首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The qualitative composition and distribution of the meiobenthos in Wrangel Bay (Nakhodka Bay of the Sea of Japan) depend on the bottom sediment grain composition and on the concentration of heavy metals in the ground. It was established that the meiobenthos in the bay was represented by 13 groups of animals (class, order) and was relatively evenly distributed. The nematodes dominated (50–80%), and their settlement density was slightly higher in silty ground than in silty–sandy ground. Forty-eight species of nematodes were found; Dorylaimopsis peculiaris, Viscosia stenostoma, Axonolaimus seticaudatus, Metasphaerolaimus japonicus, and Pseudosteineria inaequispiclata dominated in the silty–sandy sediments; Sabatieria pulchra, S. palmaris, Metalaimus pumilus, Sphaerolaimus limosus, and Oncholaimium ramosum dominated in the silty ground. A slightly expressed correlation of the settlement density with the ground type and lead concentration in the bottom sediments emerged for two species (S. pulchra and S. palmaris).  相似文献   

2.
The bacterial community composition of marine surface sediments originating from various regions of the Eastern Mediterranean Sea (12 sampling sites) was compared by parallel use of three fingerprinting methods: analysis of 16S rRNA gene fragment heterogeneity by denaturing gradient electrophoresis (DGGE), terminal restriction fragment length polymorphism (T-RFLP), and analysis of phospholipid-linked fatty acid composition (PLFA). Sampling sites were located at variable depths (30–2860 m; water column depth above the sediments) and the sediments differed greatly also in their degree of petroleum contamination (0.4–18 μg g−1), organic carbon (0.38–1.5%), and chlorophyll a content (0.01–7.7 μg g−1). Despite a high degree of correlation between the three different community fingerprint methods, some major differences were observed. DGGE banding patterns showed a significant separation of sediment communities from the northern, more productive waters of the Thermaikos Gulf and the oligotrophic waters of the Cretan, S. Ionian, and Levantine Sea. T-RFLP analysis clearly separated the communities of deep sediments (>1494 m depth) from their shallow (<617 m) counterparts. PLFA analysis grouped a shallow station from the productive waters of the north with the deep oligotrophic sediments from the Ionian and Levantine Sea, with low concentrations of PLFAs, and hence low microbial biomass, as the common denominator. The degree of petroleum contamination was not significantly correlated to the apparent composition of the microbial communities for any of the three methods, whereas organic carbon content and sediment chlorophyll a were important in this regard.  相似文献   

3.
Methane emission and rhizospheric CH4 oxidation were studied in stands of Equisetum fluviatile, a common cryptogam in boreal lakes. The experiment was performed in mesocosms with organic sediment or sand bottoms under natural variation of temperature and light using the light-oxic – dark-anoxic chamber (LO/DA) technique. Net CH4 emission from the organic sediment during the growing season varied between 3.4 and 19.0 mg m–2 h–1, but from sand the net CH4 emission was only 3–10% of that measured from the organic sediment. In the organic sediment net CH4 emission was very significantly correlated with sediment temperature (r2 = 0.92). In the sand mesocosms the variation of net CH4 emission was better correlated with the shoot biomass than with sediment temperature variation during the growing season, indicating that methanogens were severely limited by substrate availability and were probably dependent on substrates produced by E. fluviatile. The proportion of the methane oxidized of the potential CH4 emission in summer did not differ significantly between the bottom types. The net CH4 emission during the growing season as a proportion of the seasonal maximum of the shoot biomass was significantly higher in the organic sediment mesocosms (6.5%) than in sand (1.7%). The high CH4 emissions observed from dense well-established E. fluviatile stands in the field appear to be more related to temperature-regulated turnover of detritus in the anaerobic sediment and less to CH4 oxidation and seasonal variation in plant growth dynamics  相似文献   

