductance and nutrient content.
5. Twelve site groups are identified at level 3 of TWINSPAN, each of which corresponds to a narrower range of water-quality conditions within the ecological groupings. A specific diatom assemblage is associated with each site group.
6. Benthic diatoms form an integral part of the diatom assemblages found in the water column and this is identified as a topic for further study.  相似文献   

6.
Diatoms are commonly and frequently used as water quality indicators, but only a few studies have been done to evaluate the importance of littoral, contemporary diatoms as bioindicators. This study aims to determine the main predictors of diatom community composition from 73 Swedish lakes. Canonical correspondence analysis (CCA) revealed pH, phosphate, nitrite/nitrate levels, longitude and percentage of forest in the catchment to be the most important factors of 51 environmental variables for structuring diatom assemblages. Cluster analysis separated the lakes into three groups based on the diatom community composition. Lakes belonging to these groups were characterised as: (1) acidic, nutrient-poor; (2) circumneutral, nutrient-poor and (3) alkaline, nutrient-rich, according to the results of a discriminant function analysis and dominant diatom taxa revealed by similarity percentage analysis. Ecological guilds according to growth morphology and the ability of nitrogen-fixation were assigned to all diatom taxa. All three lake groups exhibited a distinct guild composition. Nitrogen-fixing diatoms were found in nutrient-rich lakes, only. Our results indicate that taxonomical composition of littoral diatom assemblages can be applied in the assessment of nutrient and acidity status of Swedish lakes. Differences in distribution of the ecological guilds were connected to several environmental factors such as nutrients, light and grazing; their application in assessment of trophic status of lakes is therefore precarious.  相似文献   

7.
1. Broad‐scale assessments of biodiversity often rely on the use of surrogate taxa, whose reliability has rarely been tested, particularly in freshwater systems. Here we use data from 46 ponds in two regions of the U.K. to explore the performance of macroinvertebrate taxa as surrogates for the rapid assessment of pond biodiversity. For the four dominant taxonomic groups in these ponds (Chironomidae, Coleoptera, Gastropoda and Trichoptera) we explore cross‐taxon species richness relationships in each of the two regions, and also determine the degree of concordance between the different taxa in accurately representing the similarity relationships between pond assemblages. 2. Patterns of cross‐taxon congruence in species richness were highly variable among taxa and study sites, making the use of a single taxon as a predictor of overall macroinvertebrate species richness problematic. In contrast, all four taxa show >70% congruence with the pattern of community similarity between sites resulting from the entire macroinvertebrate dataset, this result being consistent within and between regions. Canonical correspondence analysis demonstrated that all taxa were related in a similar manner to measured environmental parameters, meaning that limited additional ecological information is gained by including a wider range of pond taxa in rapid site assessment. 3. Single taxonomic groups can, therefore, perform consistently as indicators of community similarity between ponds, and no one taxon dramatically outperforms any other in this respect. The relative merits of the four focal taxa as surrogates for pond invertebrate assemblage composition are discussed with reference to ease of survey, ease of identification and ecological range occupied. 4. It is suggested that Coleoptera have a number of advantages as a surrogate taxon, being diverse, easily sampled, readily identified, taxonomically stable, ecologically well understood and occurring across a wide spectrum of pond types. They are therefore recommended for use as a focal group in rapid pond biodiversity assessments, employing an approach such as ours, which examines patterns of assemblage similarity, rather than species richness alone.  相似文献   

