首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
Much progress has been made in our understanding of photoperiodic flowering of rice and the mechanisms underlying short-day (SD) promotion and long-day (LD) repression of floral induction. In this study, we identified and characterized the Ef7 gene, one of the rice orthologs of Arabidopsis EARLY FLOWERING 3 (ELF3). The ef7 mutant HS276, which was induced by γ-irradiation of the japonica rice cultivar 'Gimbozu', flowers late under both SD and LD conditions. Expression analyses of flowering time-related genes demonstrated that Ef7 negatively regulates the expression of Ghd7, which is a repressor of the photoperiodic control of rice flowering, and consequently up-regulates the expression of the downstream Ehd1 and FT-like genes under both SD and LD conditions. Genetic analyses with a non-functional Ghd7 allele provided further evidence that the delayed flowering of ef7 is mediated through the Ghd7 pathway. The analysis of light-induced expression of Ghd7 revealed that the ef7 mutant was more sensitive to red light than the wild-type plant, but the gate of Ghd7 expression was unchanged. Thus, our results show that Ef7 functions as a floral promoter by repressing Ghd7 expression under both SD and LD conditions.  相似文献   

5.
6.
7.
HvCO9 was characterized to elucidate the barley flowering control mechanisms and to investigate the functional diversification of the barley CONSTANS-like (CO-like) genes in flowering. HvCO9 was located on the same chromosome, 1HL, as Ppd-H2 (HvFT3), which is a positive regulator of short-day (SD) flowering. A phylogenetic analysis showed that HvCO9 was located on the same branch of the CO-like gene tree as rice Ghd7 and the barley and wheat VRN2 genes, which are all negative regulators of flowering. High level HvCO9 expressions were observed under SD conditions, whereas its expression levels were quite low under long-day (LD) conditions. HvCO9 expression correlated with HvFT1 and HvFT2 expression under SD conditions, although no clear effect of HvCO9 on HvFT3 expression, or vice versa, under SD conditions was observed. The over-expression of HvCO9 in rice plants produced a remarkable delay in flowering. In transgenic rice, the expression levels of the flowering-related Ehd1 gene, which is a target gene of Ghd7, and its downstream genes were suppressed, causing a delay in flowering. These results suggest that HvCO9 may act as a negative regulator of flowering under non-inductive SD conditions in barley; this activity is similar to that of rice Ghd7 under non-inductive LD conditions, but the functional targets of these genes may be different. Our results indicate that barley has developed its own pathways to control flowering by using homologous genes with modifications for the timing of expression. Further, it is hypothesized that each pathway may target different genes after gene duplication or species diversification.  相似文献   

8.
9.
Flowering in rice is influenced by not only endogenous factors that comprise an autonomous pathway, but also environmental effects, such as photoperiod, water availability, and temperature just before floral initiation. Recent molecular genetics studies have elucidated the functional roles of genes involved in the photoperiod pathway, e.g., photoreceptors, circadian clock components, and short-day (SD) promotion factors. Although these molecular players are well conserved between rice andArabidopsis, their actual genetic functions are distinct. This is exemplified byHd1 (aCO counterpart) and phytochromes, in particular, ricePHYA. Hd1 has a dual role in regulating flowering time and the expression ofHd3a (anFT counterpart) repression under long-day (LD) conditions while promotion under SDs. Models have been proposed to explain these photoperiod-dependent antagonistic activities. Some regulatory factors are present in only one of the model systems, e.g.,FLC inArabidopsis orEhd1 in rice. Furthermore, epistatic relationships vary among such flowering regulators asHd3a (FT), OsMADS50 (SOCT), andOsMADS14 (AP1). Further experiments to probe these differences will be essential to enlarging our understanding of the diversified flowering regulation mechanisms in rice.  相似文献   

