首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Vemurafenib and dabrafenib block MEK‐ERK1/2 signaling and cause tumor regression in the majority of advanced‐stage BRAFV600E melanoma patients; however, acquired resistance and paradoxical signaling have driven efforts for more potent and selective RAF inhibitors. Next‐generation RAF inhibitors, such as PLX7904 (PB04), effectively inhibit RAF signaling in BRAFV600E melanoma cells without paradoxical effects in wild‐type cells. Furthermore, PLX7904 blocks the growth of vemurafenib‐resistant BRAFV600E cells that express mutant NRAS. Acquired resistance to vemurafenib and dabrafenib is also frequently driven by expression of mutation BRAF splice variants; thus, we tested the effects of PLX7904 and its clinical analog, PLX8394 (PB03), in BRAFV600E splice variant‐mediated vemurafenib‐resistant cells. We show that paradox‐breaker RAF inhibitors potently block MEK‐ERK1/2 signaling, G1/S cell cycle events, survival and growth of vemurafenib/PLX4720‐resistant cells harboring distinct BRAFV600E splice variants. These data support the further investigation of paradox‐breaker RAF inhibitors as a second‐line treatment option for patients failing on vemurafenib or dabrafenib.  相似文献   

2.
The vascular endothelial growth factor receptor‐1 (VEGFR‐1) is a tyrosine kinase receptor frequently expressed in melanoma. Its activation by VEGF‐A or placental growth factor (PlGF) promotes tumour cell survival, migration and invasiveness. Moreover, VEGFR‐1 stimulation contributes to pathological angiogenesis and induces recruitment of tumour‐associated macrophages. Since melanoma acquired resistance to BRAF inhibitors (BRAFi) has been associated with activation of pro‐angiogenic pathways, we have investigated VEGFR‐1 involvement in vemurafenib resistance. Results indicate that human melanoma cells rendered resistant to vemurafenib secrete greater amounts of VEGF‐A and express higher VEGFR‐1 levels compared with their BRAFi‐sensitive counterparts. Transient VEGFR‐1 silencing in susceptible melanoma cells delays resistance development, whereas in resistant cells it increases sensitivity to the BRAFi. Consistently, enforced VEGFR‐1 expression, by stable gene transfection in receptor‐negative melanoma cells, markedly reduces sensitivity to vemurafenib. Moreover, melanoma cells expressing VEGFR‐1 are more invasive than VEGFR‐1 deficient cells and receptor blockade by a specific monoclonal antibody (D16F7 mAb) reduces extracellular matrix invasion triggered by VEGF‐A and PlGF. These data suggest that VEGFR‐1 up‐regulation might contribute to melanoma progression and spreading after acquisition of a drug‐resistant phenotype. Thus, VEGFR‐1 inhibition with D16F7 mAb might be a suitable adjunct therapy for VEGFR‐1 positive tumours with acquired resistance to vemurafenib.  相似文献   

3.
We investigated the importance of the insulin‐like growth factor‐1 receptor (IGF‐1R) in hepatic metastases of uveal melanoma. The expression pattern of IGF‐1R in archival tissue samples of hepatic metastasis from 24 patients was analyzed by immunohistochemistry. All the samples of hepatic metastases stained positive for IGF‐1R. To investigate the biological role of IGF‐1R on the growth of metastatic uveal melanoma, a long‐term cell line obtained from a hepatic metastasis (TJU‐UM001) was evaluated. TJU‐UM001 expressed cell surface IGF‐1R (>90%) and proliferated in response to exogenous and endogenous insulin‐like growth factor‐1 (IGF‐1). Correlatively, anti‐IGF‐1R antibody completely blocked IGF‐1‐induced growth of TJU‐UM001 cells. IGF‐1 preferentially induced phosphorylation of Akt (S473) in quiescent TJU‐UM001 cells, and this was blocked by anti‐IGF‐1R antibody. This study suggests that autocrine and paracrine mechanisms underlie IGF‐1‐induced growth of metastatic uveal melanoma and underscore the potential benefit of IGF‐1 or IGF‐1R antagonism in treatment for metastatic uveal melanoma.  相似文献   

