首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 279 毫秒
1.
Sulfur Chemistry in Bacterial Leaching of Pyrite   总被引:7,自引:2,他引:5       下载免费PDF全文
In the case of pyrite bioleaching by Leptospirillum ferrooxidans, an organism without sulfur-oxidizing capacity, besides the production of tetra- and pentathionate, a considerable accumulation of elemental sulfur occurred. A similar result was obtained for chemical oxidation assays with acidic, sterile iron(III) ion-containing solutions. In the case of Thiobacillus ferrooxidans, only slight amounts of elemental sulfur were detectable because of the organism's capacity to oxidize sulfur compounds. In the course of oxidative, chemical pyrite degradation under alkaline conditions, the accumulation of tetrathionate, trithionate, and thiosulfate occurred. The data indicate that thiosulfate, trithionate, tetrathionate, and disulfane-monosulfonic acid are key intermediate sulfur compounds in oxidative pyrite degradation. A novel (cyclic) leaching mechanism is proposed which basically is indirect.  相似文献   

2.
In the oxidation of thiosulfate at pH 4.5 tetrathionate was formed as an intermediate, and the thiosulfate-oxidizing enzyme was active in acidic pH range in contrast to the enzyme of T. thioparus and Thiobacillus X.

Phosphate did not seem to affect the oxidation of thiosulfate but rather affect the conversion of tetrathionate. In the absence of phosphate, tetrathionate, which was produced from thiosulfate oxidation, seemed to accumulate without undergoing further conversion.

Quantitative oxidation of tetrathionate to sulfate was achieved with freshly harvested cells of T. thiooxidans; pH optimum for the oxidation of tetrathionate by the washed cells was 2~3, and the activity fell markedly at pH above 3.5.

Tetrathionate might be enzymatically dismuted to pentathionate and trithionate under anaerobic conditions with crude extracts of T. thiooxidans; pH optimum for the reaction was about 2.7 and the activity fell strikingly at pH 4.7. The formed trithionate might be further hydrolyzed to thiosulfate and sulfate.  相似文献   

3.
Thiosulfate oxidation and mixotrophic growth with succinate or methanol plus thiosulfate was examined in nutrient-limited mixotrophic condition for Methylobacterium oryzae CBMB20, which was recently characterized and reported as a novel species isolated from rice. Methylobacterium oryzae was able to utilize thiosulfate in the presence of sulfate. Thiosulfate oxidation increased the protein yield by 25% in mixotrophic medium containing 18.5 mmol.L-1 of sodium succinate and 20 mmol.L-1 of sodium thiosulfate on day 5. The respirometric study revealed that thiosulfate was the most preferable reduced inorganic sulfur source, followed by sulfur and sulfite. Thiosulfate was predominantly oxidized to sulfate and intermediate products of thiosulfate oxidation, such as tetrathionate, trithionate, polythionate, and sulfur, were not detected in spent medium. It indicated that bacterium use the non-S4 intermediate sulfur oxidation pathway for thiosulfate oxidation. Thiosulfate oxidation enzymes, such as rhodanese and sulfite oxidase activities appeared to be constitutively expressed, but activity increased during growth on thiosulfate. No thiosulfate oxidase (tetrathionate synthase) activity was detected.  相似文献   

4.
Thiomonas intermedia K12, a moderately acidophilic bacterium, which oxidises sulphur compounds, – exhibited the capability to use tetrathionate under oxic and anoxic conditions. Whereas under oxic conditions, the reduced sulphur tetrathionate compound was oxidised, under anoxic conditions, the organism disproportionated the compound. In both cases, trithionate and sulphate were produced but in different amounts. The results of the tetrathionate degradation experiments under oxic conditions pointed towards a cyclic degradation process with a transient formation of trithionate and sulphate as the final products, similar to the mechanism described for acidophilic sulphur compound oxidising bacteria. The results of the tetrathionate degradation experiments under anoxic conditions hinted to a partial reduction of tetrathionate to thiosulphate and a fractional oxidation to trithionate and sulphate. 4 M tetrathionate were converted to 6 M thiosulphate, 1 M trithionate, 1 M sulphate, and 8 M protons. The ΔG0' of this reaction was found to be –16.1 kJ per mol tetrathionate degraded. Additionally, Thiomonas intermedia K12 grew under anoxic conditions with tetrathionate as the sole energy source. The cell numbers increased from 105 as the start value to 107/mL at the end. Organic compounds, excluding traces of yeast extract, did not enhance growth. Therefore, it is proposed that tetrathionate disproportionation is a novel lithotrophic metabolism, which allowed Thiomonas intermedia K12 to survive changing conditions of oxygen supply in sulphur‐compound‐rich environments and even to grow during this reaction. The extensive sulphur compound analysis was carried out by ion‐pair chromatography.  相似文献   

