首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The chromosome numbers of 5 tuberous sections of Chinese Dioscorea, including 23 species and varieties, are reported in the present paper as a continuation of the previous reports. They are all polyploids with the basic number x=10. On the basis of analysis of chromosome numbers of whole genus, the rhizomatous diploid species of Sect. Stenophora Uline are presumed to be primitive taxa, while the polyploids of chromosome numbers 40-142 are considered derived groups as a result of hybridization between their ancestral diploids followed by chromosome doubling. Sect. Lasiophyton Pr. et Burk., Sect. Opsophyton UIine, Sect. Shannicorea Pr. et Burk., Sect. Combilium Pr. et Burk. and Sect. EnantiophylIum Uline may be the advanced groups. The chromosomal evolution and geographical distribution suggest that the primitivediploid might have originated in Hengduan Mountains of Asia, an old highland.  相似文献   

2.
In this paper, eight species of the genus Euphorbia L. were cytologically studied. The three species of the subgenus Chamaesyce Raf., E. hirta, E. humifusa and E. hypericifolia, had chromosome numbers of 2n = 18, 22 and 32, with their basic chromosome numbers being x = 9, 11 and 8 respectively. The two species of the subgenus Poinsettia (Grah.) House. E. dentata, with 2n=28, a tetraploid, and E. cyathophora, with 2n= 56, a octoploid, had both the basic chromosome number of x= 7. The three species of the subgenus Esula Pers, E. lathyris, E. helioscopia and E. hylonoma, had chromosome number of 2n= 20, 42 and 20, with their basic numbers being x= 10, 7 and 10 respectively. The basic chromosome number of x = 8 is new for E. hypericifolia, in which x = 7 was previously reported. This indicates that this species had both ploidy(2n = 4x = 28, 8x = 56) and dysploidy(x = 7, 8) variations. In E. dentata, there occurred also ploidy variation (2n = 2x, 4x and 8x). A tetraploid cytotype of E. esula was found in China, its diploid cytotype and hexaploid cytotype being previously reported in North America, the Iberian Peninsula and some other European areas. Based on our results and those previously reported, we support the viewpoint that x=10 may be the original basic chromosome number of Euphorbiaand discuss the role of polyploidy and dysploidy in the speciation and evolution of this genus  相似文献   

3.
八种国产大戟属植物的核型报道   总被引:7,自引:0,他引:7  
8种大戟属Euphorbia L.植物的核型分析结果表明,大戟属不同亚属的染色体基数与其形态变 异的复杂性有一定关系。地锦草亚属subgen.Chamaesyce 3个种染色体基数分别为x=8,9,11;一品红 亚属subgen.Poinsettia两个种染色体基数均为x=7,分别为四倍体和八倍体;乳浆大戟亚属subgen. Esula 3个种,染色体基数分别为x=7,10,10。根据以前学者发表的资料分析,一品红亚属和大戟亚属 Subgen. Euphorbia的染色体基数是很稳定的,分别为x=7和x=10;通奶草E.hypericifolia为x=8 的四倍体,它不仅有染色体整倍性的变异,还有异基数性的变化。结合以前学者的研究,笔者支持x= 10为大戟属的最原始基数的观点。齿裂大戟E.dentata和通奶草具不同的染色体倍性,猫眼草E. esula的细胞染色体数目观察证实了我国存在四倍体的居群,与欧洲和北美的植物构成一个典型的多倍体复合体。  相似文献   

