首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The natural stable isotope values of different plants have been used to trace the fate of organic carbon that enters estuarine ecosystems. Experiments were designed to determine the magnitude of (delta) (sup13)C changes of dissolved organic carbon (DOC) derived from tidal marsh vegetation that occurred during bacterial decomposition. Bacteria were grown on DOC leached from estuarine Spartina alterniflora and Typhus angustifolia plants. In four experiments, 25 to 80% of the initial carbon (2.6 to 9.1 mM organic C) was converted to bacterial biomass and CO(inf2). Mass balance calculations showed good recovery of total C and (sup13)C at the end of these experiments (100% (plusmn) 14% total C; (plusmn) 1(permil) (delta) (sup13)C). The (delta) (sup13)C values of DOC, bacterial biomass, and respired CO(inf2) changed only slightly in the four experiments by average values of -0.6, +1.4, and +0.5(permil), respectively. These changes are small relative to the range of (delta) (sup13)C values represented by different organic carbon sources to estuaries. Thus, microbial (delta) (sup13)C values determined in the field helped to identify the source of the carbon assimilated by bacteria.  相似文献   

2.
This study investigated the sources of organic matter and sediment depositional environment within fluviatile sediments of the Ganges–Meghna (GM) delta plains. The very low contents of trace metals e.g., chromium (Cr), cobalt (Co), scandium (Sc), and vanadium (V), organic carbon content, and cerium (Ce)-anomaly data of sediments indicate the redox conditions that fall within the boundary of oxic–anoxic condition, with dominantly oxic conditions in the sediment deposition environment. The higher atomic carbon nitrogen (C/N)a ratios and depleted stable carbon isotope ratio (δ13C) values for sediments from three study areas indicated the terrestrial sources of organic matter derived from C3 plant materials, whereas the contribution of organic materials from C4 vegetation and riverine productivity is low. Some silty sand samples exhibited lower (C/N)a ratios and enriched δ13C values in Sonargaon and Faridpur areas that are attributed to the adsorption of ammonium ions on clay minerals and the contribution of organic matter from C4 plants. Total sulfur over total organic carbon (TS/TOC) ratios in sediments of the Ganges delta reflect the nonmarine environments of sediment deposition. The lower ratios of syringyl to vanillyl phenols (S/V), cinnamyl to vanillyl phenols (C/V), and acid to aldehyde in vanillyl phenols (Ad/Al)v observed in Daudkandi indicate that the lignin in sediments derived from dominant woody gymnosperm sources and is very highly degraded. By contrast, the S/V ratio, C/V ratios, and [Ad/Al]v ratios in Faridpur suggest that the lignin in sediments derived from a mixture of woody and nonwoody angiosperm plant tissue contribution that underwent high degradation as well.  相似文献   

3.
Recovery of DNA from soils and sediments   总被引:28,自引:0,他引:28  
Experiments were performed to evaluate the effectiveness of two different methodological approaches for recovering DNA from soil and sediment bacterial communities: cell extraction followed by lysis and DNA recovery (cell extraction method) versus direct cell lysis and alkaline extraction to recover DNA (direct lysis method). Efficiency of DNA recovery by each method was determined by spectrophotometric absorbance and using a tritiated thymidine tracer. With both procedures, the use of polyvinylpolypyrrolidone was important for the removal of humic compounds to improve the purity of the recovered DNA; without extensive purification, various restriction enzymes failed to cut added target DNA. Milligram quantities of high-purity DNA were recovered from 100-g samples of both soils and sediments by the direct lysis method, which was a greater than 1-order-of-magnitude-higher yield than by the cell extraction method. The ratio of labeled thymidine to total DNA, however, was higher in the DNA recovered by the cell extraction method. than by the direct lysis method, suggesting that the DNA recovered by the cell extraction method came primarily from active bacterial cells, whereas that recovered by the direct lysis method may have contained DNA from other sources.  相似文献   