5.
Bisulfite reductase was purified from extracts of Desulfovibrio vulgaris. By colorimetric analyses trithionate was found to be the major product, being formed in quantities 5 to 10 times more than two other detectable products, thiosulfate and sulfide. When [35S]bisulfite was used as the substrate, all three products were radioactively labeled. Degradation of [35S]trithionate showed that all of its sulfur atoms were equally labeled. In contrast, [35S]thiosulfate contained virtually all of the radioactivity in the sulfonate atom while the sulfane atom was unlabeled. These results, in conjunction with the funding that the sulfide was radioactive, led to the conclusion that bisulfite reductase reduced bisulfite to trithionate as the major product and sulfide as the minor product; the reason for the unusual labeling pattern found in the thiosulfate molecule was not apparent at this time. When bisulfite reductase was incubated with [35S]bisulfite in the presence of another protein fraction, FII, the thiosulfate formed from this reaction contained both sulfur atoms having equal radioactivity. This discovery, plus the fact that trithionate was not reduced to thiosulfate under identical conditions, led to the speculation that bisulfite could be reduced to thiosulfate by another pathway not involving trithionate.  相似文献   

6.
Abstract Neisseria gonorrhoeae is unable to grow with sulfate but can use thiosulfate as sole source of sulfur.
Thiosulfate sulfur transferase (TST) (rhodanese) activity was present in the cytoplasmic soluble fraction. In the same extract, thiosulfate reductase (TSR), trithionate reductase and tetrathionate reductase activities were also detected using hydrogen as electron donor in the presence of viologen dyes and hydrogenase from Desulfovibrio gigas .
The significance of and the possible relationship between these different activities are discussed.  相似文献   

7.
Reduced sulfur compound oxidation by Thiobacillus caldus.   总被引:7,自引:0,他引:7       下载免费PDF全文
The oxidation of reduced inorganic sulfur compounds was studied by using resting cells of the moderate thermophile Thiobacillus caldus strain KU. The oxygen consumption rate and total oxygen consumed were determined for the reduced sulfur compounds thiosulfate, tetrathionate, sulfur, sulfide, and sulfite in the absence and in the presence of inhibitors and uncouplers. The uncouplers 2,4-dinitrophenol and carbonyl cyanide m-chlorophenyl-hydrazone had no affect on the oxidation of thiosulfate, suggesting that thiosulfate is metabolized periplasmically. In contrast, the uncouplers completely inhibited the oxidation of tetrathionate, sulfide, sulfur, and sulfite, indicating that these compounds are metabolized in the cytoplasm of T. caldus KU. N-Ethylmaleimide inhibited the oxidation of tetrathionate and thiosulfate at the stage of elemental sulfur, while 2-heptyl-4-hydroxyquinoline-N-oxide stopped the oxidation of thiosulfate, tetrathionate, and elemental sulfur at the stage of sulfite. The following intermediates in the oxidation of the sulfur compounds were found by using uncouplers and inhibitors: thiosulfate was oxidized to tetrathionate, elemental sulfur was formed during the oxidation of tetrathionate and sulfide, and sulfite was found as an intermediate of tetrathionate and sulfur metabolism. On the basis of these data we propose a model for the metabolism of the reduced inorganic sulfur compounds by T. caldus KU.  相似文献   

8.
Process water and effluents from mining operations treating sulfide rich ores often contain considerable concentrations of metastable inorganic sulfur compounds such as thiosulfate and tetrathionate. These species may cause environmental problems if released to downstream recipients due to oxidation to sulfuric acid catalyzed by acidophilic microorganisms. Molecular phylogenic analysis of the tailings pond and recipient streams identified psychrotolerant and mesophilic inorganic sulfur compound oxidizing microorganisms. This suggested year round thiosalt oxidation occurs. Mining process waters may also contain inhibiting substances such as thiocyanate from cyanidation plants. However, toxicity experiments suggested their expected concentrations would not inhibit thiosalt oxidation by Acidithiobacillus ferrivorans SS3. A mixed culture from a permanently cold (4-6 °C) low pH environment was tested for thiosalt removal in a reactor design including a biogenerator and a main reactor containing a biofilm carrier. The biogenerator and main reactors were successively reduced in temperature to 5-6 °C when 43.8% of the chemical oxidation demand was removed. However, it was found that the oxidation of thiosulfate was not fully completed to sulfate since low residual concentrations of tetrathionate and trithionate were found in the discharge. This study has demonstrated the potential of using biotechnological solutions to remove inorganic sulfur compounds at 6°C and thus, reduce the impact of mining on the environment.  相似文献   