8.
Source–sink theory is an ecological framework that describes how site and habitat-specific demographic rates and patch connectivity can explain population structure and persistence across heterogeneous landscapes. Although commonly used in conservation planning, source–sink theory has rarely been applied to the management of invasive species. This study tested whether the common carp, one of the world’s most invasive species, exhibits source–sink dynamics in a representative watershed in the Upper Mississippi River Basin comprised of a dozen interconnected ponds and lakes. To test for source–sink population structure, we used standard fish sampling techniques, tagging, and genetic assignment methods to describe habitat-specific recruitment rates and dispersal. Five years of sampling revealed that while adult carp were found across the entire watershed, reproductive success (the presence of young carp) was restricted to shallow ponds. Additionally, nearly a third of the carp tagged in a representative pond dispersed into the connected deeper lakes, suggesting that ponds in this system serve as sources and lakes as sinks. This possibility was confirmed by microsatellite analysis of carp tissue samples (n = 1041) which revealed the presence of two distinct strains of carp cohabitating in the lakes, whose natal origins could be traced back to one of two pond systems, with many adult carp attempting to migrate back into these natal ponds to spawn. We conclude that the distribution and persistence of invasive carp in complex interconnected systems may often be driven by source–sink dynamics and that their populations could be controlled by suppressing reproduction in source habitats or by disrupting dispersal pathways, instead of culling individuals from sink habitats.  相似文献   

9.
In this study we aimed at comparing invertebrate diversity of high altitude lakes and ponds along hierarchical spatial scales. We compared local, among-site, and regional diversity of benthic macroinvertebrates in 25 ponds and 34 lakes in the Tatra Mountains, central Europe. The ponds showed significantly lower local diversity, higher among-site diversity and similar regional diversity than the lakes. The species–area relationships (SAR), habitat heterogeneity, and environmental harshness are assumed as drivers for the local diversity patterns. An ecological threshold separating pond and lake systems emerged at an area of 2 ha, where the SAR pattern changed significantly. Differences in species turnover between these systems were likely driven by greater environmental variability and isolation of the ponds. High altitude ponds neither significantly support greater regional diversity nor higher number of unique taxa than lakes. The higher among-site diversity of ponds relative to lakes highlights the relevance of ponds for regional diversity in mountain areas.  相似文献   

10.
Arctic freshwater ecosystems are important habitats for northern wildlife. Arctic climate impact studies suggest that global change could result in major modifications and perturbations of lakes, ponds and wildlife. Most studies focus either on freshwater ecosystems or on animal populations, but few have investigated the links that exist between them. Animal populations have the potential to alter the nutrient inputs in lakes and ponds via faeces. The present study is the first to reveal the impact of an expanding Greater Snow Goose (Chen caerulescens atlantica) population on the limnology of arctic lakes and ponds. A survey of 27 freshwater ecosystems was performed on Bylot Island (Nunavut, Canada) in order to identify patterns in limnological conditions. Using a multivariate statistical approach, our study shows that the presence of birds in the catchment of lakes and ponds has an impact on their nutrient status. Concentrations of major ions that were related to the distance from the sea were the main environmental variable explaining the limnological differences observed among lakes and ponds. Nutrient variables that were mostly related to the presence of Snow Geese played a secondary but significant role. N and P concentrations were different among impacted and non‐impacted sites, underlining the impact of animal populations on northern freshwater ecosystems. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
The phylogenetic composition of bacterioplankton communities in the water column of four shallow eutrophic lakes was analyzed by partially sequencing cloned 16S rRNA genes and by PCR-DGGE analysis. The four lakes differed in nutrient load and food web structure: two were in a clearwater state and had dense stands of submerged macrophytes, while two others were in a turbid state characterized by the occurrence of phytoplankton blooms. One turbid and one clearwater lake had very high nutrient levels (total phosphorus > 100 microg/l), while the other lakes were less nutrient rich (total phosphorus < 100 microg/l). Cluster analysis, multidimensional scaling and ANOSIM (analysis of similarity) were used to investigate differences among the bacterial community composition in the four lakes. Our results show that each lake has its own distinct bacterioplankton community. The samples of lake Blankaart differed substantially from those of the other lakes; this pattern was consistent throughout the year of study. The bacterioplankton community composition in lake Blankaart seems to be less diverse and less stable than in the other three lakes. Clone library results reveal that Actinobacteria strongly dominated the bacterial community in lake Blankaart. The relative abundance of Betaproteobacteria was low, whereas this group was dominant in the other three lakes. Turbid lakes had a higher representation of Cyanobacteria, while clearwater lakes were characterized by more representatives of the Bacteroidetes. Correlating our DGGE data with environmental parameters, using the BIOENV procedure, suggests that differences are partly related to the equilibrium state of the lake.  相似文献   