4.
Recovery of DNA from soils and sediments.   总被引:25,自引:14,他引:11       下载免费PDF全文
Experiments were performed to evaluate the effectiveness of two different methodological approaches for recovering DNA from soil and sediment bacterial communities: cell extraction followed by lysis and DNA recovery (cell extraction method) versus direct cell lysis and alkaline extraction to recover DNA (direct lysis method). Efficiency of DNA recovery by each method was determined by spectrophotometric absorbance and using a tritiated thymidine tracer. With both procedures, the use of polyvinylpolypyrrolidone was important for the removal of humic compounds to improve the purity of the recovered DNA; without extensive purification, various restriction enzymes failed to cut added target DNA. Milligram quantities of high-purity DNA were recovered from 100-g samples of both soils and sediments by the direct lysis method, which was a greater than 1-order-of-magnitude-higher yield than by the cell extraction method. The ratio of labeled thymidine to total DNA, however, was higher in the DNA recovered by the cell extraction method. than by the direct lysis method, suggesting that the DNA recovered by the cell extraction method came primarily from active bacterial cells, whereas that recovered by the direct lysis method may have contained DNA from other sources.  相似文献   

5.
The 13C signature of organic carbon in estuarine bottom sediment in Louisiana Barataria Basin was used for estimating carbon flux from adjacent marsh. The stable carbon isotope composition of plants, soils and sediments from the basin were determined. The 13C content of marsh vegetation ranged from -26.3 to -27.8% for C3 freshwater vegetation in the upper basin to -13.0 to -13.3% for C4 vegetation in the lower basin. The 13C content of the highly organic marsh soils were similar to 13C content of vegetation present. The 13C content of organic carbon from bottom sediment of open water bodies ranged from 27.3 in the upper basin (freshwater) to 16.4 in bottom sediment of salt marsh ponds. The13C signature of organic carbon in bottom sediment from saline regions corresponded to the size of the body of water. The smaller salt marsh ponds contain sediment with 13C values close to that of the C4 plantSpartina alterniflora. Results suggest that phytoplankton rather thanSpartina alterniffora is the likely organic source in bottom sediment of the larger bay near the coast (e.g. Caminada Bay).  相似文献   

