首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Potassium (K) absorption and translocation in plants rely upon multiple K transporters for adapting varied K supply and saline conditions. Here, we report the expression patterns and physiological roles of OsHAK1, a member belonging to the KT/KUP/HAK gene family in rice (Oryza sativa L.). The expression of OsHAK1 is up‐regulated by K deficiency or salt stress in various tissues, particularly in the root and shoot apical meristem, the epidermises and steles of root, and vascular bundles of shoot. Both oshak1 knockout mutants in comparison to their respective Dongjin or Manan wild types showed a dramatic reduction in K concentration and stunted root and shoot growth. Knockout of OsHAK1 reduced the K absorption rate of unit root surface area by ~50–55 and ~30%, and total K uptake by ~80 and ~65% at 0.05–0.1 and 1 mm K supply level, respectively. The root net high‐affinity K uptake of oshak1 mutants was sensitive to salt stress but not to ammonium supply. Overexpression of OsHAK1 in rice increased K uptake and K/Na ratio. The positive relationship between K concentration and shoot biomass in the mutants suggests that OsHAK1 plays an essential role in K‐mediated rice growth and salt tolerance over low and high K concentration ranges.  相似文献   

2.
3.
The occurrence of radiocesium in food has raised sharp health concerns after nuclear accidents. Despite being present at low concentrations in contaminated soils (below μm ), cesium (Cs+) can be taken up by crops and transported to their edible parts. This plant capacity to take up Cs+ from low concentrations has notably affected the production of rice (Oryza sativa L.) in Japan after the nuclear accident at Fukushima in 2011. Several strategies have been put into practice to reduce Cs+ content in this crop species such as contaminated soil removal or adaptation of agricultural practices, including dedicated fertilizer management, with limited impact or pernicious side‐effects. Conversely, the development of biotechnological approaches aimed at reducing Cs+ accumulation in rice remain challenging. Here, we show that inactivation of the Cs+‐permeable K+ transporter OsHAK1 with the CRISPR‐Cas system dramatically reduced Cs+ uptake by rice plants. Cs+ uptake in rice roots and in transformed yeast cells that expressed OsHAK1 displayed very similar kinetics parameters. In rice, Cs+ uptake is dependent on two functional properties of OsHAK1: (i) a poor capacity of this system to discriminate between Cs+ and K+; and (ii) a high capacity to transport Cs+ from very low external concentrations that is likely to involve an active transport mechanism. In an experiment with a Fukushima soil highly contaminated with 137Cs+, plants lacking OsHAK1 function displayed strikingly reduced levels of 137Cs+ in roots and shoots. These results open stimulating perspectives to smartly produce safe food in regions contaminated by nuclear accidents.  相似文献   

4.
5.
6.
Salt is an important factor affecting the growth and development of soybean in saline soil. In this study, a novel soybean gene encoding a transporter (GmHKT1) was identified and its function analyzed using transgenic plants. GmHKT1 encoded a protein of 419 amino acids, with a potential molecular mass of 47.06 kDa and a predicted pI value of 8.59. Comparison of the genomic and cDNA sequences of GmHKT1 identified no intron. The deduced amino acid sequence of GmHKT1 showed 38–49% identity with other plant HKT‐like sequences. RT‐PCR analysis showed that the expression of GmHKT1 was upregulated by salt stress (150 mM NaCl) in roots and leaves but not in stems. Overexpression of GmHKT1 significantly enhanced the tolerance of transgenic tobacco plants to salt stress, compared with non‐transgenic plants. To investigate the role of GmHKT1 in K+ and Na+ transport, we compared K+ and Na+ accumulation in roots and shoots of wild‐type and transgenic tobacco plants. The results suggested that GmHKT1 is a transporter that affected K+ and Na+ transport in roots and shoots, and regulated Na+/K+ homeostasis in these organs. Our findings suggest that GmHKT1 plays an important role in response to salt stress and would be useful in engineering crop plants for enhanced tolerance to salt stress.  相似文献   