4.
The relationships between the biochemical composition of sediment organic matter and bacteria and microphytobenthic biomass distribution, were investigated along the coast of Northern Tuscany (Tyrrhenian Sea). Organic matter appeared to be of highly refractory composition. Among the three main biochemical classes, proteins were the major component (0.96 mg g-1 sediment d.w.) followed by total carbohydrates (0.81 mg g-1 sediment d.w.) and lipids (8.1 µg g-1 sediment d.w.). Bacterial number in surface sediments (0–2 cm) ranged from 1.7 to 24.5 × 108 cells g-1 of sediment dry weight showing a strong decrease with sediment depth. In surface sediments, significant correlations were found between bacterial biomass and protein concentration. Bacterial activity (measured by the frequency of dividing cells) was significantly related to lipid concentration. Bacterial and microphytobenthic biomass accounted for 3.1 and 18.1% respectively of the sediment organic carbon. In surface sediments bacterial lipids accounted, on average, for 27 % of total lipids, whereas bacterial proteins and carbohydrates accounted for 2.5 and 0.5% of total proteins and carbohydrates, respectively.The benthic degradation process indicated that lipids were a highly degradable compound (about 35% in the top 10 cm). Carbohydrate decreased for 25.6% in the top 10 cm, whereas proteins increased with depth, thus indicating that this compound may resist to diagenetic decomposition.These data suggest that specific organic compounds need to be measured rather than bulk carbon and nitrogen measurements in order to relate microbial biomass to the quality of organic matter.  相似文献   

5.
The rates and pathways of anaerobic carbon mineralization processes were investigated at seven stations, ranging from 10 to 56 m water depth, in the Kattegat and Belt Sea, Denmark. Organic carbon mineralization coupled to microbial Mn and Fe reduction was quantified using anaerobic sediment incubation at two stations that were widely separated geographically within the study area. Fe reduction accounted for 75% of the anaerobic carbon oxidation at the station in the northern Kattegat, which is the highest percentage so far reported from subtidal marine sediment. By contrast, sulfate reduction was the dominant anaerobic respiration pathway (95%) at the station in the Great Belt. Dominance of Fe reduction was related to a relatively high sediment Fe content in combination with active reworking of the sediment by infauna. The relative contribution of Fe reduction to anaerobic carbon oxidation at both stations correlated with the concentration of poorly crystalline Fe(III), confirming that the concentration of poorly crystalline Fe(III) exerts a strong control on rates of Fe reduction in marine sediments. The dependence of microbial Fe reduction on concentrations of poorly crystalline Fe(III) was used to quantify the importance of Fe reduction at sites where anaerobic incubations were not applied. This study showed that Fe reduction is an important process in anaerobic carbon oxidation in a wider area of the seafloor in the northern and eastern Kattegat (contribution 60 – 75%). By contrast, Fe reduction is of little significance (6 – 25%) in the more coarse-grained sediments of the shallower western and southern Kattegat, where a low Fe content was an important limiting factor, and in fine-grained sediments of the Belt Sea (4 – 28%), where seasonal oxygen depletion limits the intensity of bioturbation and thereby the availability of Fe(III). A large fraction of the total deposition of organic matter in the Kattegat and Belt Sea occurs in the northern Kattegat, and we estimate 33% of benthic carbon oxidation in the whole area is conveyed by Fe reduction.  相似文献   

6.
This study describes the microbial community structure of three sandy sediment stations that differed with respect to median grain size and permeability in the German Bight of the Southern North Sea. The microbial community was investigated using lipid biomarker analyses and fluorescence in situ hybridization. For further characterization we determined the stable carbon isotope composition of the biomarkers. Biomarkers identified belong to different bacterial groups such as members of the Cytophaga-Flavobacterium cluster and sulfate-reducing bacteria (SRB). To support these findings, investigations using different fluorescent in situ hybridization probes were performed, specifically targeting Cytophaga-Flavobacterium, gamma-Proteobacteria and different members of the SRB. Depth profiles of bacterial fatty acid relative abundances revealed elevated subsurface peaks for the fine sediment, whereas at the other sandy sediment stations the concentrations were less variable with depth. Although oxygen penetrates deeper into the coarser and more permeable sediments, the SRB biomarkers are similarly abundant, indicating suboxic to anoxic niches in these environments. We detected SRB in all sediment types as well as in the surface and at greater depth, which suggests that SRB play a more important role in oxygenated marine sediments than previously thought.  相似文献   