6.
The natural abundance of stable carbon isotopes measured in bacterial nucleic acids extracted from estuarine bacterial concentrates was used to trace sources of organic matter for bacteria in aquatic environments. The stable carbon isotope ratios of Pseudomonas aeruginosa and nucleic acids extracted from cultures resembled those of the carbon source on which bacteria were grown. The carbon isotope discrimination between the substrate and total cell carbon from bacterial cultures averaged 2.3% +/- 0.6% (n = 13). Furthermore, the isotope discrimination between the substrate and nucleic acids extracted from bacterial cultures was 2.4% +/- 0.4% (n = 10), not significantly different from the discrimination between bacteria and the substrate. Estuarine water samples were prefiltered through 1-micron-pore-size cartridge filters. Bacterium-sized particles in the filtrates were concentrated with tangential-flow filtration and centrifugation, and nucleic acids were then extracted from these concentrates. Hybridization with 16S rRNA probes showed that approximately 90% of the nucleic acids extracted on two sample dates were of eubacterial origin. Bacteria and nucleic acids from incubation experiments using estuarine water samples enriched with dissolved organic matter from Spartina alterniflora and Cyclotella caspia had stable carbon isotope values similar to those of the substrate sources. In a survey that compared diverse estuarine environments, stable carbon isotopes of bacteria grown in incubation experiments ranged from -31.9 to -20.5%. The range in isotope values of nucleic acids extracted from indigenous bacteria from the same waters was similar, -27.9 to -20.2%. Generally, the lack of isotope discrimination between bacteria and nucleic acids that was noted in the laboratory was observed in the field.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The natural abundance of stable carbon isotopes measured in bacterial nucleic acids extracted from estuarine bacterial concentrates was used to trace sources of organic matter for bacteria in aquatic environments. The stable carbon isotope ratios of Pseudomonas aeruginosa and nucleic acids extracted from cultures resembled those of the carbon source on which bacteria were grown. The carbon isotope discrimination between the substrate and total cell carbon from bacterial cultures averaged 2.3% +/- 0.6% (n = 13). Furthermore, the isotope discrimination between the substrate and nucleic acids extracted from bacterial cultures was 2.4% +/- 0.4% (n = 10), not significantly different from the discrimination between bacteria and the substrate. Estuarine water samples were prefiltered through 1-micron-pore-size cartridge filters. Bacterium-sized particles in the filtrates were concentrated with tangential-flow filtration and centrifugation, and nucleic acids were then extracted from these concentrates. Hybridization with 16S rRNA probes showed that approximately 90% of the nucleic acids extracted on two sample dates were of eubacterial origin. Bacteria and nucleic acids from incubation experiments using estuarine water samples enriched with dissolved organic matter from Spartina alterniflora and Cyclotella caspia had stable carbon isotope values similar to those of the substrate sources. In a survey that compared diverse estuarine environments, stable carbon isotopes of bacteria grown in incubation experiments ranged from -31.9 to -20.5%. The range in isotope values of nucleic acids extracted from indigenous bacteria from the same waters was similar, -27.9 to -20.2%. Generally, the lack of isotope discrimination between bacteria and nucleic acids that was noted in the laboratory was observed in the field.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A simultaneous (SIM) sediment extraction procedure for low carbonate sediments, which partitions sediment-bound trace metals (Fe, Mn, Zn, Cu, and Cd) into easily reducible (associated with Mn oxides), reducible (associated with Fe oxides) and alkaline extracted (bound to organic) metal is presented. The SIM method was compared to the sequential (SEQ) extraction procedure of Tessier et al. (1979). Both methods showed good agreement for the partitioning of Zn and Cd among the easily reducible, reducible and organic components of sediment. Both methods also showed the same general distribution of Mn, Fe and Cu among the three sediment components, however concentrations of metals recovered by the two methods differed; less Mn and Fe and more Cu was recovered from sediments by the SEQ vs. the SIM procedure. Less recovery of Mn is in part attributed to the loss of this metal in the `in between' reagent rinses required in the SEQ procedure. Greater recovery of Cu by the SEQ vs. the SIM method may be due to the pretreatment of sediment with strong reducing agents prior to the step used for liberating organically bound metals. Advantages of a SIM over the SEQ include rapid sample processing time (i.e. the treatment of 40 samples per day vs. 40 samples in three days), plus minimal sample manipulation. Hence, for partitioning metals into easily reducible, reducible and organic sediment components in sediments low in carbonate, we recommend the use of a SIM extraction over that of a SEQ procedure.  相似文献   

9.
The geochemical partitioning of trace metals in sediments is of great importance in risk assessment and remedial investigation. Selected factors that may control the partitioning behavior of Cu, Pb and Zn in non-sulfidic, estuarine sediments were examined with the use of combined sorption curve—sequential extraction analysis. This approach, which has not been previously used to examine estuarine sediments, allowed determination of sorption parameters for Cu, Pb and Zn partitioning to individual geochemical fractions. Partitioning behavior in sulfidic sediments was also determined by sequentially extracting Cu, Pb, and Zn from synthetic sulfide minerals and from natural sediment and pure quartz sand after spiking with acid-volatile sulfide (AVS). Trace metal sorption to the “carbonate” fraction (pH 5, NaOAc extraction) increased with metal loading due to saturation of sorption sites associated with the “Fe-oxide” (NH2OH·HCl extraction) and “organic” (H2O2 extraction) fractions in non-sulfidic sediments. Freundlich parameters describing sorption to the “Fe-oxide” and “organic” fractions were controlled by the sediment Fe-oxide and organic carbon content, respectively. Sequential extraction of Cu from pure CuS, AVS-spiked sediment and AVS-spiked quartz sand showed that AVS-bound Cu was quantitatively recovered in association with the “organic” fraction. However, some AVS-bound Pb and Zn were recovered by the NH2OH·HCl step (which has been previously interpreted as “Fe-oxide” bound metals) in the sequential extraction procedure used in this study. This indicates that the sequential extraction of Pb and Zn in sulfidic sediments may lead to AVS-bound metals being mistaken as Fe-oxide bound species. Caution should therefore be exercised when interpreting sequential extraction results for Pb and Zn in anoxic sediments.  相似文献   