9.
Bisulfite was reduced to sulfide by cell extracts of Desulfotomaculum nigrificans. When trithionate was added to reaction mixtures reducing bisulfite, sulfide formation was inhibited with accumulation of thiosulfate. The thiosulfate reductase activity of cell extracts was found to be inhibited by trithionate. Trithionate alone was reduced to thiosulfate and purified bisulfite reductase (P582) was not affected by trithionate. It is concluded that the pathway for bisulfite reduction in Dt. nigrificans includes trithionate and thiosulfate as intermediate compounds.  相似文献   

10.
The reductase catalyzing the reduction of tetrathionate and thiosulphate in Proteus mirabilis is also concerned with the reduction of trithionate and the oxidation of sulphide. Tetrathionate is reduced to thiosulphate, thiosulphate to sulphite and sulphide, and trithionate is reduced to thiosulphate plus sulphite. The oxidation of sulphide in cell-free extracts proceeds most likely to polysulphanes or to elemental sulphur, depending on the conditions. The kinetics of the reduction of tetrathionate imply a simultaneous interaction of tetrathionate and thiosulphate on the reductase molecule. The reduction of tetrathionate is activated by thiosulphate causing a non-linear progress of this reaction. On the other hand the reduction of thiosulphate is completely blocked until tetrathionate has been depleted. The order of reduction in a mixture of thiosulphate and trithionate is imputed by the enzymatic constants of the reductase for both substrates. Therefore in cell-free extracts thiosulphate is reduced prior to trithionate and afterwards, when thiosulphate has been exhausted, trithionate and the produced thiosulphate are reduced simultaneously. Fast growing cells, however, reduce trithionate first since their intracellular redox potential is insulfficiently low to permit the reduction of any thiosulphate.  相似文献   

11.
Summary Prteus mirabilis can form four reductases after anaerobic growth: nitrate reductase A, chlorate reductase C, thiosulfate reductase and tetrathionate reductase. The last three enzymes are formed constitutively. Nitrate reductase is formed only after growth in the presence of nitrate, which causes repression of the formation of thiosulfate reductase, chlorate reductase C, tetrathionate reductase and hydrogenase. Formic dehydrogenase assayed with methylene blue as hydrogen acceptor is formed under all conditions.Two groups of chlorate resistant mutants were obtained. One group does not form the reductases and formic dehydrogenase. The second group does not form nitrate reductase, chlorate reductase and hydrogenase, but forms formic dehydrogenase and small amounts of formic hydrogenlyase after growth without hydrogen acceptor or after growth in the presence of thiosulfate or tetrathionate. Nitrate prevents the formation of formic dehydrogenase, thiosulfate reductase and tetrathionate reductase in this group of mutants. Only after growth with thiosulfate or tetrathionate the reductases for these compounds are formed. Anaerobic growth of the wild type in complex medium without a fermentable carbon source is strongly stimulated by the presence of nitrate. Tetrathionate and thiosulfate have no effect at all or only a small effect. The results show that in the presence of tetrathionate or thiosulfate the bacterial metabolism is fully anaerobic, as these cells also contain formic hydrogenlyase.  相似文献   

12.
Oxidation of reduced sulphur compounds by Thiobacillus acidophilus was studied with cell suspensions from heterotrophic and mixotrophic chemostat cultures. Maximum substrate-dependent oxygen uptake rates and affinities observed with cell suspensions from mixotrophic cultures were higher than with heterotrophically grown cells. ph Optima for oxidation of sulphur compounds fell within the pH range for growth (pH 2–5), except for sulphite oxidation (optimum at pH 5.5). During oxidation of sulphide by cell suspensions, intermediary sulphur was formed. Tetrathionate was formed as an intermediate during aerobic incubation with thiosulphate and trithionate. Whether or not sulphite is an inter-mediate during sulphur compound oxidation by T. acidophilus remains unclear. Experiments with anaerobic cell suspensions of T. acidophilus revealed that trithionate metabolism was initiated by a hydrolytic cleavage yielding thiosulphate and sulphate. A hydrolytic cleavage was also implicated in the metabolism of tetrathionate. After anaerobic incubation of T. acidophilus with tetrathionate, the substrate was completely converted to equimolar amounts of thiosulphate, sulphur and sulphate. Sulphide- and sulphite oxidation were partly inhibited by the protonophore uncouplers 2,4-dinitrophenol (DNP) and carbonyl cyanide m-chlorophenylhydrazone (CCCP) and by the sulfhydryl-binding agent N-ethylmaleimide (NEM). Oxidation of elemental sulphur was completely inhibited by these compounds. Oxidation of thiosulphate, tetrathionate and trithionate was only slightly affected. The possible localization of the different enzyme systems involved in sulphur compound oxidation by T. acidophilus is discussed.  相似文献   

