首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 558 毫秒
1.
To assess whether raised bog restorationmeasures contribute to the conservation andrestoration of the fauna diversity,macroinvertebrate species assemblages werecompared between water bodies created byrewetting measures and water bodies whichhave not been subject to restorationmeasures, but are remnants offormer peat cuttings and trenches used forbuckwheat culture in the past.The restoration sites were inhabited bycharacteristic raised bog species and rarespecies, but their numbers were higher atthe remnant sites not affected byrestoration management. A considerablenumber of characteristic and rare faunaspecies were only found at the remnantsites. The remnant sites includedconsiderably more variation inmacroinvertebrate species assemblages andhad a higher cumulative species richness.The number of characteristicmacroinvertebrate species was not clearlyrelated to the presence of a characteristicraised bog vegetation. In restoration sitesnumbers of rare and characteristic speciesper site tended to increase with the timeelapsed after rewetting. However,restoration measures will not automaticallyresult in restoration of a more or lesscomplete macroinvertebrate speciesspectrum, as restoration measures have sofar resulted in habitats for only a limitednumber of the characteristic species.When planning restoration measures, it isrecommended to protect the populations ofrare and characteristic species present inthe area, as these populations may becomethe sources for colonization of rewettedsites. Safeguarding habitat diversityduring the restoration process andrestoration of different elements of thehabitat diversity of complete raised bogsystems will result in the characteristicfauna diversity being conserved andrestored more successfully.  相似文献   

2.
1. The effect of habitat structural features and physicochemical characteristics of the water on the composition and richness of fish assemblages in temporary ponds near streams were examined at three spatial scales: among ponds, among streams and between drainage basins, in a ‘terra‐firme’ (not subject to long‐term flooding) forest reserve in Central Amazonia. 2. The fish assemblage in temporary ponds was composed of subsets of 18 small‐bodied species widely distributed in the reserve. The assemblages had a nested subset structure, where smaller ponds contained subgroups of the species found in larger ponds. 3. Species composition and richness in temporary ponds were similar between drainage basins, although the fish assemblages in streams differed between basins. 4. Fish assemblage structure was influenced by local factors related to habitat structure, such as pond area and depth, canopy cover and hydroperiod. Physicochemical characteristics of the water in the ponds were similar between drainage basins and had little detectable effect on the structure of pond fish assemblages. 5. No correspondence was found between the composition, richness or abundance of fishes in the ponds and in stretches of the streams adjacent to the ponds. Therefore, it is not possible to predict the composition of these temporary pond fish assemblages from the fish assemblages found in adjacent streams.  相似文献   

3.
4.
Periphytic diatoms are potentially powerful indicators of environmental change in climatically‐sensitive high latitude regions. However, only a few studies have examined their taxonomic and ecological characteristics. We identified and enumerated diatom assemblages from sediment, rock, and moss habitats in 34 ultra‐oligotrophic and highly transparent lakes and ponds on Victoria Island, Arctic Canada. The similar limnological characteristics of the sites allowed us to examine the influence of habitat, independent of water chemistry, on the diatom assemblages. As is typical in shallow arctic water bodies, benthic taxa, including species of Achnanthes, Caloneis, Cymbella, Navicula, and Nitzschia, were most widely represented. Minor gradients in our measured environmental variables did not significantly explain any variance in diatom species, but there were marked differences in diatom assemblages among sites. Pond ephemerality seems to explain some diatom variation, because aerophilic taxa such as Achnanthes kryophila Petersen and A. marginulata Grunow were dominant in shallow sites that had undergone appreciable reductions in volume. We identified several taxa that exhibited strong habitat preferences to sediment, moss, or rock substrates and also found significant differences (P < 0.01) in diatom composition among the three habitats. In comparisons with three similar diatom surveys extending over 1200 km of latitude, we determined that surface sediment assemblages differed significantly (P < 0.001) among all regions examined. Diatom species diversity was inversely related to latitude, a result likely explained by differences in the lengths of growing seasons. These data contribute important ecological information on diatom assemblages in arctic regions and will aid in the interpretation of environmental changes in biomonitoring and paleolimnological studies.  相似文献   