4.
New somatic chromosome numbers for nine species eight families and eight gen era in the Sino-Japanese Region are reported here as shown in Table 1. Data of six genera are previously unknown cytologically. The bearings of these new data on the systematics and evolution of the related species, genera or families are discussed as follows: (1) Platycarya strobilacea Sieb. et Zucc. (Juglandaceae). The chromosome number of this species is 2n=24, with a basic number of x=12, which deviates from 2n=32 occurred in Juglans, Carya, Pterocarya and Engelhardtia with the basic number x= 16. The Juglandaceae appears to be fundamentally paleotetraploid, with an original basic number of x = 6 in Platycarya and x-8 in the other four genera, although secondary polyploidy occurs in Carya. Based on the remarkable morphological differences between Platycarya and the rest seven genera of the family, Manning (1978) established two subfamilies: Platycaryoideae for Platycarya and Juglandoideae for the other genera. Iljinskaya (1990), however, recently established a new subfamily: Engelhardioideae for Engelhardtia. Lu (1982) points out that because of a great number of primitive characters occurring in Platycarya, the genus could not be derived from any other extant juglandaceous taxa but probably originated with the other groups from a common extinct ancestor. The present cytological data gives support to Manning′s treatment. We are also in favor of Lu′s supposition and suggest that basic aneuploid changes, both ascending and descending, from a common ancestor with the original basic number x=7, took place during the course of early evolution of the Juglandaceae and led to the origin of taxa with x=6 and 8. Subsequent polyploidy based on these diploids occurred and brought forth polyploids of relic nature today, whereas their diploid progenitors apparently have become extinct. (2) Nanocnide pilosa Migo (Urticaceae). The chromosome number of this Chinese endemic is 2n-24, with a basic number of x=12. An aneuploid series occurs in the Urticaceae, with x--13, 12, I1, 10, 9, 8, 7, etc. According to Ehrendorfer (1976), x = 14, itself being of tetraploid origin, is the original basic number of the whole Urticales, and descending aneuploid changes took place in the early stage of evolution of the Urticaceae and Cannabinaceae. In addition to Nanocnide, x= 12 also occurs in Australina, Hesperonide and Lecanthus, and partly in Chamabainia, Elatostema, Girardinia, Pouzolzia and Urtica. (3--4) Sedum sarmentosum Bunge and S. angustifolium Z. B. Hu et X. L. Huang (Crassulaceae). The former is a member of the Sino-Japanese Region, while the latter is only confined to eastern China. The chromosome number of Sedum is remarkably complex with n=4-12, 14-16…74, etc. S. angustifolium with 2n=72 of the present report is evidently a polyploid with a basic number of x =18 (9?) Previous and present counts of S. sarmentosum show infraspecific aneupolyploidy: n = c. 36 (Uhl at al. 1972) and 2n=58 (the present report). These two species are sympatric in eastern China and are morphologically very similar, yet distinguishable from each other (Hsu et al. 1983) S. sarmentosum escaped from cultivation in the United States gardens exhibited high irregularity in meiosis (Uhl et al. 1972). Uhl (pets. comm. ) suspected strongly that it is a highly sterile hybrid. R. T. Clausen (pets. comm.) found that plants of S. sarmentosum naturalized in the American Gardens propagated by means of their long stolons and broken stem tips, and could not yield viable seeds. Hsu et al. (1983) found that some of the plants of S. sarmentosum and S. angustifolium did yield a few seeds, but other did not. These species are, therefore, by the large vegetatively apomictic. (5) Glochidion puberum (L. ) Hutch. (Euphorbiaceae). The genus Glochidion includes about 300 species, but only eigth species from the Himalayas have been studied cytologically, with n= 36 and 2n= 52, having a basic number of x= 13. The present count for the Chinese endemic G. puberum establishes the tetraploid chromosome number 2n= 64, and adds a new basic number x= 16 to the genus. (6) Orixa japonica Thunb. (Rutaceae). Orixa is a disjunct Sino-Japanese monotypic genus. Out of the 158 genera of the Rutaceae, chromosome numbers of 65 genera have hitherto been investigated, of which 42 genera are with x=9 (66.61%), some with x=7, 8 and 10, and rarely with x=13, 15, 17 and 19. The present count of 2n=34 for O. japonica may have resulted from a dibasic tetraploidy of n=8+9. (7) Rhamnella franguloides (Maxim.) Weberb. (Rhamnaceae). The chromosome number of this member of the Sino-Japanese Region is 2n= 24. with a basic number of x= 12. The basic number x= 12 also occurs in Hovenia, Paliurus, Sageretia, Ceanothus and Berchemia. Hong (1990) suggested that x= 12 in Rhamnaceae may be derived from descending aneuploidy of a paleotetraploid ancestor. (8) Sinojackia xylocarpa Hu (Styracaceae). The chromosome number of this rare Chinese endemic is 2n= 24, with a basic number of x =12, which is identical with that in Halesia and Pterostyrax, but deviates from that in Styrax (x=8). The basic number x=8 in the Styracaceae may be derived from the original basic number x=7 by ascending aneuploidy in the early stage of evolution of the family, and x=12 may be derived from polyploidy. (9) Thyrocarpus glochidiatus Maxim. (Boraginaceae). The chromosome number of this Chinese endemic species is 2n=24, with a basic number of x=12. An extensive aneuploid sequence of x = 4-12 occurs in the Boraginaceae, of which x = 8, 7 and 6 are the most common. The basic number x=12 also occurs in Cynoglossum and Mertensia. It is evident that aneuploid changes, both descending and ascending, from an ancestor with x = 7, have taken place in the primary phase of evolutionary diversification of the Boraginaceae, and subsequent polyploidy has given rise to x=15, 17 and 19 in a few genera (e. g. Amsinskia and Heliotropium). The origin of x=12 is not certain. Either it be a result of ascending aneuploidy, or a product of polyploidy on the basis of x = 6. The present authors are in favorof the latter.  相似文献   