10.
FLOWERING LOCUS T (FT), a florigen in Arabidopsis, plays critical roles in floral transition. Among 13 FT-like members in rice, OsFTL2 (Hd3a) and OsFTL3 (RFT1), two rice homologues of FT, have been well characterized to act as florigens to induce flowering under short-day (SD) and long-day (LD) conditions, respectively, but the functions of other rice FT-like members remain largely unclear. Here, we show that OsFTL12 plays an antagonistic function against Hd3a and RFT1 to modulate the heading date and plant architecture in rice. Unlike Hd3a and RFT1, OsFTL12 is not regulated by daylength and highly expressed in both SD and LD conditions, and delays the heading date under either SD or LD conditions. We further demonstrate that OsFTL12 interacts with GF14b and OsFD1, two key components of the florigen activation complex (FAC), to form the florigen repression complex (FRC) by competing with Hd3a for binding GF14b. Notably, OsFTL12-FRC can bind to the promoters of the floral identity genes OsMADS14 and OsMADS15 and suppress their expression. The osmads14 osmads15 double mutants could not develop panicles and showed erect leaves. Taken together, our results reveal that different FT-like members can fine-tune heading date and plant architecture by regulating the balance of FAC and FRC in rice.  相似文献   

11.
12.
J Zhao  X Huang  X Ouyang  W Chen  A Du  L Zhu  S Wang  XW Deng  S Li 《PloS one》2012,7(8):e43705
Arabidopsis thaliana EARLY FLOWERING 3 (ELF3) as a zeitnehmer (time taker) is responsible for generation of circadian rhythm and regulation of photoperiodic flowering. There are two orthologs (OsELF3-1 and OsELF3-2) of ELF3 in rice (Oryza sativa), but their roles have not yet been fully identified. Here, we performed a functional characterization of OsELF3-1 and revealed it plays a more predominant role than OsELF3-2 in rice heading. Our results suggest OsELF3-1 can affect rice circadian systems via positive regulation of OsLHY expression and negative regulation of OsPRR1, OsPRR37, OsPRR73 and OsPRR95 expression. In addition, OsELF3-1 is involved in blue light signaling by activating EARLY HEADING DATE 1 (Ehd1) expression to promote rice flowering under short-day (SD) conditions. Moreover, OsELF3-1 suppresses a flowering repressor GRAIN NUMBER, PLANT HEIGHT AND HEADING DATE 7 (Ghd7) to indirectly accelerate flowering under long-day (LD) conditions. Taken together, our results indicate OsELF3-1 is essential for circadian regulation and photoperiodic flowering in rice.  相似文献   

13.
LOV KELCH PROTEIN2 (LKP2), ZEITLUPE (ZTL)/LOV KELCH PROTEIN1 (LKP1) and FLAVIN‐BINDING KELCH REPEAT F‐BOX1 (FKF1) constitute a family of Arabidopsis F‐box proteins that regulate the circadian clock. Over‐expression of LKP2 or ZTL causes arrhythmicity of multiple clock outputs under constant light and in constant darkness. Here, we show the significance of LKP2 and ZTL in the photoperiodic control of flowering time in Arabidopsis. In plants over‐expressing LKP2, CO and FT expression was down‐regulated under long‐day conditions. LKP2 and ZTL physically interacted with FKF1, which was recruited from the nucleus into cytosolic speckles. LKP2 and ZTL inhibited the interaction of FKF1 with CYCLING DOF FACTOR 1, a ubiquitination substrate for FKF1 that is localized in the nucleus. The Kelch repeat regions of LKP2 and ZTL were sufficient for their physical interaction with FKF1 and translocation of FKF1 to the cytoplasm. Over‐expression of LKP2 Kelch repeats induced late flowering under long‐day conditions. lkp2 ztl double mutant plants flowered earlier than wild‐type plants under short‐day (non‐inductive) conditions, and both CO and FT expression levels were up‐regulated in the double mutant plants. The early flowering of lkp2 ztl was dependent on FKF1. LKP2, ZTL or both affected the accumulation of FKF1 protein during the early light period. These results indicate that an important role of LKP2 and ZTL in the photoperiodic pathway is repression of flowering under non‐inductive conditions, and this is dependent on FKF1.  相似文献   

14.
15.
16.
《遗传学报》2022,49(5):437-447
Heading date determines the seasonal and regional adaptation of rice (Oryza sativa L.) varieties and is mainly controlled by photoperiod sensitivity (PS). The core heading date genes Hd1, Ghd7, DTH8, and PRR37 act synergistically in regulating the PS. In this study, we systematically analyze the heading date, PS, and agronomic traits of eight homozygous lines with various combinations of Hd1, Ghd7, and DTH8 alleles in the prr37 background under long-day (LD) and short-day (SD) conditions, respectively. We find that Hd1 alone promotes heading, regardless of the day length. However, under LDs, Hd1 suppresses flowering, in coordination with functional Ghd7 or with Ghd7 and DTH8. These loci cooperate to negatively regulate the Ehd1-Hd3a/RFT1 pathway and delay heading. Under SDs, Hd1 competes with various heading suppressors to promote heading. Therefore, the dual function of Hd1 is vital for PS. The lines carrying Hd1 alone show reduced plant height with fewer primary and secondary branches in panicles. Lines carrying Ghd7 and DTH8 (with hd1) show delayed heading and improve agronomic traits. Overall, our results reveal the regulation of rice PS flowering by the core heading date genes and their effects on agronomic traits, providing valuable information for the selection of rice varieties for adaptation to different light and temperature conditions.  相似文献   