7.
The effect of deposition of organic matter on phosphorus dynamics in sandy marine sediments was evaluated using an experimental system (boxcosms) and three different strategies: (1) no supply (2) one single addition (3) weekly additions of a suspension of algal cells (Phaeocystis spec.). Macrofauna (3 species, 6 individuals of each) were added to half of the boxes. Both in the case of the single and weekly additions a clear effect of increased organic matter loading on phosphorus dynamics was found. Following the organic matter addition, porewater phosphate concentrations in the upper sediment layer increased, phosphate release rates from the sediment increased by a factor 3–5 and in the boxes to which a single addition was applied NaOH-extractable phosphorus increased substantially. The increase in phosphate release rates from the sediment was attributed to mineralization of the added material and to direct release from the algal cells. No clear effect of the presence of macrofauna on sediment-water exchange of phosphate could be discovered. The macrofauna were very effective at reworking the sediment, however, as illustrated by the organic carbon profiles. It is hypothesized that the sediment-water exchange rates of phosphate were regulated by the layer of algal material which was present on the sediment surface in the fed boxes. In the boxes to which the single addition was applied porewater phosphate concentrations were lower and NaOH-extractable phosphorus was higher in the presence of macrofauna, suggesting that macrofauna can stimulate phosphate binding in the sediment.Publication no. 40 of the project Applied Scientific Research Netherlands Institute for Sea Research (BEWON)  相似文献   

8.
Sulfur is an important element in the metabolism of salt marshes and subtidal, coastal marine sediments because of its role as an electron acceptor, carrier, and donor. Sulfate is the major electron acceptor for respiration in anoxic marine sediments. Anoxic respiration becomes increasingly important in sediments as total respiration increases, and so sulfate reduction accounts for a higher percentage of total sediment respiration in sediments where total respiration is greater. Thus, sulfate accounts for 25% of total sediment respiration in nearshore sediments (200 m water depth or less) where total respiration rates are 0.1 to 0.3gCm–1 day–1 , for 50% to 70% in nearshore sediments with higher rates of total respiration (0.3 to 3gCm–2 day–1), and for 70% to 90% in salt marsh sediments where total sediment respiration rates are 2.5 to 5.5gcm–2 day–1 .During sulfate reduction, large amounts of energy from the respired organic matter are conserved in inorganic reduced sulfur compounds such as soluble sulfides, thiosulfate, elemental sulfur, iron monosulfides, and pyrite. Only a small percentage of the reduced sulfur formed during sulfate reduction is accreted in marine sediments and salt marshes. When these reduced sulfur compounds are oxidized, energy is released. Chemolithoautotrophic bacteria which catalyze these oxidations can use the energy of oxidation with efficiencies (the ratio of energy fixed in organic biomass to energy released in sulfur oxidation) of up to 21–37% to fix CO2 and produce new organic biomass.Chemolithoautotrophic bacterial production may represent a significant new formation of organic matter in some marine sediments. In some sediments, chemolithoautotrophic bacterial production may even equal or exceed organoheterotrophic bacterial production. The combined cycle of anaerobic decomposition through sulfate reduction, energy conservation as reduced sulfur compounds; and chemolithoautotrophic production of new organic carbon serves to take relatively low-quality organic matter from throughout the sediments and concentrate the energy as living biomass in a discrete zone near the sediment surface where it can be readily grazed by animals.Contribution from a symposium on the role of sulfur in ecosystem processes held August 10, 1983, at the annual meeting of the A.I.B.S., Grand Forks, ND; Myron Mitchell, convenor.  相似文献   