4.
The RAF inhibitor vemurafenib achieves remarkable clinical responses in mutant BRAF melanoma patients. However, vemurafenib is burdened by acquired drug resistance and by the side effects associated with its paradoxical activation of the ERK1/2 pathway in wild‐type BRAF cells. This paradoxical effect has driven the development of a new class of RAF inhibitors. Here, we tested one of these selective, non‐paradox‐inducing RAF inhibitors termed paradox‐breaker‐04 (PB04) or PLX7904. Consistent with its design, PB04 is able to efficiently inhibit activation of ERK1/2 in mutant BRAF melanoma cells but does not hyperactivate ERK1/2 in mutant RAS‐expressing cells. Importantly, PB04 inhibited ERK1/2 phosphorylation in mutant BRAF melanoma cells with acquired resistance to vemurafenib/PLX4720 that is mediated by a secondary mutation in NRAS. Consistent with ERK1/2 reactivation driving the re‐acquisition of malignant properties, PB04 promoted apoptosis and inhibited entry into S phase and anchorage‐independent growth in mutant N‐RAS‐mediated vemurafenib‐resistant cells. These data indicate that paradox‐breaker RAF inhibitors may be clinically effective as a second‐line option in a cohort of acquired vemurafenib‐resistant patients.  相似文献   

5.
6.
Malignant melanomas are amongst the most aggressive cancers. BRAF Inhibitors have exhibited therapeutic effects against BRAF‐mutant melanoma. In continuation of our earlier studies on anti‐melanoma agents based on 1H‐pyrazole skeleton, two sets of novel compounds that include 1H‐pyrazole‐4‐amines FA 1 – FA13 and corresponding urea derivatives FN 1 – FN13 have been synthesized and evaluated for their BRAFV600E inhibitory and antiproliferation activities. Compound FN 10 displayed the most potent biological activity against BRAFV600E (IC50 = 0.066 μm ) and the A375 human melanoma cell line (GI50 = 0.81 μm ), which was comparable to the positive control vemurafenib, and more potent than our previously reported 1H‐pyrazole‐3‐amines and their urea derivatives. The results of SAR studies and molecular docking can guide further optimization and may help to improve potency of these pyrazole‐based anti‐melanoma agents.  相似文献   

7.
8.
Uveal melanoma (UM) has a high mortality rate due to liver metastasis. The insulin‐like growth factor‐1 receptor (IGF‐1R) is highly expressed in UM and has been shown to be associated with hepatic metastases. Targeting IGF signalling may be considered as a promising approach to inhibit the process of metastatic UM cells. Pristimerin (PRI) has been demonstrated to inhibit the growth of several cancer cells, but its role and underlying mechanisms in the IGF‐1‐induced UM cell proliferation are largely unknown. The present study examined the anti‐proliferative effect of PRI on UM cells and its possible role in IGF‐1R signalling transduction. MTT and clonogenic assays were used to determine the role of PRI in the proliferation of UM cells. Flow cytometry was performed to detect the effect of PRI on the cell cycle distribution of UM cells. Western blotting was carried out to assess the effects of PRI and IGF‐1 on the IGF‐1R phosphorylation and its downstream targets. The results indicated that IGF‐1 promoted the UM cell proliferation and improved the level of IGF‐1R phosphorylation, whereas PRI attenuated the effect of IGF‐1. Interestingly, PRI could not only induce the G1 phase accumulation and reduce the G2 phase induced by IGF‐1, but also could stimulate the expression of p21 and inhibit the expression of cyclin D1. Besides, PRI could attenuate the phosphorylations of Akt, mTOR and ERK1/2 induced by IGF‐1. Furthermore, the molecular docking study also demonstrated that PRI had potential inhibitory effects on IGF‐1R. Taken together, these results indicated that PRI could inhibit the proliferation of UM cells through down‐regulation of phosphorylated IGF‐1R and its downstream signalling.  相似文献   

9.
Resistance to treatment is the main problem of targeted treatment for cancer. We followed ten patients during treatment with vemurafenib, by three‐dimensional imaging. In all patients, only a subset of lesions progressed. Next‐generation DNA sequencing was performed on sequential biopsies in four patients to uncover mechanisms of resistance. In two patients, we identified mutations that explained resistance to vemurafenib; one of these patients had a secondary BRAF L505H mutation. This is the first observation of a secondary BRAF mutation in a vemurafenib‐resistant patient‐derived melanoma sample, which confirms the potential importance of the BRAF L505H mutation in the development of therapy resistance. Moreover, this study hints toward an important role for tumor heterogeneity in determining the outcome of targeted treatments.  相似文献   