5.
Diatoms are potentially the most important biomonitors of environmental change in high arctic lakes and ponds, but to date few autecological data are available. Because of the shallow nature of many of these water bodies, a large proportion of taxa are periphytic and planktonic diatoms are absent for the most part. By determining the microhabitat and substrate preferences of these benthic diatom taxa, the potential exists to infer past changes in available habitats from fossil diatom assemblages collected from sediment cores and ultimately to reconstruct past environmental and climatic changes responsible for these shifts in habitat availability. To refine our understanding of high arctic diatom habitat preference, the common diatom taxa found on submerged moss (bryophyte), sediment, and rock substrates from lakes and ponds on Bathurst Island, Nunavut, Canadian High Arctic were examined. The relationships among key limnological variables and the common taxa from each habitat were examined. Many diatom taxa exhibited varying degrees of microhabitat preference, with moss representing the more unique habitat. In addition, the following limnological variables significantly ( P ≤ 0.05) explained the species variance for each of the three substrates: Na + and total nitrogen for moss; total phosphorus (filtered) and pH for rock; and Fe3 + , total phosphorus (unfiltered), total nitrogen, temperature, and pH for sediment. These data can be used to help interpret monitoring and paleolimnological studies in this environmentally sensitive region.  相似文献   

6.
We studied variation in benthic macrocrustacean and insect assemblages in relation to spring habitat characteristics in six springs located in a single groundwater area in south-west Finland. We defined five habitat types in the studied springs according to water flow and benthic substrate characteristicsminerogenic brooks, organogenic brooks, helocrenes, floating moss carpets and limnocrene pools. Most studied invertebrate orders, as well as individual taxa, showed differences in relative abundances between the habitat types, but the most common taxa occurred in all springs and habitat types. The studied macroinvertebrates were most abundant in the moss carpet sites and least abundant in the pool sites, but the difference was not statistically significant. We did not observe significant differences in mean taxonomic richness per sample between habitat classes. The observed taxonomic richness in pooled samples of habitat classes was highest in moss carpet habitat and lowest in pool habitat, and the rarefied richness estimate was lowest in pool habitat. Benthic macrocrustacean and insect assemblages varied more between habitat types than between individual springs. In an Nonmetric Multidimensional Scaling ordination analysis, spring brook sites were separated from the moss carpet and pool sites, whereas helocrene sites were widely scattered among sites in other habitat classes. The strongest ecological gradients were related to water flow and the presence of minerogenic substrate, separating lentic and lotic habitats. Abundances of moss and coarse detritus accounted for most of the within-class variation. We identified several indicator species for minerogenic and organogenic brooks and for moss carpet and pool habitats, but none for the helocrenes. We found several occurrences of two crenobiont insect species considered threatened in Finland. We suggest that combined studies on macroinvertebrate and bryophyte assemblages would be a powerful approach in assessing the biodiversity of springs.  相似文献   

7.
Jersabek  C. D.  Brancelj  A.  Stoch  F.  Schabetsberger  R. 《Hydrobiologia》2001,(1):309-324
Copepod species richness, patterns of distribution and composition of assemblages were evaluated in high-altitude sites in the Eastern Alps. Diverse habitats were sampled in 160 lentic water bodies from different geologic areas, ranging from acid bog ponds to alkaline karst waters and from small temporary puddles to deep lakes. The altitudinal range comprised all mountainous regions from the montane (1290 m a.s.l.) to the alpine (2886 m a.s.l.) zone. Forty-four species were recorded, with the harpacticoids being the richest group. Although most species occupied a wide altitudinal range, some stenotopic mountain forms were restricted to alpine habitats. The most widespread taxa were Acanthocyclops vernalis, Eucyclops serrulatus, Bryocamptus rhaeticus, Arctodiaptomus alpinus and Cyclops abyssorum tatricus. All species found were listed along with notes on their distribution, ecology and patterns of coexistence. There was both a marked change in species composition and a decline in species richness from hardwater habitats in the Limestone Alps to softwater sites in the Central Alps. Copepod taxocoenoses were most diverse in montane limestone lakes and impoverished with increasing altitude. Copepods and sampling sites were ordinated using canonical correspondence analysis (CCA), and copepod assemblages were defined in relation to physical and chemical parameters, habitat type and presence/absence of planktivorous fish. Planktonic species were largely absent from lakes with introduced fish. Although calanoid associations were common, coexisting diaptomids were rare, suggesting a strong interspecific competition between these predominantly filter feeders. Most copepods found are common eurytopic or cold stenothermal, but some exhibit peculiar disjunct patterns of geographical distribution, and others are apparently restricted to the Alps. Some species are discussed in more detail from a zoogeographical point of view. A complete checklist of copepods recorded to date from high-altitude sites in the Eastern Alps is provided.  相似文献   