13.
The formation of thionates (thiosulfate, trithionate and tetrahionate) during the reduction of sulfate or sulfite was studied with four marine and four freshwater strains of sulfate-reducing bacteria. Growing cultures of two strains of the freshwater species Desulfovibrio desulfuricans formed up to 400 M thiosulfate and 100 M trithionate under conditions of electron donor limitation. Tetrathionate was observed in lower concentrations of up to 30 M. Uncoupler-treated washed cells of the four freshwater strains formed thiosulfate and trithionate at low electron donor concentrations with sulfite in excess. In contrast, only one of four marine strains formed thionates. The freshwater strain Desulfobulbus propionicus transformed sulfite almost completely to thiosulfate and trithionate. The amounts produced increased with time, concentration of added sulfite and cell density. Tetrathionate was detected only occasionally and in low concentrations, and was probably formed by chemical oxidation of thiosulfate. The results confirm the diversity of the sulfite reduction pathways in sulfate-reducing bacteria, and suggest that thiosulfate and trithionate are normal by-products of sulfate reduction.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone  相似文献   

14.
Two heterotrophic bacteria that oxidized thiosulfate to tetrathionate were isolated from soil. The enzyme system in one of the isolates (C-3) was constitutive, but in the other isolate (A-50) it was induced by thiosulfate or tetrathionate. The apparent K(m) for oxygen for thiosulfate oxidation by A-50 was about 223 mum, but, for lactate oxidation by A-50 or thiosulfate oxidation by C-3, the apparent K(m) for oxygen was below 2 mm. The oxidation of thiosulfate by A-50 was first order with respect to oxygen from 230 mum. The rate of oxidation was greatest at pH 6.3 to 6.8 and at about 10 mm thiosulfate, and it was strongly inhibited by several metal-binding reagents. Extracts of induced A-50 reduced ferricyanide, endogenous cytochrome c, and mammalian cytochrome c in the presence of thiosulfate. A-50, once induced to oxidize thiosulfate, also reduced tetrathionate to thiosulfate in the presence of an electron donor such as lactate. The optimal pH for this reaction was at 8.5 to 9.5, and the reaction was first order with respect to tetrathionate. There was no correlation between the formation of the thiosulfate-oxidizing enzyme of A-50 and the incorporation of thiosulfate-sulfur into cell sulfur. Thiosulfate did not affect the growth rate or yield of A-50.  相似文献   

15.
The intermediary production of elemental sulfur during the microbial oxidation of reduced sulfur compounds has frequently been reported. Thiobacillus ferrooxidans, an acidophilic chemolithoautotroph, was found to produce an insoluble sulfur compound, primarily elemental sulfur, during the oxidation of thiosulfate, trithionate, tetrathionate and sulfide. This was confirmed by light and electron microscopy. Sulfur was produced from sulfide by an oxidative step, while the production from tetrathionate was initiated by a hydrolytic step, probably followed by a series of chemical reactions. The oxidation of intermediary sulfur was severely inhibited by sulfhydryl-binding reagents such as N-ethylmaleimide, by the addition of uncouplers or after freezing and thawing of the cells, which probably damaged the cell membrane. The mechanisms behind these inhibitions have not yet been clarified. Finally, it was observed that elemental sulfur oxidation by whole cells depended on the medium composition. The absence of sulfate or selenate reduced the sulfur oxidation rate.Non-standard abbreviations NEM N-ethylmaleimide - CCCP carbonyl cyanide m-chlorophenyl hydrazone  相似文献   