9.
1. Fine benthic organic matter (FBOM, particles <1 mm) was collected eight times in 1995 and 1996 from settling ponds located at the base of five catchments, and assayed for total C, N and P, extractable ammonium, mineralisable N, organic P, labile polysaccharides, denitrification potential, acetylene reduction and respiration rates, and β‐glucosidase and phosphatase activities. The five catchments (10–101 ha in size) are located in the Pacific North‐west of the United States. They contain either old‐growth forests dominated by Douglas‐fir (Pseudotsuga menziesii) and western hemlock (Tsuga heterophylla) or stands that were harvested 30 years ago and replanted with Douglas‐fir, with riparian zones dominated by red alder (Alnus rubra), bigleaf and vine maple (Acer macrophyllum; A. circinatum) and understory herbaceous plants. 2. C : N ratios were significantly higher, and mineralisable N, extractable ammonium and labile polysaccharides were all significantly lower, in FBOM from old‐growth catchment sediment than in FBOM from catchments containing harvested stands, showing that the chemical characteristics of FBOM were influenced by forest harvest. C and N concentrations were greatest in sediment from old‐growth catchments, but microbial activities (respiration, denitrification potential, phosphatase and β‐glucosidase) tended to be greater in sediment from the harvested catchments. 3. Levels of certain chemical components of harvested‐catchment FBOM were elevated relative to those found in old growth; specifically, organic and total P, extractable ammonium, mineralisable N and labile polysaccharides, suggesting that stream FBOM from harvested basins is more biodegradable than stream FBOM from old‐growth basins. 4. In addition to effects of past timber harvest on FBOM characteristics, there were also significant seasonal differences in both logged and unlogged catchments in all variables except mineralisable N, labile polysaccharides and acetylene reduction rates. 5. The results indicate that past timber harvest in five river basins influenced both composition of and seasonal fluctuations in fine benthic organic matter (FBOM) collected from stream sediments in settling ponds, suggesting a linkage between forest harvest and stream productivity. 6. Comparisons between seasonal patterns in stream and settling pond sediment FBOM characteristics suggested that the readily decomposable organic matter entering sediments during a storm event are rapidly transported and decomposed during their movement through the catchment basin. It also showed the validity of studying settling pond sediments as a surrogate for mountain stream sediments.  相似文献   

10.
The effect of phytodetritus derived from Phaeocystis sp. bloom on benthic mineralization processes has been determined at four intertidal stations along the French coast of the eastern English Channel. Sites were chosen to offer a diversity of sediment types, from permeable sandy beach to estuarine mudflats. Sediment Oxygen Demand (SOD) as well as total fluxes of Dissolved Inorganic Nitrogen (DIN) at the sediment–water interface were determined by using whole core incubation technique and diffusive fluxes were predicted from interstitial water concentrations. In the absence of phytodetritus deposits, a marked gradient of granulometric characteristics and organic matter contents were observed, and resulted in more intensive mineralization processes in muddy sediments. Highly significant correlations (P < 0.05) were evidenced between SOD and porosity, bacterial biomass, Organic Carbon and Organic Nitrogen, evidencing the direct link between sediment texture, organic matter accumulation and microbial activity. The spring bloom led to a massive input of organic matter in surficial sediments and mineralization rates significantly increased while higher DIN release towards the water column was observed. A modification of the mineralization pathways was evidenced but clearly depended on the sediment type. With a global view, benthic mineralization processes in the intertidal zone provided significant a part of DIN inputs in the coastal zone while water column was depleted in nutrients.  相似文献   

11.
Sulfur cycling was investigated in carbonate-rich and iron-poor sediments vegetated with Posidonia oceanica in oligotrophic Mediterranean around Mallorca Island, Spain, to quantify sulfate reduction and pools of sulfide in seagrass sediments. The oxygen penetration depth was low (< 4.5 mm) and sulfate reduction rates were relatively high (0.7–12 mmol m–2d–1). The total pools of reduced sulfides were remarkably low (< 5 mol S m–2) indicating a fast turnover of reduced sulfides in these iron-poor sediments. The sulfate reduction rates were generally higher in vegetated compared to bare sediments possible due to enhanced sedimentation of sestonic material inside the seagrass meadows. The sulfate reduction rates were positively correlated with the seasonal variation in water temperature and negatively correlated with the shoot density indicating that the microbial activity was controlled by temperature and release of oxygen from the roots. The pools of reduced sulfides were low in these iron-poor sediments leading to high oxygen consumption for reoxidation. The sediments were highly anoxic as shown by relatively low oxygen penetration depths (< 4.5 mm) in these low organic sediments. The net shoot recruitment rate was negative in sediments enriched with organic matter, suggesting that organic matter enrichment may be an important factor for seagrass status in these iron-depleted carbonate sediments.  相似文献   