10.
Inhibitors targeting the mitogen‐activated protein kinase (MAPK) pathway and immune checkpoint molecules have dramatically improved the survival of patients with BRAFV600‐mutant melanoma. For BRAF/RAS wild‐type (WT) melanoma patients, however, immune checkpoint inhibitors remain the only effective therapeutic option with 40% of patients responding to PD‐1 inhibition. In the present study, a large panel of 10 BRAFV600‐mutant and 13 BRAF/RAS WT melanoma cell lines was analyzed to examine MAPK dependency and explore the potential utility of MAPK inhibitors in this melanoma subtype. We now show that the majority of BRAF/RAS WT melanoma cell lines (8/13) display some degree of sensitivity to trametinib treatment and resistance to trametinib in this melanoma subtype is associated with, but not mediated by NF1 suppression. Although knockdown of NF1 stimulates RAS and CRAF activity, the activation of CRAF by NF1 knockdown is limited by ERK‐dependent feedback in BRAF‐mutant cells, but not in BRAF/RAS WT melanoma cells. Thus, NF1 is not a dominant regulator of MAPK signaling in BRAF/RAS WT melanoma, and co‐targeting multiple MAP kinase nodes provides a therapeutic opportunity for this melanoma subtype.  相似文献   

11.
Increasing number of studies have shown nuclear localization of the insulin‐like growth factor 1 receptor (nIGF‐1R) in tumor cells and its links to adverse clinical outcome in various cancers. Any obvious cell physiological roles of nIGF‐1R have, however, still not been disclosed. Previously, we reported that IGF‐1R translocates to cell nucleus and modulates gene expression by binding to enhancers, provided that the receptor is SUMOylated. In this study, we constructed stable transfectants of wild type IGF1R (WT) and triple‐SUMO‐site‐mutated IGF1R (TSM) using igf1r knockout mouse fibroblasts (R‐). Cell clones (R‐WT and R‐TSM) expressing equal amounts of IGF‐1R were selected for experiments. Phosphorylation of IGF‐1R, Akt, and Erk upon IGF‐1 stimulation was equal in R‐WT and R‐TSM. WT was confirmed to enter nuclei. TSM did also undergo nuclear translocation, although to a lesser extent. This may be explained by that TSM heterodimerizes with insulin receptor, which is known to translocate to cell nuclei. R‐WT proliferated substantially faster than R‐TSM, which did not differ significantly from the empty vector control. Upon IGF‐1 stimulation G1‐S‐phase progression of R‐WT increased from 12 to 38%, compared to 13 to 20% of R‐TSM. The G1‐S progression of R‐WT correlated with increased expression of cyclin D1, A, and CDK2, as well as downregulation of p27. This suggests that SUMO‐IGF‐1R affects upstream mechanisms that control and coordinate expression of cell cycle regulators. Further studies to identify such SUMO‐IGF‐1R dependent mechanisms seem important.  相似文献   

12.
Insulin resistance (IR) is a common etiology of type 2 diabetes (T2D) defined by a state of decreased reactivity to insulin in multiple organs, such as the liver. This study aims to investigate how microRNA‐122‐5p (miR‐122) regulates the hepatic IR in vitro. We first found that the miR‐122 level was upregulated in the liver of rats fed with a high‐fat diet and injected with streptozotocin (T2D rats), while the expression level of insulin‐like growth factor 1 receptor (IGF‐1R), a potential target of miR‐122, was downregulated in the diabetic liver. In vitro, glucosamine‐induced IR was introduced in HepG2 hepatic cells, and the levels of miR‐122 and IGF‐1R were further assessed. An increase of miR‐122 level and a decrease of IGF‐IR level were observed in IR hepatic cells, which was the same as that in the diabetic liver. Results of the luciferase reporter assay validated IGF‐1R as a direct target of miR‐122. Moreover, in IR HepG2 cells, antagonizing miR‐122 with its specific inhibitor enhanced glucose uptake and suppressed the expression of glucose 6‐phosphatase and phosphoenolpyruvate carboxykinase, two key enzymes in regulating gluconeogenesis. Such alterations induced by the miR‐122 inhibitor in IR hepatic cells were impaired when IGF‐1R was simultaneously knocked down. In addition, the PI3K/Akt pathway was deactivated in IR cells, and then reactivated with miR‐122 inhibitor transfection. In conclusion, our study demonstrates that miR‐122 is able to regulate IR in hepatic cells by targeting IGF‐1R.  相似文献   