17.
18.
Switchgrass (Panicum virgatum L.), a perennial warm season bunchgrass native to North America, has been a target in the U.S. as a renewable bioenergy crop because of its ability to produce moderate to high biomass yield on marginal soils. Delaying flowering can increase vegetative biomass production by allowing prolonged growth before switching to the reproductive phase. Despite the identification of flowering time as a biomass trait in switchgrass, the molecular regulatory factors involved in controlling floral transition are poorly understood. Here we identified PvFT1, PvAPL1‐3 and PvSL1, 2 as key flowering regulators required from floral transition initiation to development of floral organs. PvFT1 expression in leaves is developmentally regulated peaking at the time of floral transition, and diurnally regulated with peak at approximately 2 h into the dark period. Ectopic expression of PvFT1 in Arabidopsis, Brachypodium and switchgrass led to extremely early flowering, and activation of FT downstream target genes, confirming that it is a strong activator of flowering in switchgrass. Ectopic expression of PvAPL1‐3 and PvSL1, 2 in Arabidopsis also activated early flowering with distinct floral organ phenotypes. Our results suggest that switchgrass has conserved flowering pathway regulators similar to Arabidopsis and rice.  相似文献   

19.
The circadian clock is an internal timing mechanism that allows plants to make developmental decisions in accordance with environmental conditions. In model plants, circadian clock‐associated gigantea (gi) genes are directly involved in control of growth and developmental transitions. The maize gigantea1 (gi1) gene is the more highly expressed of the two gi homeologs, and its function is uncharacterized. To understand the role of gi1 in the regulatory networks of the maize circadian clock system, gi1 mutants were evaluated for changes in flowering time, phase change and growth control. When grown in long‐day (LD) photoperiods, gi1 mutants flowered earlier than non‐mutant plants, but this difference was not apparent in short‐day (SD) photoperiods. Therefore, gi1 participates in a pathway that suppresses flowering in LD photoperiods, but not in SD. Part of the underlying cause of early flowering was up‐regulated expression of the FT‐like floral activator gene zea mays centroradialis8 (zcn8) and the CONSTANSlike flowering regulatory gene constans of zea mays1 (conz1). gi1 mutants also underwent vegetative phase change earlier and grew taller than non‐mutant plants. These findings indicate gi1 has a repressive function in multiple regulatory pathways that govern maize growth and development.  相似文献   

20.
Floral transition from the vegetative to the reproductive growth phase is a major change in the plant life cycle and a key factor in reproductive success. In rice (Oryza sativa L.), a facultative short-day plant, numerous flowering time and flower formation genes that control floral transition have been identified and their physiological effects and biochemical functions have been clarified. In the present study, we used a Se14-deficient mutant line (HS112) and other flowering mutant lines to investigate the photoperiodic response, chromosomal location and function in the photoperiod sensitivity of the Se14 gene. We also studied the interactive effects of this locus with other crucial flowering time genes. We found that Se14 is independent of the known photoperiod-sensitive genes, such as Hd1 and Ghd7, and is identical to Os03g0151300, which encodes a Jumonji C (JmjC) domain-containing protein. Expression analysis revealed that the expressions of RFT1, a floral initiator known as a “florigen-like gene”, and Ehd1 were up-regulated in HS112, whereas this up-regulation was not observed in the original variety of ‘Gimbozu’. ChIP assays of the methylation states of histone H3 at lysine 4 (H3K4) revealed that the trimethylated H3K4 in the promoter region of the RFT1 chromatin was significantly increased in HS112. We conclude that Se14 is a novel photoperiod-sensitivity gene that has a suppressive effect on floral transition (flowering time) under long day-length conditions through the modification of chromatin structure by H3K4me3 demethylation in the promoter region of RFT1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号