首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40144篇
  免费   3460篇
  国内免费   2236篇
  2023年   419篇
  2022年   456篇
  2021年   1583篇
  2020年   1228篇
  2019年   1489篇
  2018年   1368篇
  2017年   1081篇
  2016年   1575篇
  2015年   2404篇
  2014年   2815篇
  2013年   3069篇
  2012年   3583篇
  2011年   3394篇
  2010年   1935篇
  2009年   1793篇
  2008年   2088篇
  2007年   1879篇
  2006年   1607篇
  2005年   1423篇
  2004年   1200篇
  2003年   1055篇
  2002年   902篇
  2001年   847篇
  2000年   734篇
  1999年   708篇
  1998年   417篇
  1997年   441篇
  1996年   412篇
  1995年   371篇
  1994年   362篇
  1993年   298篇
  1992年   423篇
  1991年   363篇
  1990年   316篇
  1989年   230篇
  1988年   227篇
  1987年   184篇
  1986年   127篇
  1985年   165篇
  1984年   109篇
  1983年   93篇
  1982年   65篇
  1981年   50篇
  1980年   43篇
  1979年   64篇
  1978年   66篇
  1977年   46篇
  1976年   48篇
  1975年   40篇
  1973年   48篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
3.
ObjectiveWe investigated whether glutamate, NMDA receptors, and eukaryote elongation factor-2 kinase (eEF-2K)/eEF-2 regulate P-glycoprotein expression, and the effects of the eEF-2K inhibitor NH125 on the expression of P-glycoprotein in rat brain microvessel endothelial cells (RBMECs).MethodsCortex was obtained from newborn Wistar rat brains. After surface vessels and meninges were removed, the pellet containing microvessels was resuspended and incubated at 37°C in culture medium. Cell viability was assessed by the MTT assay. RBMECs were identified by immunohistochemistry with anti-vWF. P-glycoprotein, phospho-eEF-2, and eEF-2 expression were determined by western blot analysis. Mdr1a gene expression was analyzed by RT-PCR.ResultsMdr1a mRNA, P-glycoprotein and phospho-eEF-2 expression increased in L-glutamate stimulated RBMECs. P-glycoprotein and phospho-eEF-2 expression were down-regulated after NH125 treatment in L-glutamate stimulated RBMECs.ConclusionseEF-2K/eEF-2 should have played an important role in the regulation of P-glycoprotein expression in RBMECs. eEF-2K inhibitor NH125 could serve as an efficacious anti-multidrug resistant agent.  相似文献   
4.
Neonatal hypoxic-ischemic brain damage (HIBD) is one of the leading causes of neonatal mortality and permanent neurological disability worldwide and the effective treatment strategies are not yet available. It has been demonstrated that Chitosan oligosaccharide (COS) exerts protective effect in vitro ischemic brain injury. However, no information is available on possible effects of COS on neonatal HIBD. To investigate the hypothesis of the potential neuroprotective effect of COS on the brain injury due to HIBD, 7-day-old Sprague–Dawley rats were treated with left carotid artery ligation followed by exposure to 8% oxygen (balanced with nitrogen) for 2.5 h at 37?°C. After COS treatment, the cerebral damage was measured by behavior tasks, 2,3,5-triphenyltetrazolium chloride(TTC), Hematoxyline-Eosin(HE), Nissl and Fluoro-Jade B(FJB)staining. In addition, the oxidative stress were assayed with ipsilateral hemisphere homogenates. Immunofluorescence staining were used to examine the activation of the astrocyte and microglia. Expression of inflammatory-related proteins were analyzed by western-blot analysis. In this study we found that administration of COS ameliorated early neurological reflex behavior, significantly reduce brain infarct volume and attenuated neuronal cell injury and degeneration. Furthermore, COS markedly decreased the level of MDA, lactic acid and increased SOD, GSH-Px and T-AOC. COS attenuated hypoxic-ischemic induced up-regulation of expressions of interleukin-1β (IL-1β), tumor necrosis factor alpha (TNF-α), meanwhile it dramatically increased the interleukin-10 (IL-10). These results suggest that COS exerts neuroprotection on hypoxic-ischemic brain damage in neonatal rats, it implies COS might be a potential therapeutic for the treatment of HIBD.  相似文献   
5.
This study investigated the effects of high-intensity ultrasound and glycosylation on the structural and interfacial properties of the Maillard reaction conjugates of buckwheat protein isolate (BPI). The covalent attachment of dextran to BPI was confirmed by examination of the Fourier-transform infrared spectra. Emulsifying properties of the conjugates obtained by ultrasound treatment were improved as compared to those obtained by classical heating. Structural feature analyses suggested that conjugates obtained by ultrasound treatment had less α-helix and more random coil, higher surface hydrophobicity and less compact tertiary structure as compared to those obtained by classical heating. The surface activity measurement revealed that the BPI–dextran conjugates obtained by ultrasound treatment were closely packed and that each molecule occupied a small area of the interface. Combination of ultrasonic treatment and glycosylation was proved to be an efficient way to develop new stabilizers and thickening agents for food in this study.  相似文献   
6.