5.
Bernini C  Marin-Morales MA 《Cytobios》2001,104(407):157-171
This is the first karyotype characterization of Brachiaria species. Twelve accessions belonging to five species were analysed. The basic chromosome number was x = 9 and 7, the same reported for the tribe Paniceae. Variations in the chromosome number were observed in B. decumbens (2n = 18; 36) and B. humidicola (2n = 36; 42; 54). Chromosome numbers of 2n = 18 in B. ruziziensis and 2n = 36 in B. brizantha and B. jubata were recorded. Inter- and intraspecific karyotype differentiation of the accessions analysed was facilitated by variations in karyotypic symmetry. The karyotypes were generally considered symmetrical, with a tendency to asymmetry in the direction of the polyploids. It is suggested that addition, deletions and mainly polyploidy have been the most direct causes involved in the chromosome evolution of this genus.  相似文献   

6.
The American genus Cuphea with ca. 260 species is extremely diverse with respect to chromosome number. Counts are now available for 78 species and/or varieties, or 29% of the genus. Included in this study are first reports for 15 taxa from Brazil, Cuba, Dominican Republic, Mexico, and Venezuela. Twenty-two different numbers are known for the genus, ranging from n = 6 to n = 54. The most common number in the primary center of species diversity in Brazil is n = 8, which is regarded as the base number of the genus. Two numbers are most common in the secondary center in Mexico, n = 10 and n = 12. Species with n = 14 or higher are considered to be of polyploid origin. Polyploids comprise 46% of the total species counted and appear in 9 of the 11 sections for which chromosome numbers have been reported. Aneuploid species comprise ca. 25% of the genus and are known from 7 of the 11 sections. The two subgenera are not characterized by different chromosome numbers or sequences of numbers. None of the 14 sections are circumscribed by a single chromosome number. Morphological and ecological variability in widespread, weedy species is correlated with differing chromosome numbers in some species whereas in others the chromosome number is stable. Summary of chromosome numbers by taxonomic section is presented. Section Euandra, centered in eastern Brazil, and the largest section of the genus, appears to be chromosomally most diverse. In section Trispermum, characterized by difficult, variable species with intermediate forms, two of the four species studied have polyploid races. Section Heterodon, endemic to Mexico and Central America and comprising most of the annual species of the genus, is best known chromosomally. Chromosome numbers have been counted for 25 of 28 species, and 12 different numbers are reported. The most advanced sections, Melvilla and Diploptychia, with numerous species occurring at higher altitudes, are characterized by high polyploids. Apomictic species occur in sect. Diploptycia. The cytoevolution of Cuphea is complex with frequent polyploid and aneuploid events apparently playing a significant role in speciation in both centers of diversity.  相似文献   