10.
Several studies of salt marsh systems have attempted to quantify the flow of organic matter between the land and coastal waters. However, the techniques used could not identify sources of dissolved organic carbon (DOC) rapidly assimilated by heterothrophic bacteria. Recently, the assay of carbon isotope ratios has allowed characterization of the different sources of organic matter in salt marshes. In this study, we wanted to find out if the natural isotopic composition assayed in heterotrophic bacteria distinguished the origin of bioavailable DOC. We determined the δ13C values for 1) three bacterial strains and their nucleic acids cultured on glucose and tryptose substrates, respectively, and 2) naturally occurring bacteria recovered from seawater in which salt marsh vegetation had been immersed. First, we showed that the isotopic fractionation was the same for the three bacterial strains cultured on the same synthetic substrate, but could vary depending on the nature of DOC. There was no significant difference between the δ13 C values of bacteria and their nucleic acids. Second, natural bacteria were grown in a medium enriched in DOC from halophytic plants. The δ13C values of this community were close to those of dissolved organic carbon from plant leachates. The comparison between the isotopic ratios of natural bacteria in Vibrio alginolyticus showed that the heterogeneity of the bacterial community averaged the isotopic fractionation from the preferential assimilation of organic compounds in the medium by each bacterial strain. The δ13 C values recorded for the bacterial community in the field and their nucleic acids made it possible to identify the source of organic matter readily accessible to microorganisms in a coastal ecosystem.  相似文献   

11.
At ten stations of the meridian profile in the eastern Kara Sea from the Yenisei estuary through the shallow shelf and further through the St. Anna trough, total microbial numbers (TMN) determined by direct counting, total activity of the microbial community determined by dark CO2 assimilation (DCA), and the carbon isotopic composition of organic matter in suspension and upper sediment horizons (δ13C, ‰) were investigated. Three horizons were studied in detail: (1) the near-bottom water layer (20–30 cm above the sediment); (2) the uppermost, strongly hydrated sediment horizon, further termed fluffy layer (5–10 mm); and (3) the upper sediment horizon (1–5 cm). Due to a decrease in the amount of isotopically light carbon of terrigenous origin with increasing distance from the Yenisei estuary, the TMN and DCA values decreased, and the δ13C changed gradually from ?29.7 to ?23.9‰. At most stations, a noticeable decrease in TMN and DCA values with depth was observed in the water column, while the carbon isotopic composition of suspended organic matter did not change significantly. Considerable changes of all parameters were detected in the interface zone: TMN and DCA increased in the sediments compared to their values in near-bottom water, while the 13C content increased significantly, with δ13C of organic matter in the sediments being at some stations 3.5–4.0‰ higher than in the near-bottom water. Due to insufficient illumination in the near-bottom zone, newly formed isotopically heavy organic matter (δ13C ~ ?20‰) could not be formed by photosynthesis; active growth of chemoautotrophic microorganisms in this zone is suggested, which may use reduced sulfur, nitrogen, and carbon compounds diffusing from anaerobic sediments. High DCA values for the interface zone samples confirm this hypothesis. Moreover, neutrophilic sulfur-oxidizing bacteria were retrieved from the samples of this zone.  相似文献   