8.
SUMMARY 1. The effects of catchment urbanisation on water quality were examined for 30 streams (stratified into 15, 50 and 100 km2 ± 25% catchments) in the Etowah River basin, Georgia, U.S.A. We examined relationships between land cover (implying cover and use) in these catchments (e.g. urban, forest and agriculture) and macroinvertebrate assemblage attributes using several previously published indices to summarise macroinvertebrate response. Based on a priori predictions as to mechanisms of biotic impairment under changing land cover, additional measurements were made to assess geomorphology, hydrology and chemistry in each stream. 2. We found strong relationships between catchment land cover and stream biota. Taxon richness and other biotic indices that reflected good water quality were negatively related to urban land cover and positively related to forest land cover. Urban land cover alone explained 29–38% of the variation in some macroinvertebrate indices. Reduced water quality was detectable at c. >15% urban land cover. 3. Urban land cover correlated with a number of geomorphic variables such as stream bed sediment size (–) and total suspended solids (+) as well as a number of water chemistry variables including nitrogen and phosphorus concentrations (+), specific conductance (+) and turbidity (+). Biotic indices were better predicted by these reach scale variables than single, catchment scale land cover variables. Multiple regression models explained 69% of variation in total taxon richness and 78% of the variation in the Invertebrate Community Index (ICI) using phi variability, specific conductance and depth, and riffle phi, specific conductance and phi variability, respectively. 4. Indirect ordination analysis was used to describe assemblage and functional group changes among sites and corroborate which environmental variables were most important in driving differences in macroinvertebrate assemblages. The first axis in a non‐metric multidimensional scaling ordination was highly related to environmental variables (slope, specific conductance, phi variability; adj. R2=0.83) that were also important in our multiple regression models. 5. Catchment urbanisation resulted in less diverse and more tolerant stream macroinvertebrate assemblages via increased sediment transport, reduced stream bed sediment size and increased solutes. The biotic indices that were most sensitive to environmental variation were taxon richness, EPT richness and the ICI. Our results were largely consistent over the range in basin size we tested.  相似文献   

9.
Epiphytic and epipelic diatom assemblages were studied in relation to water chemistry and habitat character in lowland ponds of Koshi Tappu, Nepal. Epiphytic assemblages from different microhabitats, such as morphologically different plants, roots, stems, filamentous algae and decomposing leaves, within the same ponds were similar. Assemblage composition of epiphytic diatoms reflected gradients in water chemistry and habitat character of the pond with respect to pond vegetation and substratum type, bank profile and land use in the catchment. Epiphytic and epipelic assemblages responded to chemical gradients in the surface water, particularly concentrations of Ca, Mg and Na, but epipelic diatoms also indicated differences in SO4. Epipelic diatoms were also sensitive to interstitial water chemistry variations in PO4, Si, Ca and Mg. There were no relationships between species richness, diversity or evenness and gradients in water chemistry and habitat character. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
Soininen J  Heino J 《Protist》2007,158(2):181-191
We examined the relationship between average niche parameters and species richness of benthic diatom assemblages of boreal streams. We hypothesized that diverse assemblages should be typified by small average niche breadth of species, whereas low-diversity assemblages should be typified by broad average niche breadth. We also hypothesized that low-diversity sites should be dominated by either non-marginal species only or marginal species only, depending on the degree to which these sites could be categorized to range from environmentally typical sites to atypical sites. Niche breadth and niche position for each species were determined via Outlying Mean Index analysis. As hypothesized, we found that median niche parameters were significantly related to species richness. Median niche breadth showed both significant linear (R(2)=0.328, p<0.001) and unimodal (R(2)=0.354, p<0.001) relationship to species richness. The relationship between median niche position and species richness was best approximated by a unimodal model (R(2)=0.214, p=0.005). The underlying gradient in species richness was best accounted for by a regression model including moss cover, iron, and nitrogen, and explained 32% of variability in species richness. Our results showed that sites with high-diversity assemblages are likely to be occupied by specialists with a narrow niche breadth, whereas low diversity assemblages are dominated by generalists. Furthermore, the unimodal relationship between niche position and species richness suggested that species-poor sites may be typified by either non-marginal or marginal species.  相似文献   