7.
The inward‐rectifying K+ channel AKT1 constitutes an important pathway for K+ acquisition in plant roots. In glycophytes, excessive accumulation of Na+ is accompanied by K+ deficiency under salt stress. However, in the succulent xerophyte Zygophyllum xanthoxylum, which exhibits excellent adaptability to adverse environments, K+ concentration remains at a relatively constant level despite increased levels of Na+ under salinity and drought conditions. In this study, the contribution of ZxAKT1 to maintaining K+ and Na+ homeostasis in Z. xanthoxylum was investigated. Expression of ZxAKT1 rescued the K+‐uptake‐defective phenotype of yeast strain CY162, suppressed the salt‐sensitive phenotype of yeast strain G19, and complemented the low‐K+‐sensitive phenotype of Arabidopsis akt1 mutant, indicating that ZxAKT1 functions as an inward‐rectifying K+ channel. ZxAKT1 was predominantly expressed in roots, and was induced under high concentrations of either KCl or NaCl. By using RNA interference technique, we found that ZxAKT1‐silenced plants exhibited stunted growth compared to wild‐type Z. xanthoxylum. Further experiments showed that ZxAKT1‐silenced plants exhibited a significant decline in net uptake of K+ and Na+, resulting in decreased concentrations of K+ and Na+, as compared to wild‐type Z. xanthoxylum grown under 50 mm NaCl. Compared with wild‐type, the expression levels of genes encoding several transporters/channels related to K+/Na+ homeostasis, including ZxSKOR, ZxNHX, ZxSOS1 and ZxHKT1;1, were reduced in various tissues of a ZxAKT1‐silenced line. These findings suggest that ZxAKT1 not only plays a crucial role in K+ uptake but also functions in modulating Na+ uptake and transport systems in Z. xanthoxylum, thereby affecting its normal growth.  相似文献   

8.
To explore the mechanisms of 5‐aminolevulinic acid (ALA)‐improved plant salt tolerance, strawberries (Fragaria × ananassa Duch. cv. ‘Benihoppe’) were treated with 10 mg l?1 ALA under 100 mmol l?1 NaCl stress. We found that the amount of Na+ increased in the roots but decreased in the leaves. Laser scanning confocal microscopy (LSCM) observations showed that ALA‐induced roots had more Na+ accumulation than NaCl alone. Measurement of the xylem sap revealed that ALA repressed Na+ concentrations to a large extent. The electron microprobe X‐ray assay also confirmed ALA‐induced Na+ retention in roots. qRT‐PCR showed that ALA upregulated the gene expressions of SOS1 (encoding a plasma membrane Na+/H+ antiporter), NHX1 (encoding a vacuolar Na+/H+ antiporter) and HKT1 (encoding a protein of high‐affinity K+ uptake), which are associated with Na+ exclusion in the roots, Na+ sequestration in vacuoles and Na+ unloading from the xylem vessels to the parenchyma cells, respectively. Furthermore, we found that ALA treatment reduced the H2O2 content in the leaves but increased it in the roots. The exogenous H2O2 promoted plant growth, increased root Na+ retention and stimulated the gene expressions of NHX1, SOS1 and HKT1. Diphenyleneiodonium (DPI), an inhibitor of H2O2 generation, suppressed the effects of ALA or H2O2 on Na+ retention, gene expressions and salt tolerance. Therefore, we propose that ALA induces H2O2 accumulation in roots, which mediates Na+ transporter gene expression and more Na+ retention in roots, thereby improving plant salt tolerance.  相似文献   

9.
10.
  • Excess salt affects about 955 million ha of arable land worldwide, and 49% of agricultural land is Zn‐deficient. Soil salinity and zinc deficiency can intensify plant abiotic stress. The mechanisms by which Zn can mitigate salinity effects on plant functions are not well understood.
  • We conducted an experiment to determine how Zn and salinity effects on rice plant retention of Zn, K+ and the salt ion Na+ affect chlorophyll formation, leaf cell membrane stability and grain yield. We examined the mechanisms of Zn nutrition in mitigating salinity stress by examining plant physiology and nutrition. We used native Zn‐deficient soils (control), four salinity (EC ) and Zn treatments – Zn 10 mg·kg?1 (Zn10), EC 5 dS ·m?1 (EC 5), Zn10+EC 5 and Zn15+EC 5, a coarse rice (KS ‐282) and a fine rice (Basmati‐515) in the study.
  • Our results showed that Zn alone (Zn10) significantly increased rice tolerance to salinity stress by promoting Zn/K+ retention, inhibiting plant Na+ uptake and enhancing leaf cell membrane stability and chlorophyll formation in both rice cultivars in native alkaline, Zn‐deficient soils (<  0.05). Further, under the salinity treatment (EC 5), Zn inputs (10–15 mg·kg?1) could also significantly promote rice plant Zn/K+ retention and reduce plant Na+ uptake, and thus increased leaf cell membrane stability and grain yield. Coarse rice was more salinity‐tolerant than fine rice, having significantly higher Zn/K+ nutrient retention.
  • The mechanistic basis of Zn nutrition in mitigating salinity impacts was through promoting plant Zn/K+ uptake and inhibiting plant Na+ uptake, which could result in increased plant physiological vigour, leaf cell membrane stability and rice productivity.
  相似文献   