7.
Hepatitis B virus (HBV) pre-S2 mutant can induce hepatocellular carcinoma (HCC) via the induction of endoplasmic reticulum stress to activate mammalian target of rapamycin (MTOR) signaling. The association of metabolic syndrome with HBV-related HCC raises the possibility that pre-S2 mutant-induced MTOR activation may drive the development of metabolic disorders to promote tumorigenesis in chronic HBV infection. To address this issue, glucose metabolism and gene expression profiles were analyzed in transgenic mice livers harboring pre-S2 mutant and in an in vitro culture system. The pre-S2 mutant transgenic HCCs showed glycogen depletion. The pre-S2 mutant initiated an MTOR-dependent glycolytic pathway, involving the eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1), Yin Yang 1 (YY1), and myelocytomatosis oncogene (MYC) to activate the solute carrier family 2 (facilitated glucose transporter), member 1 (SLC2A1), contributing to aberrant glucose uptake and lactate production at the advanced stage of pre-S2 mutant transgenic tumorigenesis. Such a glycolysis-associated MTOR signal cascade was validated in human HBV-related HCC tissues and shown to mediate the inhibitory effect of a model of combined resveratrol and silymarin product on tumor growth. Our results provide the mechanism of pre-S2 mutant-induced MTOR activation in the metabolic switch in HBV tumorigenesis. Chemoprevention can be designed along this line to prevent HCC development in high-risk HBV carriers.  相似文献   
8.
Luteolin and apigenin are dietary flavones and exhibit a broad spectrum of biological activities including antioxidant, anti-inflammatory, anti-cancer and neuroprotective effects. The lipid peroxidation product 4-hydroxy-2-nonenal (4-HNE) has been implicated as a causative agent in the development of neurodegenerative disorders. This study investigates the cytoprotective effects of luteolin and apigenin against 4-HNE-mediated cytotoxicity in neuronal-like catecholaminergic PC12 cells. Both flavones restored cell viability and repressed caspase-3 and PARP-1 activation in 4-HNE-treated cells. Luteolin also mitigated 4-HNE-mediated LC3 conversion and reactive oxygen species (ROS) production. Luteolin and apigenin up-regulated 4-HNE-mediated unfolded protein response (UPR), leading to an increase in endoplasmic reticulum chaperone GRP78 and decrease in the expression of UPR-targeted pro-apoptotic genes. They also induced the expression of Nrf2-targeted HO-1 and xCT in the absence of 4-HNE, but counteracted their expression in the presence of 4-HNE. Moreover, we found that JNK and p38 MAPK inhibitors significantly antagonized the increase in cell viability induced by luteolin and apigenin. Consistently, enhanced phosphorylation of JNK and p38 MAPK was observed in luteolin- and apigenin-treated cells. In conclusion, this result shows that luteolin and apigenin activate MAPK and Nrf2 signaling, which elicit adaptive cellular stress response pathways, restore 4-HNE-induced ER homeostasis and inhibit cytotoxicity. Luteolin exerts a stronger cytoprotective effect than apigenin possibly due to its higher MAPK, Nrf2 and UPR activation, and ROS scavenging activity.  相似文献   
9.
10.
Infection with the human gammaherpesviruses, Epstein-Barr virus (EBV) and Kaposi''s sarcoma-associated herpesvirus (KSHV), is associated with several cancers. During lytic replication of herpesviruses, viral genes are expressed in an ordered cascade. However, the mechanism by which late gene expression is regulated has not been well characterized in gammaherpesviruses. In this study, we have investigated the cis element that mediates late gene expression during de novo lytic infection with murine gammaherpesvirus 68 (MHV-68). A reporter system was established and used to assess the activity of viral late gene promoters upon infection with MHV-68. It was found that the viral origin of lytic replication, orilyt, must be on the reporter plasmid to support activation of the late gene promoter. Furthermore, the DNA sequence required for the activation of late gene promoters was mapped to a core element containing a distinct TATT box and its neighboring sequences. The critical nucleotides of the TATT box region were determined by systematic mutagenesis in the reporter system, and the significance of these nucleotides was confirmed in the context of the viral genome. In addition, EBV and KSHV late gene core promoters could be activated by MHV-68 lytic replication, indicating that the mechanisms controlling late gene expression are conserved among gammaherpesviruses. Therefore, our results on MHV-68 establish a solid foundation for mechanistic studies of late gene regulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号