12.
The effect of glucose on microbial mineralization of soil organic matter (SOM) was studied in arable soil specimens. The flows of carbon dioxide generated during this degradation were deduced from differences in the carbon isotope ratios of glucose (delta13C = -11.4 per mil) and SOM (delta13C = -27.01 per mil). The priming effect of glucose and respiratory quotient (RQ) were taken as indices of activation of SOM-consuming microbiota. The data on microbial mineralization of organic matter in soil, obtained in this study, show that addition of a readily consumable substance (glucose) to soil favors SOM degradation and increases the release of carbon dioxide from soil to atmosphere.  相似文献   

13.
Treatment of soil with surfactants and chelating agents is used in bioremediation studies to desorb and solubilize contaminants to increase their bioavalability to microorganisms. In the same way that pollutants are made more bioavailable to microorganisms, the procedure can be used to remove potential interfering materials from soil prior to cell lysis and extraction of DNA from indigenous microorganisms. The effect of soil washing was evaluated by extracting DNA from sediments of an intertidal freshwater wetland contaminated with hydrocarbons and from highly contaminated marine sediments from Sydney Harbour, Nova Scotia, Canada. Sediment samples had total organic carbon (TOC) contents that varied between 0.2% and 13%. The chemical lysis technique was also examined by comparison of an ammonium acetate precipitation of proteins and humic acids with a hexadecyltrimethylammonium bromide (CTAB) incubation and phenol:chloroform extraction. In this study, the incorporation of soil washing steps facilitated the desorption of contaminants from sediment surfaces and improved the recovery of DNA of amplifiable quality from both freshwater and marine sediments. CTAB contributed only slightly to the recovery of DNA of higher quality in the most contaminated sample from Sydney Harbour and was concomitant with a decrease in DNA yield in both sediment types. The incorporation of a soil washing step prior to the extraction of DNA from polluted environments may be important to solubilize and remove contaminants when high-quality DNA is required for subsequent analyses.  相似文献   

14.
The carbon isotope composition (delta(13)C) of CO(2) produced in darkness by intact French bean (Phaseolus vulgaris) leaves was investigated for different leaf temperatures and during dark periods of increasing length. The delta(13)C of CO(2) linearly decreased when temperature increased, from -19 per thousand at 10 degrees C to -24 per thousand at 35 degrees C. It also progressively decreased from -21 per thousand to -30 per thousand when leaves were maintained in continuous darkness for several days. Under normal conditions (temperature not exceeding 30 degrees C and normal dark period), the evolved CO(2) was enriched in (13)C compared with carbohydrates, the most (13)C-enriched metabolites. However, at the end of a long dark period (carbohydrate starvation), CO(2) was depleted in (13)C even when compared with the composition of total organic matter. In the two types of experiment, the variations of delta(13)C were linearly related to those of the respiratory quotient. This strongly suggests that the variation of delta(13)C is the direct consequence of a substrate switch that may occur to feed respiration; carbohydrate oxidation producing (13)C-enriched CO(2) and beta-oxidation of fatty acids producing (13)C-depleted CO(2) when compared with total organic matter (-27.5 per thousand). These results are consistent with the assumption that the delta(13)C of dark respired CO(2) is determined by the relative contributions of the two major decarboxylation processes that occur in darkness: pyruvate dehydrogenase activity and the Krebs cycle.  相似文献   