11.
Seed germination is a complex trait determined by both quantitative trait loci (QTLs) and environmental factors and also their interactions. In this study, we mapped one major QTLqSE3 for seed germination and seedling establishment under salinity stress in rice. To understand the molecular basis of this QTL, we isolated qSE3 by map‐based cloning and found that it encodes a K+ transporter gene, OsHAK21. The expression of qSE3 was significantly upregulated by salinity stress in germinating seeds. Physiological analysis suggested that qSE3 significantly increased K+ and Na+ uptake in germinating seeds under salinity stress, resulting in increased abscisic acid (ABA) biosynthesis and activated ABA signaling responses. Furthermore, qSE3 significantly decreased the H2O2 level in germinating seeds under salinity stress. All of these seed physiological changes modulated by qSE3 might contribute to seed germination and seedling establishment under salinity stress. Based on analysis of single‐nucleotide polymorphism data of rice accessions, we identified a HAP3 haplotype of qSE3 that was positively correlated with seed germination under salinity stress. This study provides important insights into the roles of qSE3 in seed germination and seedling establishment under salinity stress and facilitates the practical use of qSE3 in rice breeding.  相似文献   

12.
In halophytic plants, the high-affinity potassium transporter HKT gene family can selectively uptake K+ in the presence of toxic concentrations of Na+. This has so far not been well examined in glycophytic crops. Here, we report the characterization of SbHKTI;4, a member of the HKT gene family from Sorghum bicolor. Upon Na+ stress, SbHKT1;4 expression was more strongly upregulated in salt-tolerant sorghum accession, correlating with a better balanced Na+/ K+ ratio and enhanced plant growth. Heterogeneous expression analyses in mutants of Saccharomyces cerevisiae and Arabidopsis thaliana indicated that overexpressing SbHKT1;4 resulted in hypersensitivity to Na+ stress, and such hypersensitivity could be alleviated with the supply of elevated levels of K+, implicating that SbHKT1;4 may mediate K+ uptake in the presence of excessive Na+. Further electrophysiological evidence demonstrated that SbHKT1;4 could transport Na+ and K+ when expressed in Xenopus laevis oocytes. The relevance of the finding that SbHKTI;4 functions to maintain optimal Na+/K+ balance under Na+ stress to the breeding of salt-tolerant glycophytic crops is discussed.  相似文献   

13.
To understand the mechanism of ion homeostasis in salt tolerant and sensitive plants, we isolated cDNAs for K+ transporter PhaHAK1-u and PhaHAK5-u from reed plants. PhaHAK1-u belongs to group I and PhaHAK5-u belongs to group IV by phylogenetic analysis, respectively. PhaHAK5-u is predicted to be a plasma membrane transporter, and shows high-affinity K+ transporter. Expression of PhaHAK5 was found in salt-sensitive reed plants, but not in any parts of salt-tolerant reed plants maintained under both control and K+ starvation conditions. Under the NaCl stress, the K+ uptake ability of the yeast strain expressing PhaHAK5-u was remarkably lower than that of the yeast strain expressing PhaHAK1-u, and PhaHAK5-u showed Na+ permeability. These results suggest that PhaHAK5 is one of the routes by which Na+ enters cells.  相似文献   

14.
Salt stress is a major environmental threat to meeting the food demands of an increasing global population. The identification and exploitation of salt adaption mechanisms in plants are therefore vital for crop breeding. We here define the rice mutant (sstm1) whose salt sensitivity was unambiguously assigned to a single T‐DNA insertion through segregational analysis following backcrossing to the wild type line. Insertion was within OsTSD2, which encoded a pectin methyltransferase. The sstm1 and allelic mutants, collectively known as tsd2, displayed higher content of Na+ and lower level of K+ in the shoot, which is likely to lead to reduced salt tolerance. Molecular analysis revealed reduced expression of the genes maintaining K+/Na+ homeostasis in tsd2, including OsHKT1;5, OsSOS1, and OsKAT1. Furthermore, OsTSD2 influenced ion distribution between the hull and the rice seed, which could improve food safety with heavy metal pollution. Amino acid levels tended to be increased in tsd2 mutants, implicating a role of pectin in the regulation of metabolism. Taken together, we have demonstrated an important facet of salt tolerance, which implicated OsTSD2‐mediated cell wall pectin modification as a key component that could be widely applied in crop science.  相似文献   