12.
1. Studies of species distributions across environmental gradients further our understanding of mechanisms regulating species diversity at the landscape scale. For some freshwater taxa the habitat gradient from small, shallow and temporary ponds to large, deep and permanent lakes has been shown to be an important environmental axis. Freshwater snails are key players in freshwater ecosystems, but there are no comprehensive studies of their distributions across the entire freshwater habitat gradient. Here we test the hypothesis that snail species in the family Physidae are distributed in a non‐random manner across the habitat gradient. We sampled the snails, their predators and the abiotic environment of 61 ponds and lakes, spanning a wide range in depth and hydroperiod. 2. Temporary habitats had the lowest biomass of predators. Shallow permanent ponds had the highest biomass of invertebrate predators but an intermediate fish biomass. Deep ponds and lakes had the highest fish biomass and intermediate invertebrate biomass. Five species of physids occurred in the regional species pool and 60 of the 61 ponds and lakes surveyed contained physid snails. Each pond and lake contained an average of just 1.2 physid species, illustrating limited membership in local communities and substantial among‐site heterogeneity in species composition. 3. Physids showed strong sorting along the habitat gradient, with Physa vernalis found in the shortest hydroperiod ponds and Aplexa elongata, P. gyrina, P. acuta and P. ancillaria found in habitats of successively greater permanence. When organised into a site‐by‐species incidence matrix with sites ordered according to their hydroperiods, we found the pattern of incidence to be highly coherent, showing that much of the heterogeneity in species composition from one pond to another is explained by hydroperiod. We also found that the number of species replacements along this gradient was higher than random, showing that replacement is more important than nesting in describing species composition in ponds of different hydroperiod. 4. Discriminant analysis showed that pond depth, invertebrate biomass and fish biomass were the best predictors of species composition. Analysis of these niche dimensions showed that P. vernalis and A. elongata were most successful in shallow, temporary ponds with few predators. P. gyrina and P. acuta were typically found in ponds of intermediate depth and high predator abundance. P. ancillaria was found in the deepest lakes, which had abundant fish predators but few invertebrate predators. Of the five species considered, P. ancillaria, P. vernalis and A. elongata were relatively specialised with regard to key habitat characteristics, P. gyrina was moderately generalised and P. acuta was remarkably generalised, since it alone occurred across the entire freshwater habitat gradient. The exceptional habitat breadth of P. acuta stands in contrast to distributional studies of other freshwater taxa and deserves further attention.  相似文献   

13.
Many arctic lakes are oligotrophic systems where phototrophic growth is controlled by nutrient supply. Recent anthropogenic nutrient loading is associated with biological and/or physico-chemical change in several lakes across the arctic. Shifts in nutrient limitation (nitrogen (N), phosphorus (P), or N + P) and associated effects on the growth and composition of algal communities are commonly reported. The Kangerlussuaq region of south-west Greenland forms a major lake district which is considered to receive little direct anthropogenic disturbance. However, long-range transport of pollutant N is now reaching Greenland, and it was hypothesised that a precipitation gradient from the inland ice sheet margin to the coast might also deliver increased N deposition. In situ nutrient bioassays were deployed in three lakes across the region: ice sheet margin, inland (close to Kangerlussuaq) and the coast (near Sisimiut), to determine nutrient limitation of lakes and investigate any effects of nutrients on periphyton growth and community composition. Nutrient limitation differed amongst lakes: N limitation (ice sheet margin), N and P limitation (inland) and N + P co-limitation (coast). Factors including variation in N supply, ice phenology, seasonal algal succession, community structure and physical limnology are explored as mechanisms to explain differences amongst lakes. Nutrient limitation of arctic lakes and associated ecological impacts are highly variable, even across small geographic areas. In this highly sensitive region, future environmental change scenarios carry a strong risk of significantly altering nutrient limitation; in turn, potentially severely impacting lake structure and function.  相似文献   