11.
Habitat heterogeneity contributes to the maintenance of diversity, but the extent that landscape-scale rather than local-scale heterogeneity influences the diversity of soil invertebrates—species with small range sizes—is less clear. Using a Scottish habitat heterogeneity gradient we correlated Collembola and lumbricid worm species richness and abundance with different elements (forest cover, habitat richness and patchiness) and qualities (plant species richness, soil variables) of habitat heterogeneity, at landscape (1 km2) and local (up to 200 m2) scales. Soil fauna assemblages showed considerable turnover in species composition along this habitat heterogeneity gradient. Soil fauna species richness and turnover was greatest in landscapes that were a mosaic of habitats. Soil fauna diversity was hump-shaped along a gradient of forest cover, peaking where there was a mixture of forest and open habitats in the landscape. Landscape-scale habitat richness was positively correlated with lumbricid diversity, while Collembola and lumbricid abundances were negatively and positively related to landscape spatial patchiness. Furthermore, soil fauna diversity was positively correlated with plant diversity, which in turn peaked in the sites that were a mosaic of forest and open habitat patches. There was less evidence that local-scale habitat variables (habitat richness, tree cover, plant species richness, litter cover, soil pH, depth of organic horizon) affected soil fauna diversity: Collembola diversity was independent of all these measures, while lumbricid diversity positively and negatively correlated with vascular plant species richness and tree canopy density. Landscape-scale habitat heterogeneity affects soil diversity regardless of taxon, while the influence of habitat heterogeneity at local scales is dependent on taxon identity, and hence ecological traits, e.g. body size. Landscape-scale habitat heterogeneity by providing different niches and refuges, together with passive dispersal and population patch dynamics, positively contributes to soil faunal diversity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.
Species differ in their life cycle, habitat demands and dispersal capacity. Consequently different species or species groups may respond differently to restoration measures. To evaluate effects of restoration measures in raised bog remnants on aquatic microinvertebrates, species assemblages of Rotifera and microcrustaceans were sampled in 10 rewetted and 10 non-rewetted sites, situated in 7 Dutch raised bog remnants. A total of 129 species (Rotifera 108, Cladocera 15, Copepoda 6 species) were found. The species assemblages, total numbers of species and numbers of characteristic raised bog species did not differ between the 10 rewetted and 10 non-rewetted sites. The dominant pattern in the variation in microinvertebrate assemblages could be explained by the presence or absence of open water and variation in physico-chemical variables of surface water and organic matter. Furthermore, the species assemblages of water bodies situated in the same area were on average more similar to each other than to assemblages from other areas. These differences between areas may be due to differences in environmental conditions of water bodies, and possibly also to differences in the local species pool and the subsequent immigration sequence of species. We conclude that, in contrast to earlier findings on aquatic macroinvertebrates, populations of microinvertebrate species, including characteristic species, can either persist in the raised bog remnants during the process of rewetting or (re-)establish within a relatively short period of time (less than about 5 years).  相似文献   