15.
The relationships between the biochemical composition of sediment organic matter and bacteria and microphytobenthic biomass distribution, were investigated along the coast of Northern Tuscany (Tyrrhenian Sea). Organic matter appeared to be of highly refractory composition. Among the three main biochemical classes, proteins were the major component (0.96 mg g-1 sediment d.w.) followed by total carbohydrates (0.81 mg g-1 sediment d.w.) and lipids (8.1 µg g-1 sediment d.w.). Bacterial number in surface sediments (0–2 cm) ranged from 1.7 to 24.5 × 108 cells g-1 of sediment dry weight showing a strong decrease with sediment depth. In surface sediments, significant correlations were found between bacterial biomass and protein concentration. Bacterial activity (measured by the frequency of dividing cells) was significantly related to lipid concentration. Bacterial and microphytobenthic biomass accounted for 3.1 and 18.1% respectively of the sediment organic carbon. In surface sediments bacterial lipids accounted, on average, for 27 % of total lipids, whereas bacterial proteins and carbohydrates accounted for 2.5 and 0.5% of total proteins and carbohydrates, respectively.The benthic degradation process indicated that lipids were a highly degradable compound (about 35% in the top 10 cm). Carbohydrate decreased for 25.6% in the top 10 cm, whereas proteins increased with depth, thus indicating that this compound may resist to diagenetic decomposition.These data suggest that specific organic compounds need to be measured rather than bulk carbon and nitrogen measurements in order to relate microbial biomass to the quality of organic matter.  相似文献   

16.
The yield of organic C or total organic matter from a standard carbonate-free marine sediment containing 23.04% N-acetyl glucosamine (10% organic C) was determined using 1) a CHN analyzer on untreated sediment, 2) CHN analysis of acidified and filtered sediment, 3) CHN analysis of acidified centrifuged sediment, 4) wet oxidation by the Walkley and Black method, and 5) loss on ignition at 475–500°C. 100% of the organic C added was recovered by CHN analysis of untreated sediment, but after treatment with acid (necessary to remove carbonates from most sediments) only 0.19% and 1.32% of the C added could be recovered. Wet oxidation yielded only 76.6% organic C. Loss on weight after combustion in a muffle furnace yielded 100% of the total organic matter. It is very difficult to avoid carbonate interference if simple techniques of analysis are used. For most work by marine ecologists organic carbon and nitrogen may be measured by a combination of CHN analysis and loss of weight on ignition of sediments freed of organic matter by precombustion below 500°C.  相似文献   

17.
This study investigated the suitability of mesocosms for studying the seasonal development of microbial variables in the benthic system of the North Sea. Undisturbed sediment cores were taken from two locations in the North Sea, one with sandy sediment (28 m depth) and the other with silty sediment (38 m depth) and installed in mesocosms in January–April 1989. Cores were kept as in situ temperature in the dark until December 1989. One set of sandy and silty sediments was starved and the other set received a supply of organic matter in May–June, simulating the settlement of the spring bloom of Phaeocystis pouchetii. Seasonal developments in bacterial production (methyl 3H-thymidine incorporation), abundance and biomass of bacteria and nanoflagellates and oxygen consumption were compared between the mesocosms and the field in surface sediments every 1.5 to 2.5 months. Effects of seasonal temperature variations (range 6–17.5 °C) on microbial variables in starved mesocosms were limited, which possibly indicates a subordinate role of temperature in microbial processes in North Sea sediments. Organic matter produced a direct response in bacterial production and oxygen consumption in mesocosms. Bacterial and protozoan abundance also increased. The effect of the organic input disappeared within 2 months and values of enhanced variables declined to initial levels. The organic matter enrichment in mesocosms apparently did not provide sufficient energy to keep the microbenthos active at field levels through summer.These results suggest that in the silty sediments in the field, organic matter is available for bacterial production throughout summer. In sandy sediments, the major organic matter input, which sets the seasonal pattern, appears to be in June. Apparently the seasonal development of microbial variables can be mimicked in mesocosms with organic matter supplies. Differences between the field and mesocosms are further illustrated by carbon budgets. Recycling of bacterial biomass was required to meet the bacterial carbon demand in the budget.Publication No. 22 of the project Applied Scientific Research Neth. Inst. for Sea Res. (BEWON).  相似文献   