12.
Viruses were found to be very abundant in the top layer of the sediments of Lac Gilbert, Québec. Viruses were extracted from the sediments using pyrophosphate buffer, and viruses from the diluted extracts were pelleted onto grids and enumerated using transmission electron microscopy. Viral abundance in the sediments ranged from 6.5 × 108 to 1.83 × 1010 ml–1, which is 10- to 1,000-fold greater than the number observed in the water column. This increase corresponds well with the 100- to 1,000-fold increase in bacterial abundance in the sediments. Viral abundance differed significantly among the surface sediment samples taken at different bottom depths and among samples taken at different depths of the water column. Viral abundance also varied significantly between the oxic and anoxic zones of the water column and the sediments. The virus-to-bacteria ratio varied greatly among the different sediment sites but not among depths in the water column. Viral abundance in the water column was related to bacterial abundance and chlorophyll concentration, whereas viruses in the sediments were most abundant in sediments with high organic matter content. Elevated viral abundance and their erratic distribution in the sediments suggest that viruses might play an important role in sediment microbial dynamics. Correspondence to: Roxane Maranger  相似文献   

13.
Peak pore water SRP and iron(II) concentrations were found during summer in surface sediments in the shallow and eutrophic L. Finjasjön, Sweden, and the concentrations generally increased with water depth. The SRP variation in surface sediments (0–2 cm) was correlated with temperature (R2 = 0.82–0.95) and iron(II) showed a correlation with sedimentary carbon on all sites (R2 = 0.42–0.96). In addition, sedimentary Chla, bacterial abundances and production rates in surface sediments (0–2 cm) varied seasonally, with peaks during spring and fall sedimentation. Bacterial production rates were correlated with phosphorus and carbon in the sediment (R2 = 0.90–0.95 and R2 = 0.31–0.95, respectively), indicating a coupling with algal sedimentation. A general increase in sediment Chla and bacterial abundances towards sediments at greater water depth was found. Further, data from 1988–90 reveal that TP and TFe concentrations in the lake were significantly correlated during summer (R2 = 0.81 and 0.76, in the hypolimnion and epilimnion, respectively). The results indicate that the increase in pore water SRP and Fe(II) in surface sediments during summer is regulated by bacterial activity and the input of organic matter. In addition, spatial and temporal variations in pore water composition are mainly influenced by temperature and water depth and the significant correlation between TP and TFe in the water suggests a coupled release from the sediment. These findings support the theory of anoxic microlayer formation at the sediment-water interface.  相似文献   

14.
Total heavy metal concentrations in marine sediments are not sufficient to reliably predict detrimental biological effects. Here we provide evidence that only bioavailable heavy metals have a significant impact on benthic microbial loop functioning. Sediment samples collected along 250 km of the Apulian coast (Mediterranean Sea) were analysed for total and bioavailable heavy metals (Cr, Cd, Pb and Cu), organic matter content, bacterial abundance, biomass and carbon production and -glucosidase activity. Sampling strategy was specifically designed to cover a wide range of environmental conditions and types of anthropogenic influences. Total heavy metal concentrations in the sediments were tightly coupled with organic matter content, whereas bioavailable heavy metal concentrations displayed an opposite pattern. Bioavailable Cr concentrations were up to 10-fold higher than values observed for the other bioavailable metals and significantly inhibited benthic bacterial metabolism and turnover. Results from this study suggest that functional microbial variables are highly sensitive to heavy metal contamination and could be used as bioindicators of stress conditions in coastal sediments.  相似文献   