7.
BACKGROUND AND AIMS: Selaginella is the largest genus of heterosporous pteridophytes, but karyologically the genus is known only by the occurrence of a dysploid series of n=7-12, and a low frequency of polyploids. Aiming to contribute to a better understanding of the structural chromosomal variability of this genus, different staining methods were applied in species with different chromosome numbers. METHODS: The chromosome complements of seven species of Selaginella were analysed and, in four of them, the distribution of 45S rDNA sites was determined by fluorescent in situ hybridization. Additionally, CMA/DA/DAPI and silver nitrate staining were performed to investigate the correlation between the 45S rDNA sites, the heterochromatic bands and the number of active rDNA sites. KEY RESULTS: The chromosome numbers observed were 2n=18, 20 and 24. The species with 2n=20 exhibited chromosome complement sizes smaller and less variable than those with 2n=18. The only species with 2n=24, S. convoluta, had relatively large and asymmetrical chromosomes. The interphase nuclei in all species were of the chromocentric type. CMA/DA/DAPI staining showed only a weak chromosomal differentiation of heterochromatic bands. In S. willdenowii and S. convoluta eight and six CMA+ bands were observed, respectively, but no DAPI+ bands. The CMA+ bands corresponded in number, size and location to the rDNA sites. In general, the number of rDNA sites correlated with the maximum number of nucleoli per nucleus. Ten rDNA sites were found in S. plana (2n=20), eight in S. willdenowii (2n=18), six in S. convoluta (2n=24) and two in S. producta (2n=20). CONCLUSIONS: The remarkable variation in chromosome size and number and rDNA sites shows that dramatic karyological changes have occurred during the evolution of the genus at the diploid level. These data further suggest that the two putative basic numbers of the genus, x=9 and x=10, may have arisen two or more times independently.  相似文献   

8.
This is the third report of chromosome numbers of Umbelliferae after 1981 and 1985, which deals with 24 species and varieties of 15 genera including 2 endemic genera and 10 endemic species, and most of them are distributed in southwestern China. Of them, 18 counts are newly reported. The taxonomic significance is discussed in relation with their basic numbers, translocation heterozygote and polyploids. It is considered that polyploids are wide-spread in Hydrocotyle L. 4, 6, 7, 8 are the basic numbers of Bupleurum L. which provides the cytological evidence for further study on their evolutionary process. n=9 and 10 occurrespectively in two different sections of Pimpinella L. and their basic numbers may be used for classification at the section level. The ring formation of four chromosomes at diakinesis of Heracleum henryi Wolff reveals that translocation heterozygotes is one of the factors in specific differentiation of Umbelliferae.  相似文献   

9.
采用常规压片法,对钠猪毛菜、准噶尔猪毛菜、小药猪毛菜和薄翅猪毛菜等4种新疆猪毛菜属植物的染色体核型进行了分析,并对已报道的12种新疆猪毛菜属植物核型进行了比较.结果表明:(1)钠猪毛菜体细胞染色体数2n=2x=18=12m+6sm,准噶尔猪毛菜、小药猪毛菜体细胞染色体数为2n=2x=18=18m,该3种均属于1A型;薄翅猪毛菜体细胞染色体数为2n=2x=54=50m+2sm+2st,属2A型;(2)12种新疆猪毛菜属植物核型比较结果证明,猪毛菜属植物的染色体基数为9,钠猪毛菜、准噶尔猪毛菜和小药猪毛菜均为二倍体,薄翅猪毛菜为六倍体,钠猪毛菜和准噶尔猪毛菜具有随体.准噶尔猪毛菜、小药猪毛菜、薄翅猪毛菜属植物的核型均属于首次报道.  相似文献   

10.
The chromosome numbers of nine species of the genus Spartina have been determined and their meiotio pairing has been examined. All numbers are referable to either 2 n = 40 ( S. pectinata, S. patens, S. cynosuroides, S. gracilis, S. bakeri and S. arundinacea ), 2 n =60 ( S. maritima ) or 2 n =62 ( S. alternifiora and 8. glabra ). No intraspeoifio polyploids have been found. Supernumerary or B -chromosomes occur rarely in S. pectinata . Hence the basio chromosome number is deduced as being x = 10 for these speoies in contrast to former reports of x = 7. The implications of the new basic number with respect to taxonomic position are pointed out.  相似文献   