14.
Jani Heino 《Hydrobiologia》2000,418(1):229-242
Littoral zones of small water bodies are spatially heterogeneous habitats, harbouring diverse biotic communities. Despite this apparent heterogeneity, many studies have stressed the importance of water chemistry in determining the structure of littoral macroinvertebrate assemblages. The purpose of this study was to consider the relative importance of several spatial and water chemistry variables in explaining the patterns in the structure of macroinvertebrate assemblages in 21 lentic water bodies in northeastern Finland. Water bodies were selected to represent various habitat conditions ranging from small permanent bog ponds to small forest lakes. According to canonical correspondence analysis (CCA), the most important environmental factors related to assemblage composition were water body area, moss cover, total nitrogen and water hardness. In general, species composition in small bog ponds tended to differ from that in larger lakes with forested shoreline. Total species richness was best explained by a composite variable (PCA) describing physical habitat heterogeneity, species richness being lowest in small bog lakes with simple bottom structure and low amount of aquatic plants. Species numbers in dominant functional feeding groups were related to different environmental factors. Shredder species richness was best explained by a regression model incorporating total nitrogen and the amount of organic matter, both of which were negatively related to the number of shredder species. The number of gatherer species increased with mean substratum particle size. Scraper species richness was negatively affected by the abundance of detritus and positively affected by depth, and a model including both variables explained most of the variation. Variation in the number of predatory species was best explained by a regression model including moss cover and lake area.  相似文献   

15.
1. Agricultural intensification has caused dramatic biodiversity loss in many agricultural landscapes over the last century. Here, we investigated whether new types of farm ponds (made of artificial substrata) in intensive systems and natural‐substratum ponds in traditional farming systems differ in their value for aquatic biodiversity conservation. 2. We analysed the main patterns of environmental variation, compared α‐, β‐ and γ‐diversity of macroinvertebrates between ponds types and evaluated the role of submerged aquatic vegetation (SAV). Generalised additive models (GAM) were used to analyse the relationships of α‐ and β‐diversity with environmental predictors, and variation partitioning to separate the effect of environmental and spatial characteristics on the variation in macroinvertebrate assemblages. Moran’s eigenvector maps (MEMs) were used to define spatial variables. 3. A principal coordinate analysis (PCoA) detected a primary environmental gradient that separated nutrient‐rich ponds from those dominated by SAV; a secondary morphometric gradient distinguished natural‐substratum ponds, with large surface area and structural complexity, from artificial‐substratum ponds with steeper slopes. Natural‐substratum ponds had almost twice the α‐ and γ‐diversity of artificial‐substratum ponds, and diversity significantly increased when SAV was present, particularly in artificial‐substratum ponds. Total phosphorus (TP) strongly contributed to explain the patterns in diversity, while SAV was a significant predictor of assemblage composition and diversity. GAMs revealed optima of both α‐diversity at intermediate SAV covers and β‐diversity at intermediate–high TP concentrations. 4. These findings have important implications for conservation planning. Adaptation of artificial‐substratum ponds by adding natural substratum and smoothing the gradient of pond margins would improve their conservation value. Development of SAV with occasional harvests and certain cautionary measures to control nutrient levels may also improve both the agronomical and environmental function of ponds.  相似文献   