16.
The bisulfite reductase (P582) from Desulfotomaculum nigrificans was purified to homogeneity as judged by polyacrylamide gel electrophoresis. By colorimetric methods of analysis, the products of bisulfite reduction by this enzyme were determined to be trithionate, thiosulfate, and sulfide. Of these, trithionate was consistently found to be the major product, whereas the latter two were formed in lesser quantities. When [(35)S]bisulfite was incorporated as substrate, no labeled sulfide was detected. Furthermore, when trithionate and thiosulfate were isolated from reaction mixtures and chemically degraded, (35)S was found in all three sulfur atoms of trithionate; however, only the inner sulfur atom of thiosulfate was radioactive. From these data we conclude that the bisulfite reductase of D. nigrificans reduces bisulfite to trithionate and that thiosulfate and sulfide are endogenous side products of the reaction.  相似文献   

17.
Growth of Thiobacillus ferrooxidans in batch culture on 10 mM potassium tetrathionate was optimal at pH 2.5 (specific growth rate, 0.092 h-1). Oxygen electrode studies on resting cell suspensions showed that the apparent Km for tetrathionate oxidation (0.13 to 8.33 mM) was pH dependent, suggesting higher substrate affinity at higher pH. Conversely, oxidation rates were greatest at low pH. High substrate concentrations (7.7 to 77 mM) did not affect maximum oxidation rates at pH 3.0, but produced substrate inhibition at other pH values. Tetrathionate-grown cell suspensions also oxidized thiosulfate at pH 2.0 to 4.0. Apparent Km values (1.2 to 25 mM) were of the same order as for tetrathionate, but kinetics were complex. Continuous culture on growth-limiting tetrathionate at pH 2.5, followed by continuous culture on growth-limiting thiosulfate at pH 2.5, indicated true growth yield values (grams [dry weight] per gram-molecule of substrate) of 12.2 and 7.5, and maintenance coefficient values (millimoles of substrate per gram [dry weight) of organisms per hour) of 1.01 and 0.97 for tetrathionate and thiosulfate, respectively. Yield was increased on both media at low dilution rates by increase in CO2 supply. The apparent maintenance coefficient was lowered without affecting YG, suggesting better energy coupling in CO2-rich environments. Prolonged continuous cultivation on tetrathionate or thiosulfate did not affect the ability of the organism to grow subsequently in ferrous iron medium.  相似文献   

18.
Abstract Cell-free extracts of Thiobacillus acidophilus catalysed the stoichiometric conversion of tetrathionate to thiosulphate, sulphur and two protons. The pH optimum of the enzyme activity was 3.0 and its temperature optimum 40°C. The enzyme was unstable at 30 and 40°C, at which its activity decreased to zero within 100 and 20 h, respectively. Enzyme activity was not affected by incubation for 1 week on ice or by freezing and thawing of the extract. The K m for tetrathionate was 0.3 mM. Enzyme activity was stimulated by ammonium sulphate up to a concentration of 1M. The results indicate that trithionate hydrolase cannot account for the observed conversion of tetrathionate.  相似文献   

19.
利用工程改造过的肠道微生物进行无创、便宜便捷的肠道炎症检测、治疗可有效应用于医药行业。肠道炎症通常伴随着肠道中硫代硫酸盐和连四硫酸盐的增加,双组分系统ThsSR和TtrSR是两套分别检测这两种小分子的生物感受器系统。采用荧光蛋白作为指示剂需要复杂的测试仪器,不适用于家用检测环境,而肉眼可见的色素蛋白和有色小分子作为指示剂将可能扩大ThsSR和TtrSR的应用前景。两套系统分别被转入大肠杆菌EscherichiacoliTop10和益生菌E. coli Nissle 1917中,sfGFP信号表达效果证明了这两套系统可用。考虑实际应用,sfGFP被一系列色素蛋白和显色小分子替换,在E. coli Top10中,一系列色素蛋白和紫色杆菌素前体protoviolaceinic acid的显色效果明显,表明了该系统具有用于实际肠道炎症检测的可行性。结果表明,改进后的ThsSR和TtrSR系统能够针对不同浓度的肠道炎症标记物作出相应程度的反应,具备用于家庭环境人体肠道炎症检测的潜力。  相似文献   

20.
The effect of thiosulfate on dark assimilation of carbon dioxide in shallow marine environments was investigated in order to explain the recent discovery of bacterial thiosulfate oxidation in aerobic, open ocean seawater. The results demonstrate that the potential exists for microbial thiosulfate oxidation to increase both dark assimilation of carbon dioxide and the utilization of organic compounds in the sea. Thiosulfate-stimulated microbial activity may be caused not only by chemoautotrophic sulfur bacteria, but also by heterotrophic species which oxidize thiosulfate to tetrathionate. Measurements of dark assimilation of carbon dioxide made at different incubation times indicate that great care must be taken both in experimental procedure and in interpretation of results obtained with the dark assimilation technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号