13.
Melanocortin‐1 receptor (MC1R) plays a key role in skin pigmentation, and its variants are linked with a higher melanoma risk. The influence of MC1R variants on the outcomes of patients with metastatic melanoma (MM) treated with BRAF inhibitors (BRAFi) is unknown. We studied the MC1R status in a cohort of 53 consecutive BRAF‐mutated patients with MM treated with BRAFi. We also evaluated the effect of vemurafenib in four V600BRAF melanoma cell lines with/without MC1R variants. We found a significant correlation between the presence of MC1R variants and worse outcomes in terms of both overall response rate (ORR; 59% versus 95%, P = 0.011 univariate, P = 0.028 multivariate analysis) and progression‐free survival (PFS) shorter than 6 months (72% versus 33%, P = 0.012 univariate, P = 0.027 multivariate analysis). No difference in overall survival (OS) was reported, probably due to subsequent treatments. Data in vitro showed a significant different phosphorylation of Erk1/2 and p38 MAPK during treatment, associated with a greater increase in vemurafenib IC50 in MC1R variant cell lines.  相似文献   

14.
The prognostic significance of programmed death ligand‐1 (PD ‐L1) on treatment outcomes in patients receiving BRAF with or without MEK inhibitors is not well understood. This retrospective exploratory analysis evaluated the association of tumour PD ‐L1 expression with progression‐free survival (PFS ) and overall survival (OS ) among 210 patients in the coBRIM trial treated with cobimetinib plus vemurafenib or placebo plus vemurafenib. In the vemurafenib cohort, there was a trend of increased PFS and OS in those with PD ‐L1+ melanoma, with hazard ratios (HR s; PD ‐L1+ vs. PD ‐L1?) of 0.70 (95% CI , 0.46–1.07) and 0.69 (95% CI , 0.42–1.13) for PFS and OS , respectively. However, in patients treated with cobimetinib plus vemurafenib, a similar trend was not observed with HR s (PD ‐L1+ versus PD ‐L1?) of 1.04 (95% CI , 0.66–1.68) and 0.94 (95% CI , 0.57–1.57) for PFS and OS , respectively. The combination cobimetinib plus vemurafenib appears to overcome the poor prognosis associated with low PD ‐L1 expression.  相似文献   

15.
Cancer‐associated fibroblasts (CAFs) in the tumor microenvironment have been associated with formation of a dynamic and optimized niche for tumor cells to grow and evade cell death induced by therapeutic agents. We recently reported that ablation of β‐catenin expression in stromal fibroblasts and CAFs disrupted their biological activities in in vitro studies and in an in vivo B16F10 mouse melanoma model. Here, we show that the development of a BRAF‐activated PTEN‐deficient mouse melanoma was significantly suppressed in vivo after blocking β‐catenin signaling in CAFs. Further analysis revealed that expression of phospho‐Erk1/2 and phospho‐Akt was greatly reduced, effectively abrogating the activating effects and abnormal cell cycle progression induced by Braf and Pten mutations. In addition, the epithelial–mesenchymal transition (EMT)‐like process was also suppressed in melanoma cells. Taken together, our data highlight an important crosstalk between CAFs and the RAF‐MEK‐ERK signaling cascade in BRAF‐activated melanoma and may offer a new approach to abrogate host‐dependent drug resistance in targeted therapy.  相似文献   

16.
17.
18.
Aging manipulation is an emerging strategy aimed to postpone the manifestation of late‐onset neurodegenerative disorders such as Alzheimer's (AD) and Huntington's diseases (HD) and to slow their progression once emerged. Reducing the activity of the insulin/IGF signaling cascade (IIS), a prominent aging‐regulating pathway, protects worms from proteotoxicity of various aggregative proteins, including the AD‐associated peptide, Aβ‐ and the HD‐linked peptide, polyQ40. Similarly, IGF1 signaling reduction protects mice from AD‐like disease. These discoveries suggest that IIS inhibitors can serve as new drugs for the treatment of neurodegenerative maladies including AD and HD. Here, we report that NT219, a novel IIS inhibitor, mediates a long‐lasting, highly efficient inhibition of this signaling cascade by a dual mechanism; it reduces the autophosphorylation of the IGF1 receptor and directs the insulin receptor substrates 1 and 2 (IRS 1/2) for degradation. NT219 treatment promotes stress resistance and protects nematodes from AD‐ and HD‐associated proteotoxicity without affecting lifespan. Our discoveries strengthen the theme that IIS inhibition has a therapeutic potential as a cure for neurodegenerative maladies and point at NT219 as a promising compound for the treatment of these disorders through a selective manipulation of aging.  相似文献   