18.
This study reports improvements in two of the key steps, lysis of indigenous cells and DNA purification, required for achieving a rapid nonselective protocol for extracting nucleic acids directly from sodium dodecyl sulfate (SDS)-treated sediment rich in organic matter. Incorporation of bead-mill homogenization into the DNA extraction procedure doubled the densitometrically determined DNA yield (11.8 micrograms of DNA.g [dry weight] of sediment-1) relative to incorporation of three cycles of freezing and thawing (5.2 micrograms of DNA.g [dry weight] of sediment-1). The improved DNA extraction efficiency was attributed to increased cell lysis, measured by viable counts of sediment microorganisms which showed that 2 and 8%, respectively, survived the bead-mill homogenization and freeze-thaw procedures. Corresponding measurements of suspensions of viable Bacillus endospores demonstrated that 2 and 94% of the initial number survived. Conventional, laser scanning epifluorescence phase-contrast, and differential interference-contrast microscopy revealed that small coccoid bacterial cells (1.2 to 0.3 micron long) were left intact after combined SDS and bead-mill homogenization of sediment samples. Estimates of the residual fraction of the fluorescently stained cell numbers indicated that 6% (2.2 x 10(8) cells.g [dry weight] of sediment-1) of the original population (3.8 x 10(9) cells.g [dry weight] of sediment-1) remained after treatment with SDS and bead-mill homogenization. Thus, lysis of total cells was less efficient than that of cells which could be cultured. The extracted DNA was used to successfully amplify nahR, the regulatory gene for naphthalene catabolism in Pseudomonas putida G7, by PCR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
An array of four sediment traps and one current meter was deployed under a well-developed platelet layer for 15 days in the Drescher Inlet in the Riiser Larsen ice shelf, in February 1998. Traps were deployed at 10 m (just under the platelet layer), 112 m (above the thermocline), 230 m (below thermocline) and 360 m (close to sea floor). There was a substantial flux of particulate organic material out of the platelet layer, although higher amounts were collected in the traps either side of the thermocline. Material collected was predominantly composed of faecal pellets containing diatom species growing within the platelet layer. The size classes of these pellets suggest they derive from protists grazing rather than from larger metazoans. Sediment trap material was analysed for particulate organic carbon/nitrogen/phosphorus (POC/PON/POP) and '13CPOC (carbon isotopic composition of POC). These were compared with organic matter in the overlying platelet layer and the water column. In turn, the biogeochemistry of the platelet layer and water column was investigated and the organic matter characteristics related to inorganic nutrients (nitrate, nitrite, ammonium, silicate, phosphate), dissolved organic carbon/nitrogen (DOC/DON), pH, dissolved inorganic carbon (DIC), oxygen and '13CDIC (carbon isotopic composition dissolved inorganic carbon).  相似文献   

20.
有机污染物对水体真细菌群落结构的影响   总被引:4,自引:0,他引:4  
为了揭示有机污染物对环境真细菌组成和多样性的影响,应用末端限制性片段长度多态性(tRFLP)和16S rDNA文库技术并结合水质分析方法,比较分析了松花江流域内受不同程度有机污染的4个水体及其沉积物中真细菌的群落结构。tRFLP分析表明各水体及底泥均呈现较为复杂的群落结构模式,不同底泥群落形成的末端限制性片段(TRF)图谱具有很高的相似性,但随着污染程度的加强,部分类群明显富集,而且在水样组和泥样组内,群落结构的相似性同水质相似性是一致的,主成分分析(PCA)显示水样和泥样中的真细菌TRF形成不同的群。16SrDNA文库分析表明松花江哈尔滨段底泥中真细菌分布于10个门,Proteobacteria门占优势,达群落总数的21.92%(β-Proteobacteria亚门占10.96%),而有机染污物严重超标的生活污水排污道底泥中的微生物多样性较低,分布于7个门,Proteobacteria门为优势群,占群落的47.37%(α-Proteobacteria亚门占21.05%,δ/ε-Proteobacteria亚门占15.79%)。该研究表明向水体中长期排放高浓度有机物能使系统中微生物群落多样性降低,与污染物降解相关的功能微生物类群明显富集。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号