16.
Global nutrient cycles have been altered by the use of fossil fuels and fertilizers resulting in increases in nutrient loads to aquatic systems. In the United States, excess nutrients have been repeatedly reported as the primary cause of lake water quality impairments. Setting nutrient criteria that are protective of a lakes ecological condition is one common solution; however, the data required to do this are not always easily available. A useful solution for this is to combine available field data (i.e., The United States Environmental Protection Agency (USEPA) National Lake Assessment (NLA)) with average annual nutrient load models (i.e., USGS SPARROW model) to estimate summer concentrations across a large number of lakes. In this paper we use this combined approach and compare the observed total nitrogen (TN) and total phosphorus (TN) concentrations in Northeastern lakes from the 2007 National Lake Assessment to those predicted by the Northeast SPARROW model. We successfully adjusted the SPARROW predictions to the NLA observations with the use of Vollenweider equations, simple input-output models that predict nutrient concentrations in lakes based on nutrient loads and hydraulic residence time. This allows us to better predict summer concentrations of TN and TP in Northeastern lakes and ponds. On average we improved our predicted concentrations of TN and TP with Vollenweider models by 18.7% for nitrogen and 19.0% for phosphorus. These improved predictions are being used in other studies to model ecosystem services (e.g., aesthetics) and dis-services (e.g. cyanobacterial blooms) for ~18,000 lakes in the Northeastern United States.  相似文献   

17.
The distribution and ecology of benthic, periphytic and planktonic rotifers were investigated in a wide range of alpine waterbodies in Austria. A total of 162 substrate classified samples was taken at 60 sampling sites situated between 1824 m and 2753 m a.s.l. in the Central Alps (predominantly gneiss) and between 1290 m and 1643 m a.s.l. in the Northeastern Calcareous Alps. Multivariate analysis allowed the recognition of distinct sampling site groups. Different groups of taxa were identified on the basis of their total frequencies of occurrence and frequency of co-occurrence. Several species were shown to have distributions restricted to particular groups of habitats. Habitat complexity, as indicated by taxon diversity and density of submersed vegetation, pH, conductivity, and temperature seem to be the principal components affecting community composition and distribution of single species in alpine waterbodies. Highest diversities were measured in limestone solution lakes and acid bog ponds on primary bedrock.  相似文献   

18.
External nutrient loading was reduced over the past decades as a measure for improving the water quality of eutrophic lakes in western Europe, and has since been accelerated by the adoption of the European Water Framework Directive (WFD) in 2000 (EC, 2000). A variety of eutrophication-related metrics have indicated that the response of biological communities to this decreased nutrient loading has been diverse. Phytoplankton, a major component of the pelagic community, often responded rapidly, whereas a significant delay was observed for submerged macrophytes colonizing littoral areas. In this study we tested whether assessment methods developed for phytoplankton and macrophytes in lakes during Germany's implementation of the WFD reflect this differential response. An assessment of 263 German lakes confirmed that a lower ecological state was recorded when based on the biological quality element (BQE) for macrophytes than the BQE for phytoplankton during the investigated period (2003–2012). On average, lakes had a moderate ecological status for both phytoplankton and macrophyte BQEs, but differences of up to three classes were observed in single cases. Long-term data were available for five lowland lakes subject to strong reductions in phosphorus loading. Their phytoplankton-based assessments indicated a constant improvement of the ecological status in parallel to decreasing water phosphorus concentrations. In contrast, macrophyte-based assessments indicated a 10–20 year delay in their ecological recovery following nutrient load reduction. This delay was confirmed by detailed data on the temporal development of macrophyte species diversity and maximum colonization depths of two lakes after nutrient load reduction. We conclude that the available WFD assessment methods for phytoplankton and macrophyte BQEs are suitable to track the differential response of pelagic and littoral areas to nutrient load reductions in German lakes.  相似文献   

19.
The planktonic community of 20 melt ponds on the McMurdo Ice Shelf was investigated to determine taxa abundance and diversity and the controlling environmental variables. Grazing rates were measured using fluorescent beads to examine trophic interactions between ciliates, bacteria and phytoplankton. The melt ponds contained a surprisingly varied planktonic community with relatively high abundance compared with Antarctic continental lakes. There was a clear distinction between small, productive ponds dominated by bactivorous small ciliates, hymenostomes and heterotrophic cryptophytes and the larger, less productive ponds where these taxa were less abundant. The benthic mats of cyanobacteria and diatoms were potentially a source of food for some ciliate species but the majority were bacterivores. The lack of large herbivorous ciliates, the heterotrophic capabilities of cryptophytes and the broad ecological tolerances contributed to a planktonic community dominated by cryptophytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号