19.
Oncogenic B-RAF V600E mutation is found in 50% of melanomas and drives MEK/ERK pathway and cancer progression. Recently, a selective B-RAF inhibitor, vemurafenib (PLX4032), received clinical approval for treatment of melanoma with B-RAF V600E mutation. However, patients on vemurafenib eventually develop resistance to the drug and demonstrate tumor progression within an average of 7 months. Recent reports indicated that multiple complex and context-dependent mechanisms may confer resistance to B-RAF inhibition. In the study described herein, we generated B-RAF V600E melanoma cell lines of acquired-resistance to vemurafenib, and investigated the underlying mechanism(s) of resistance. Biochemical analysis revealed that MEK/ERK reactivation through Ras is the key resistance mechanism in these cells. Further analysis of total gene expression by microarray confirmed a significant increase of Ras and RTK gene signatures in the vemurafenib-resistant cells. Mechanistically, we found that the enhanced activation of fibroblast growth factor receptor 3 (FGFR3) is linked to Ras and MAPK activation, therefore conferring vemurafenib resistance. Pharmacological or genetic inhibition of the FGFR3/Ras axis restored the sensitivity of vemurafenib-resistant cells to vemurafenib. Additionally, activation of FGFR3 sufficiently reactivated Ras/MAPK signaling and conferred resistance to vemurafenib in the parental B-RAF V600E melanoma cells. Finally, we demonstrated that vemurafenib-resistant cells maintain their addiction to the MAPK pathway, and inhibition of MEK or pan-RAF activities is an effective therapeutic strategy to overcome acquired-resistance to vemurafenib. Together, we describe a novel FGFR3/Ras mediated mechanism for acquired-resistance to B-RAF inhibition. Our results have implications for the development of new therapeutic strategies to improve the outcome of patients with B-RAF V600E melanoma.  相似文献   

20.
Despite initial dramatic efficacy of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR‐TKIs) in EGFR‐mutant lung cancer patients, subsequent emergence of acquired resistance is almost inevitable. Resveratrol and its derivatives have been found to exert some effects on EGFR‐TKI resistance in non‐small cell lung cancer (NSCLC), but the underlying mechanisms remain unclear. We screened several NSCLC cell lines with gefitinib resistance by MTT assay and analysed the miR‐345/miR‐498 expression levels. NSCLC cells were pre‐treated with a resveratrol derivative, trans‐3,5,4‐trimethoxystilbene (TMS) and subsequently challenged with gefitinib treatment. The changes in apoptosis and miR‐345/miR‐498 expression were analysed by flow cytometry and q‐PCR respectively. The functions of miR‐345/miR‐498 were verified by CCK‐8 assay, cell cycle analysis, dual‐luciferase reporter gene assay and immunoblotting analysis. Our results showed that the expression of miR‐345 and miR‐498 significantly decreased in gefitinib resistant NSCLC cells. TMS pre‐treatment significantly upregulated the expression of miR‐345 and miR‐498 increasing the sensitivity of NSCLC cells to gefitinib and inducing apoptosis. MiR‐345 and miR‐498 were verified to inhibit proliferation by cell cycle arrest and regulate the MAPK/c‐Fos and AKT/Bcl‐2 signalling pathways by directly targeting MAPK1 and PIK3R1 respectively. The combination of TMS and gefitinib promoted apoptosis also by miR‐345 and miR‐498 targeting the MAPK/c‐Fos and AKT/Bcl‐2 signalling pathways. Our study demonstrated that TMS reduced gefitinib resistance in NSCLCs via suppression of the MAPK/Akt/Bcl‐2 pathway by upregulation of miR‐345/498. These findings would lay the theoretical basis for the future study of TMS for the treatment of EGFR‐TKI resistance in NSCLCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号