14.
The purpose of this study was to consider the relative importance of several habitat variables in explaining the patterns in the structure of macroinvertebrate assemblages in open-water habitats, in relatively intact bogs and fens, which should inform conservation strategies. It was hypothesised that variables relating to the size of the water body would differentiate the communities and that some species would be unique to certain conditions. The macroinvertebrate communities from pools >100 m2, 10.1–100 m2 and Sphagnum hollows were characterised using sweep sampling for eight intact peatland sites across four bog types, and related to habitat variables including pool size, Sphagnum cover and hydrochemistry. Results showed community composition and structure differed significantly between deep, permanent pools and shallow, drought-sensitive Sphagnum hollows, with larger invertebrates, such as Odonates and Dytiscinae, rarely found in the hollows. Sphagnum cover accounted for a substantial amount of the variation in community composition. An examination of life-history strategies found species dependent on predictable conditions for juvenile development to be more abundant in pools. In contrast, taxa that could delay juvenile development until conditions were favourable were more abundant in Sphagnum hollows. These results highlight the importance of habitat heterogeneity in maintaining macroinvertebrate diversity in peatlands.  相似文献   

15.
This paper investigates species richness and species occupancy frequency distributions (SOFD) as well as patterns of abundance–occupancy relationship (SAOR) in Odonata (dragonflies and damselflies) in a subtropical area. A total of 82 species and 1983 individuals were noted from 73 permanent and temporal water bodies (lakes and ponds) in the Pampa biome in southern Brazil. Odonate species occupancy ranged from 1 to 54. There were few widely distributed generalist species and several specialist species with a restricted distribution. About 70% of the species occurred in <10% of the water bodies, yielding a surprisingly high number of rare species, often making up the majority of the communities. No difference in species richness was found between temporal and permanent water bodies. Both temporal and permanent water bodies had odonate assemblages that fitted best with the unimodal satellite SOFD pattern. It seems that unimodal satellite SOFD pattern frequently occurred in the aquatic habitats. The SAOR pattern was positive and did not differ between permanent and temporal water bodies. Our results are consistent with a niche‐based model rather than a metapopulation dynamic model.  相似文献   

16.
Fossil diatom assemblages preserved within the sedimentary record in Arctic lakes provide the potential to reconstruct past changes in important limnological variables. During the summers of 1992 and 1993, we examined previously unstudied freshwater ecosystems on Cornwallis Island, Arctic Canada, with the specific objectives of (1) documenting the limnology and modern diatom assemblages from this region, and (2) determining which environmental variables most influence diatom species distributions. The Cornwallis Island study sites displayed the least amount of variance in measured water chemistry variables in comparison to nearly all of our labs’ previous freshwater surveys in the Arctic. The small limnological gradients precluded the development of a statistically robust diatom inference model, but perhaps more importantly, allowed us to explore variations in diatom composition in the absence of marked variations in water chemistry. Diatom species turnover was minimal, with the most common diatom taxa being Achnanthidium minutissima, Nitzschia perminuta, N. frustulum, with lesser percent abundances of Chaemaepinnularia soehrensis, Navicula chiarae, Psammothidium marginulata, and A. kryophila. A small number of study sites differed from the majority with respect to water chemistry (e.g., coastal sites with high specific conductivities) and habitat availability (e.g., ephemeral ponds with extensive moss habitats), and these sites had markedly different diatom assemblages. These data reinforce previous observations that water chemistry and other climate-related factors are the primary environmental controls influencing diatom distributions at high latitudes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The aim of this study was to explore the environmental drivers of the aquatic macrophyte assemblage in a large, heterogeneous Spanish region covering a wide altitudinal range. We hypothesized that physicochemical variables affecting assemblages would differ depending on altitude. The study was conducted in 46 plateau ponds and 21 mountain ponds. Our results revealed a shift in hydrophyte assemblage composition and structure along an altitude and water chemistry gradient. However, altitude was not a good predictor of species richness. Conductivity and nutrient concentrations were higher in plateau ponds than in mountain ponds and binary logistic regression showed that conductivity was the best variable for differentiating between both pond types. Canonical correspondence analysis indicated that conductivity was the main factor responsible for the species distribution in both pond types. Generalized linear models showed that in plateau ponds, total phosphorus and mean depth were the strongest predictors of submerged macrophyte coverage, and no model could be created for richness. In the mountain ponds, conductivity and pond area explained coverage of submerged plants, while richness was related to pond area. Our results corroborated the hypothesis to be tested, and the conclusions obtained may be of relevance for making decisions on conservation and restoration.  相似文献   