11.
Twenty-two populations of seven species of Cremanthodium from high altitude regions of western China were observed karyologically. C. ellisii, C. microglossum, C. brunneo-pilosum, C. stenoglossum, C. discoideum and C. lineare all had the same chromosome number of 2 n = 58 whereas C. humile had 2 n = 60. All chromosome numbers of these species are documented here for the first time. The basic number of x = 30 is new for this genus. The karyotypes of all species belong to 2A type according to Stebbins' asymmetry classification of karyotypes. Two basic chromosome numbers, x = 30 and x = 29 in Cremanthodium , correspond exactly to two branching patterns in this genus, sympodial versus monopodial. The systematic and taxonomic statuses of the sympodial species need further study. The karyomorphological data provide no support to the sectional subdivision in Cremanthodium .  相似文献   

12.
Chromosome counts are reported for 32 taxa (31 species and 1 subspecies) belonging to 10 genera of Commelinaceae from seven African and Asiatic countries. Counts for 13 species and 1 subspecies are recorded for the first time. Published chromosome numbers for Anhicopsis and Polyspatha are confirmed. It is suggested that Pdisota, Pollia and Stanfieldidla each has a single basic number (x = 20, 16 and 11, respectively). The known cytological diversity in Floscopa is extended. The third continental African species of Coleolrype is found to have the same chromosome number (2n = 36) as the other two. The preponderance of the basic number x = 15 in Commelina is supported. The uncommon basic number x = 13 is reported in four taxa of Cyanotis together with karyotypic differences. The basic number x = 6 is found in a second species of Murdannia . Karyotypic data in addition to chromosome numbers are presented for 24 of the 32 taxa investigated. Karyotypes are found to be useful in assessing relationships in the family, and evolutionary trends in the karyotype are noted.  相似文献   

13.
Meiotic studies are carried out in 7 species of Eryngium L. (Saniculoideae, Apiaceae), belonging to both sections Foetida and Panniculata. The chromosome number of E. dorae Norm. (n=8) (Foetida) is reported for the first time, while the gametic chromosome number of E. nudicaule Lam. (n=7) (Foetida) and E. eburneum Decne. (n=8), E. horridum Malme (n=8), E. megapotamicum Malme (n=16), E. mesopotamicum Pedersen (n=24), and E. pandanifolium Cham. et Schlechtd. (n=24) (all belonging to Panniculata) is confirmed in several natural populations. Whereas in section Foetida all species are diploids and two basic chromosome numbers are present (x=8 and x=7), in section Panniculata all species are x=8 but there are three different ploidy levels (diploid, tetraploid, hexaploid). This study reveals that meiosis in all species is normal, with regular bivalent formation in all studied cells. Furthermore, the pollen stainability is above 80% in all cases. These data, together with the previous karyotype analyses, will contribute to the clarification of the relationships between members of both sections, where different mechanisms of speciation have been postulated.  相似文献   

14.
This work comprises 24 reports of chromosome numbers in 24 Artemisia L. species from Asia. Ten are included in the subgenus Dracunculus Besser and the rest belong to other subgenera. Seven counts are new reports, 14 are consistent with scarce previous ones, and three contribute new ploidy levels. That carried out in A. medioxima reports the highest ploidy level ever counted for the genus (16 x ). There is only one species with x  = 8 as the basic chromosome number. In the remaining x  = 9-based species, ploidy levels range from 2 x to 16 x , illustrating the great role played by polyploidy in the evolution of the genus.  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 301–310.  相似文献   

15.
采用植物染色体常规压片技术,报道了中国柴胡属(Bupleurum L .)13种5变种24个居群的染色体数目,其中4种5变种为首次报道,同时报道了5种1变种的细胞核型.除天山柴胡两个居群、紫花鸭跖柴胡一个居群和北柴胡一个居群是多倍体外,其它均为二倍体.主要结论如下:(1)秦岭柴胡和细茎有柄柴胡处理为独立的种更为合适;紫花阔叶柴胡作为大叶柴胡变种的处理是合理的;黄花鸭跖柴胡处理为紫花鸭跖柴胡的变种是不合理的.(2)紫花鸭跖柴胡和北柴胡可能都是还没有被完全认识的复合类群,需要进一步研究.(3)x=7可能是柴胡属的原始基数.  相似文献   