15.
During a 1-year study of the ciliate faunas of a silty and a sandy site on an intertidal flat in the Westerschelde estuary, a total number of 107 taxa were recorded belonging to at least 52 genera and 15 orders. Our results suggest that physical properties of the sediment were more important in regulating ciliate abundance, diversity and community composition than food availability, predation, temperature or oxygen concentration. Ciliate abundance and diversity were positively related to sediment grain size and the ciliate community of silty sediments was found to be a subset of that of sandy sediments. At the sandy site, where the sediment composition was stable, seasonal changes in the ciliate community were related to changes in food availability and/or temperature. At both the sandy and silty sites, a clear vertical gradient in the ciliate community was observed that appeared to be linked to gradients in food availability and oxygen concentration. These vertical gradients in ciliate community composition, however, were less steep than the measured oxygen gradients, probably due to the presence of oxic microniches in the anoxic zone.  相似文献   

16.
The major proportion of heterotrophic activity in running waters islocalized on the solid surfaces of sediments in the benthic and hyporheic zoneand is dominated by microorganisms. However, this assertion is based on thestudies of small streams, and little is known about the microbial metabolism oforganic matter in river ecosystems. We therefore explored the relationshipsbetween bacterial abundance and production and the gradients of organic matterquality and quantity in sediments of a sixth-order lowland river (Spree,Germany). We found vertical gradients of detrital variables (particulateorganicmatter (POM), particulate organic carbon (POC), nitrogen (PN), and protein) andof bacterial variables (abundance, production, turnover time, and proportion ofbacterial carbon in total POC) in two different sediment types. These gradientswere steeper in stratified sediments than in the shifting sediments. Detritalvariables correlated strongly with bacterial abundance and production. The bestcorrelation was found for detrital variables indicating substrate quantity andquality (rS = 0.90 for PN with abundance). Although bacterialbiomasscomprised only 0.7% of the POC (1.9% of PN, 3.4% of the protein) in sediments,the turnover of sedimentary organic carbon was fast (median = 62d), especially in the shifting sediments. Our findings demonstratethat sediment dynamics significantly foster organic carbon metabolism in riversystems. Thus, these sediments, which are typical for lowland rivers, stronglyinfluence the metabolism of the whole ecosystem.  相似文献   

17.
Kisand  Anu  Nõges  Peeter 《Hydrobiologia》2003,492(1-3):129-138
Increased discharges of organic matter from different sources in Morales Stream, one of the main tributaries of the Matanza-Riachuelo River, caused not only an increase in its primary production but also drastic changes in the composition of its sediments, thus favoring eutrophication processes. An in situ study was carried out in order to assess the effects of an organic point source contamination (from intensive cattle rearing) on the sediments of Morales Stream. Surface water and sediment samples were analysed to determine the chemical characteristics of the water–sediment system. The amounts and forms of sediment phosphorus were determined using the `EDTA method' (Golterman, 1996) at two sites of the stream having different nutrient loads. The increase in the organic load of Morales Stream waters influences the dynamics of sediment P, producing two main effects: (1) an increase in the organic matter amount of the sediment that leads to an increase in the amount of P associated to organic fractions, which may be released by bacterial activity under anoxic conditions; and (2) a decrease in the concentration of P in the fraction bound to iron. Morales Stream sediments may act as a potential source of P, which can release this nutrient to water under the reducing conditions originated by uncontrolled discharges of organic residues to this water body.  相似文献   