18.
Abstract The relationship between the distribution of predators (fish, odonates and water beetles) and prey assemblages (amphibian larvae) was investigated in the tropical rainforest of central Amazonas, Brasil. The anuran community uses a variety of waterbodies for reproduction, ranging from streams and streamside ponds to isolated forest ponds. Predators in this system include fish in streams and streamside ponds, and invertebrates (primarily odonate naiads and beetles) in forest ponds. Tadpole species richness and assemblage structure were related to fish density and species richness. No relationships between tadpole assemblages and abiotic pond characteristics were detected. The presence offish explained much of the variation in both species composition and species richness within and among ponds. Some species of tadpole were consistently found to coexist with high densities of fish. Path analyses suggest that while fish have a strong direct effect on tadpole associations and species richness, they also have an indirect effect through invertebrate predators (odonate larvae and coleopteran beetles). Prey survival-strategies such as palatability and behaviour may explain how tadpole species composition is affected by predators at the community level. These findings suggest that the observed patterns of habitat use by larval anurans may be structured in response to the distribution of key predators (fish) in this system.  相似文献   

19.
Information on water mite assemblages from high elevation lentic biotopes is scant. A survey of 14 small Alpine lakes located between 1900 and 2400 m a.s.l. in Italy resulted in the discovery of 17 species of Hydrachnidia and a single species of freshwater Halacaridae. Arrenurus conicus and Lebertia tuberosa were the most widespread and abundant species; Lebertia sefvei, Lebertia rufipes, Oxus setosus, Panisus torrenticolus and Sperchon glandulosus were also widely distributed but relatively less abundant. Atractides fissus and Arrenurus conicus are recorded for the first time from Italy. In contrast to mid/low elevation lakes and ponds, water mite assemblages of alpine lakes are less diverse and are composed mainly of rheo- and crenobiontic taxa, most of which are cold-stenothermic. Typical standing water dwellers represented only a small fraction (23%) of the species sampled. A principal component analysis conducted on lake environmental variables resulted in a clear separation of the lakes mainly based on ionic contents, pH and temperature. Water mites seem to be less influenced by these factors than by temperature fluctuations and habitat stability and heterogeneity. We conclude with some considerations of the influence of abiotic and biotic factors on the altitudinal and latitudinal distribution pattern of water mites.  相似文献   

20.
Shallow lakes can occur in two alternative stable states, a clear-water state and a turbid state. This is associated with separate assemblages of fish, zooplankton and plants. Little is known about whether macroinvertebrate assemblages differ across both stable states. This study investigated this in a connected set of three turbid and three clear-water shallow lakes. To overcome confounding effects of differences in spatial structure of macrophytes in turbid and clear-water lakes, we sampled three microhabitats that occurred in both alternative stable states: open water, sago pondweed (Potamogeton pectinatus) and reed (Phragmites australis). Univariate analyses indicated no differences in the number of organisms, taxon richness or diversity between turbid and clear-water lakes. Multivariate analysis, however, showed significant differences in the macroinvertebrate community structure of both stable states. Nine taxa explained a significant amount of the variation between both lake types, of which seven preferred the clear-water lakes. The number of organisms and the taxon richness were higher in reed than in the other microhabitats, but diversity and evenness did not differ among the microhabitats. Multivariate analyses could separate all three microhabitats. Eight taxa, mainly detritus feeders and collector–gatherers, explained most of the variation in the data and preferred the reed microhabitat. The effects of stable state (6.8% explained variance) and microhabitat (13.1% explained variance) on the macroinvertebrate assemblages were largely independent from each other (1.5% shared variance). Although macroinvertebrates are not implemented in the initial theory of stable states, our results show clearly different assemblages across both stable states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号