16.
国产十四种苋属植物的染色体数目   总被引:5,自引:0,他引:5  
报道了国产14种苋属植物的染色体数目。部分种的染色体数目为2n=34,即反枝苋Amaranthus retroflexus,刺苋A.spinosus,红苋A.cruentus,腋花苋A.roxburghianus,合被苋A.polygonoides,皱果苋A. viridis,凹头苋A.lividus,苋A.tricolor。其他种的染色体数目为2n=32,即尾穗苋A.caudatus,绿穗苋A. hybridus,千穗谷A.hypochendriacus,繁穗苋A.paniculatus,北美苋A.blitoides,白苋A.albus。其中腋花 苋的染色体数目为首次报道。该属染色体基数为x=16,17。两种染色体基数在苋属2个组(sect.Ama- ranthus和sect.Blitopsis)中均存在。由于苋属植物染色体大多为小型染色体,因此对苋属植物目前尚不 能进行详尽的核型分析。  相似文献   

17.
The meiotic behaviour abnormalities, fertility and size of pollen of 6 taxa ofSesamoides have been analysed. Besides diploids (2x), polyploids (4x, 6x, 8x) have been found. The chromosome base number is x = 10, but an origin from x = 5 is suggested.  相似文献   

18.
新疆多年生小麦族植物染色体数的观察   总被引:6,自引:0,他引:6  
孙根楼  颜济  杨俊良   《广西植物》1990,10(2):143-148
本文对1987年采集于新疆的多年生小麦族(Triticeae Dum. )属种进行了细胞学观察。该地区多年生小麦族各属种的染色体数目变化范围是从2n=14到2n=84,前者主要存在于大麦属(Hordeum)、新麦草属(Psathyrostachys),而后者全部集中于赖草属(Leymus).其中染色体数目为2n=28和2n=42的频率最高,主要存在于鹅冠草属(Roegneria)和披碱草属(Elymus)。Roegneria gobicola, Roegneria kuqaensis, Roegneria tahelacona, Roegneria zhoasuensis的染色体数为首次报道。  相似文献   

19.
Mitotic chromosome counts were made from field collected and subsequently cultivated plants of 61Pelargonium species from 14 sections. The 33 new results are presented. 47 of the species have a basic number of x = 11, nine spp. of x = 9 and five spp. of x = 8. 17 spp. are polyploid. In two sections species with different basic numbers occur, which is of interest for the subgeneric classification. The size of the chromosomes varies between the investigated species. Most but not all species with x = 11 have short, those with x = 8, 9 large, and only exceptionally short chromosomes. Within sections chromosome size is not always uniform. The relationship between the different basic chromosome numbers is discussed.  相似文献   

20.
Given the paucity of information about genome size in the genus Centaurea, nuclear DNA content of 15 Centaurea taxa, belonging to four subgenera and six different sections, has been investigated for the first time. The sample concerns 21 populations from the Dalmatia region of Croatia. The 2C DNA content and GC percentage were assessed by flow cytometry and chromosome number was determined using standard methods. Genome size of studied Centaurea ranged from 2C=1.67 to 3.72 pg. These results were in accordance with chromosome number and especially with ploidy level that varies throughout this group; 2C DNA values ranged from 1.67 to 3.43 pg for diploid, and from 3.19 to 3.72 for polyploid taxa. No significant intraspecific variations of DNA amount were found between two subspecies of C. visiani and C. ragusina, nor between two varieties of C. gloriosa. However, some populations of C. glaberrima and C. cuspidata showed a significant difference in DNA amount. Three different basic chromosome numbers were observed in studied species (x=9, 10, and 11). The most frequent basic number was x=9. C. rupestris, C. ragusina ssp. ragusina, and C. r. ssp. lungensis possessed x=10 and C. tuberosa x=11. The species with a basic chromosome number of x=9 had a small genome size and the smallest chromosomes (on average 0.09 to 0.12 pg/chromosome) but frequently present polyploidy. Centaurea ragusina ssp. ragusina and C. r. ssp. lungensis had a mean base composition 41.3% GC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号