18.
Factors controlling seasonal variations in benthic metabolism (O2 flux) and dissolved inorganic nitrogen (DIN) fluxes were examined during a 12–14 month period at three intertidal Wadden Sea stations. Since the flux measurements were made as small-scale laboratory core incubations, the results are primarily related to the microbenthic community (microalgae, bacteria, micro-, meio- and small macrofauna) and cannot be considered representative of the total benthic community in the Wadden Sea. Furthermore, it has to be emphasized that light intensity during day-time simulations were constant and saturating at all times. Benthic primary production and oxygen uptake appeared to be temperature dependent with a ‘seasonal Q10’ of 1.7–1.8 and 2.7–4.3, respectively. Inundation had no effect on oxygen fluxes as evidenced by similar sediment respiration with and without water cover. A stronger temperature dependence of primary production in muddy than in sandy sediment indicated that the overall control in the latter may be complex due to factors like macrofaunal grazing and nutrient availability. Benthic respiration may not be controlled by temperature alone, as sedimentary organic matter content correlated significantly with both temperature and benthic respiration. Annual gross primary production in high intertidal sandy sediment was 10 and 50% higher than in low intertidal sandy and muddy sediments, respectively. Since annual benthic community respiration was 2 times higher in muddy than sandy sediments, the annual net primary production was about 0 in the former and 17–19 mol C m?2 yr?1 in the latter. However, heterotrophic contribution by larger faunal components as well as removal of organic carbon by waves and tidal currents, which are not included here, may balance the budget at the sandy stations. There was no or only weak relationships between (light and dark) DIN exchange and factors like temperature, sedimentary organic content, and oxygen fluxes. Factors related to nutrient fluxes, such as denitrification and nutrient concentration in the overlying water, may have hampered any such relationships. In fact, DIN fluxes at all three stations appeared to be strongly controlled by DIN concentrations in the overlying water. On an annual basis, the sediment appeared to be a net sink for DIN.  相似文献   

19.
Marine sediments harbour diverse populations of dormant thermophilic bacterial spores that become active in sediment incubation experiments at much higher than in situ temperature. This response was investigated in the presence of natural complex organic matter in sediments of two Arctic fjords, as well as with the addition of freeze‐dried Spirulina or individual high‐molecular‐weight polysaccharides. During 50°C incubation experiments, Arctic thermophiles catalysed extensive mineralization of the organic matter via extracellular enzymatic hydrolysis, fermentation and sulfate reduction. This high temperature‐induced food chain mirrors sediment microbial processes occurring at cold in situ temperatures (near 0°C), yet it is catalysed by a completely different set of microorganisms. Using sulfate reduction rates (SRR) as a proxy for organic matter mineralization showed that differences in organic matter reactivity determined the extent of the thermophilic response. Fjord sediments with higher in situ SRR also supported higher SRR at 50°C. Amendment with Spirulina significantly increased volatile fatty acids production and SRR relative to unamended sediment in 50°C incubations. Spirulina amendment also revealed temporally distinct sulfate reduction phases, consistent with 16S rRNA clone library detection of multiple thermophilic Desulfotomaculum spp. enriched at 50°C. Incubations with four different fluorescently labelled polysaccharides at 4°C and 50°C showed that the thermophilic population in Arctic sediments produce a different suite of polymer‐hydrolysing enzymes than those used in situ by the cold‐adapted microbial community. Over time, dormant marine microorganisms like these are buried in marine sediments and might eventually encounter warmer conditions that favour their activation. Distinct enzymatic capacities for organic polymer degradation could allow specific heterotrophic populations like these to play a role in sustaining microbial metabolism in the deep, warm, marine biosphere.  相似文献   

20.
W. F. DeBusk 《Hydrobiologia》1988,159(2):159-167
A field study was conducted (May 1981 to June 1982) to develop a data-base on seasonal changes of water and sediment chemistry of Lake Monroe (4 000 ha surface and ca. 2 m deep) located in central Florida, USA. This shallow eutrophic lake is a part of the St. Johns River. Quantitative samples of lake water and sediments were collected on a monthly basis from 16 stations and analyzed for various physico-chemical parameters. Relatively high levels of dissolved solids (mean electrical conductivity (EC) = 1832 µS cm1) prevailed in the lake water, and seasonal changes in EC were probably associated with hydrologic flushing from external sources, such as incoming water from upstream as well as precipitation. Average monthly levels of total N and P during the study period were 1.82 and 0.21 mg l–1, respectively. Nutrient concentrations in the water did not show any strong seasonal trends. Organic matter content of lake sediments ranged from 1 to 182 g C kg–1 of dry sediment, reflecting considerable spatial variability. All nutrient elements in the sediments showed highly significant (P < 0.01) correlations with sediment organic C, though little or no significant relationship appeared at any sampling period between water and sediment chemistry of the lake. Temporal trends in water and sediment chemical parameters may have been concealed by periodic hydrologic flushing of the St. Johns River into Lake Monroe.Florida Agricultural Experiment Stations Journal Series No. 7836.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号