15.
16.
Salt stress is one of the most serious factors limiting the productivity of agricultural crops. Increasing evidence has demonstrated that vacuolar Na+/H+ antiporters play a crucial role in plant salt tolerance. In the present study, we expressed the Suaeda salsa vacuolar Na+/H+ antiporter SsNHX1 in transgenic rice to investigate whether this can increase the salt tolerance of rice, and to study how overexpression of this gene affected other salt-tolerant mechanisms. It was found that transgenic rice plants showed markedly enhanced tolerance to salt stress and to water deprivation compared with non-transgenic controls upon salt stress imposition under outdoor conditions. Measurements of ion levels indicated that K+, Ca2+ and Mg2+ contents were all higher in transgenic plants than in non-transformed controls. Furthermore, shoot V-ATPase hydrolytic activity was dramatically increased in transgenics compared to that of non-transformed controls under salt stress conditions. Physiological analysis also showed that the photosynthetic activity of the transformed plants was higher whereas the same plants had reduced reactive oxygen species generation. In addition, the soluble sugar content increased in the transgenics compared with that in non-transgenics. These results imply that up-regulation of a vacuolar Na+/H+ antiporter gene in transgenic rice might cause pleiotropic up-regulation of other salt-resistance-related mechanisms to improve salt tolerance.Fengyun Zhao and Zenglan Wang contributed equally to this work.  相似文献   

17.
NHX‐type antiporters in the tonoplast have been reported to increase the salt tolerance of various plants species, and are thought to mediate the compartmentation of Na+ in vacuoles. However, all isoforms characterized so far catalyze both Na+/H+ and K+/H+ exchange. Here, we show that AtNHX1 has a critical involvement in the subcellular partitioning of K+, which in turn affects plant K+ nutrition and Na+ tolerance. Transgenic tomato plants overexpressing AtNHX1 had larger K+ vacuolar pools in all growth conditions tested, but no consistent enhancement of Na+ accumulation was observed under salt stress. Plants overexpressing AtNHX1 have a greater capacity to retain intracellular K+ and to withstand salt‐shock. Under K+‐limiting conditions, greater K+ compartmentation in the vacuole occurred at the expense of the cytosolic K+ pool, which was lower in transgenic plants. This caused the early activation of the high‐affinity K+ uptake system, enhanced K+ uptake by roots, and increased the K+ content in plant tissues and the xylem sap of transformed plants. Our results strongly suggest that NHX proteins are likely candidates for the H+‐linked K+ transport that is thought to facilitate active K+ uptake at the tonoplast, and the partitioning of K+ between vacuole and cytosol.  相似文献   

18.
19.
Salinity tolerance levels and physiological changes were evaluated for twelve rice cultivars, including four white rice and eight black glutinous rice cultivars, during their seedling stage in response to salinity stress at 100 mM NaCl. All the rice cultivars evaluated showed an apparent decrease in growth characteristics and chlorophyll accumulation under salinity stress. By contrast an increase in proline, hydrogen peroxide, peroxidase (POX) activity and anthocyanins were observed for all cultivars. The K+/Na+ ratios evaluated for all rice cultivars were noted to be highly correlated with the salinity scores thus indicating that the K+/Na+ ratio serves as a reliable indicator of salt stress tolerance in rice. Principal component analysis (PCA) based on physiological salt tolerance indexes could clearly distinguish rice cultivars into 4 salt tolerance clusters. Noteworthy, in comparison to the salt-sensitive ones, rice cultivars that possessed higher degrees of salt tolerance displayed more enhanced activity of catalase (CAT), a smaller increase in anthocyanin, hydrogen peroxide and proline content but a smaller drop in the K+/Na+ ratio and chlorophyll accumulation.  相似文献   

20.
In saline soils, high levels of sodium (Na+) and chloride (Cl?) ions reduce root growth by inhibiting cell division and elongation, thereby impacting on crop yield. Soil salinity can lead to Na+ toxicity of plant cells, influencing the uptake and retention of other important ions [i.e. potassium (K+)] required for growth. However, measuring and quantifying soluble ions in their native, cellular environment is inherently difficult. Technologies that allow in situ profiling of plant tissues are fundamental for our understanding of abiotic stress responses and the development of tolerant crops. Here, we employ laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) to quantify Na, K and other elements [calcium (Ca), magnesium (Mg), sulphur (S), phosphorus (P), iron (Fe)] at high spatial resolution in the root growth zone of two genotypes of barley (Hordeum vulgare) that differ in salt‐tolerance, cv. Clipper (tolerant) and Sahara (sensitive). The data show that Na+ was excluded from the meristem and cell division zone, indicating that Na+ toxicity is not directly reducing cell division in the salt‐sensitive genotype, Sahara. Interestingly, in both genotypes, K+ was strongly correlated with Na+ concentration, in response to salt stress. In addition, we also show important genetic differences and salt‐specific changes in elemental composition in the root growth zone. These results show that LA‐ICP‐MS can be used for fine mapping of soluble ions (i.e. Na+ and K+) in plant tissues, providing insight into the link between Na+ toxicity and root growth responses to salt stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号