首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Evolution of female mating preferences in stalk-eyed flies   总被引:4,自引:1,他引:3  
Sensory exploitation predicts that female mate preferences existbefore the evolution of exaggerated male ornaments. We testedthis prediction by estimating female preference functions, rematingintervals, and copulation durations for three species of stalk-eyedflies. Two species, Cyrtodiopsis whitei and C dalmanni, exhibitextreme sexual dimorphism in eye span, with eye stalks exceedingbody length in large males. In contrast, C quinqucguttata ofboth sexes possess short eye stalks. Maximum parsimony analysisof 437 basepairs of the 16S mitochondrial ribosomal RNA genefrom 6 Malaysian diopsids reveals that short, sexually monomorphiceye stalks are plesiomorphic in Cyrtodiopsis. Observations ofmultiple copulations by females in paired-choice mating chambersindicated that female C whitei and C. dalmanni exhibit relativepreferences for longer eye stalks such that preference intensityincreases linearly with the difference in eye stalk length betweenmales. Females from the sexually monomorphic species showedno detectable preference for male eye stalk length. Female matingpreferences of bodi sexually dimorphic species exhibited significantrepeatability, as expected if genetic variation underlies thepreference. In addition, female C whitei and C. dalmanni exhibitedshorter copulations, mated more frequently, and rejected fewermating attempts than female C quinqueguttata. Thus, opportunitiesfor sperm competition have increased with acquisition of femalepreferences. We conclude that female sensory bias for maleswith long eye span did not exist in a common ancestor to thesespecies. Instead, female preference and remating propensityeither coevolved with eye span dimorphism or evolved after maleeye stalks elongated.  相似文献   

2.
Stalk-eyed flies (Diptera: Diopsidae) possess eyes at the ends of elongated peduncles, and exhibit dramatic variation in eye span, relative to body length, among species. In some sexually dimorphic species, evidence indicates that eye span is under both intra- and intersexual selection. Theory predicts that isolated populations should evolve differences in sexually selected traits due to drift. To determine if eye span changes as a function of divergence time, 1370 flies from 10 populations of the sexually dimorphic species, Cyrtodiopsis dalmanni and Cyrtodiopsis whitei, and one population of the sexually monomorphic congener, Cyrtodiopsis quinqueguttata, were collected from Southeast Asia and measured. Genetic differentiation was used to assess divergence time by comparing mitochondrial (cytochrome oxidase II and 16S ribosomal RNA gene fragments) and nuclear (wingless gene fragment) DNA sequences for c. five individuals per population. Phylogenetic analyses indicate that most populations cluster as monophyletic units with up to 9% nucleotide substitutions between populations within a species. Analyses of molecular variance suggest a high degree of genetic structure within and among the populations; > 97% of the genetic variance occurs between populations and species while < 3% is distributed within populations, indicating that most populations have been isolated for thousands of years. Nevertheless, significant change in the allometric slope of male eye span on body length was detected for only one population of either dimorphic species. These results are not consistent with genetic drift. Rather, relative eye span appears to be under net stabilizing selection in most populations of stalk-eyed flies. Given that one population exhibited dramatic evolutionary change, selection, rather than genetic variation, appears to constrain eye span evolution.  相似文献   

3.
Summary Cyrtodiopsis whitei (Diopsidae) from Malaysia is one of the stalk-eyed flies which show a marked sexual dimorphism ofeye spans. The particularly long eye stalks of male flies are to be regarded as an epigamic feature. Field observations show the males' eye spans to be correlated with the possession of a harem and with that harem's size. The question whether such a harem is acquired by male competition only, or whether female choice plays a part, is solved in female preference tests, offering dummy males of different eye spans for choice. Optical clues are found to be the relevant stimuli.  相似文献   

4.
Some species of stalk-eyed flies (Diopsidae, Diptera) have a sexual dimorphism of eyespan. For example, Cyrtodiopsis whitei males have much longer eyestalks than females of equal body length. Expression of this trait increases with the bearers' size. The slope of the log-log regression line eyespan versus body length is close to two in males, while in females it is roughly one. Behavioural experiments suggest that male eyespan signals quantitatively a male's strength or attractiveness to a competitor or mate. We used 3 pure strains of C. Whitei, which were distinguished by their different phosphoglucomutase allele outfit. We compared the reproductive success of males of different sizes and found the number of offspring to be directly proportional to body length. Thus eyespan, rising with the square of body length, provides an exaggerated and highly conclusive signal in the advertisement of fitness.  相似文献   

5.
The eyes of stalk‐eyed flies (Diopsidae) are positioned at the end of rigid peduncles (‘stalks’) protruding laterally from the head. Eye‐stalk length varies within the family and, in some species, varies between males and females. Larger eye‐stalks in males result from sexual selection for longer stalks, a trait that increases male reproductive success. In the present study, we examined whether an increase in eye‐stalk length results in an adjustment of wing size and shape to deal with the burden of bearing an exaggerated ‘ornament’. We compared wing morphology among ten species of stalk‐eyed flies that differ in eye‐span and the degree of sexual dimorphism. Mass‐specific wing length differed between males and females in seven out of the ten species. Nondimensional wing shape parameters differed between the species (P < 0.001), but mostly did not differ between males and females of the same species. Dimorphism in eye‐span closely correlated with dimorphism in wing length (r = 0.89, P < 0.001) and the correlation remained significant (r = 0.81, P = 0.006) after correcting for phylogenetic relationships. Once corrected for phylogenetic relatedness, the mass‐specific wing length of males (but not females) was weakly correlated with mass‐specific eye‐span (r = 0.66, P = 0.042). We propose that the observed proportional increase in wing length associated with increased eye‐span can facilitate aerial manoeuverability, which would otherwise be handicapped by the elevated moment of inertia imposed by the wider head. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98 , 860–871.  相似文献   

6.
The eyes of stalk-eyed flies (Diopsidae) are positioned at the end of rigid peduncles projected laterally from the head. In dimorphic species the eye-stalks of males exceed the eye-stalks of females and can exceed body length. Eye-stalk length is sexually selected in males improving male reproductive success. We tested whether the long eye-stalks have a negative effect on free-flight and aerial turning behavior by analyzing the morphology and free-flight trajectories of male and female Cyrtodiopsis dalmanni. At flight posture the mass-moment-of-inertia for rotation about a vertical axis was 1.49-fold higher in males. Males also showed a 5% increase in wing length compared to females. During free-flight females made larger turns than males (54 ± 31.4 vs. 49 ± 36.2°, t test, P < 0.033) and flew faster while turning (9.4 ± 5.45 vs. 8.4 ± 6.17 cm s−1, ANOVA, P < 0.021). However, turning performance of both sexes overlapped, and turn rate in males even marginally exceeded turn rate in females (733 ± 235.3 vs. 685 ± 282.6 deg s−1, ANCOVA, P < 0.047). We suggest that the increase in eye-span does result in an increase in the mechanical requirements for aerial turning but that male C. dalmanni are capable of compensating for the constraint of longer eye-stalks during the range of turns observed through wingbeat kinematics and increased wing size.  相似文献   

7.
SUMMARY We studied the developmental basis of exaggerated eye span in two species of stalk-eyed flies ( Cyrtodiopsis dalmanni and Sphyracephala beccarri ). These flies have eyes laterally displaced at the end of eyestalks, and males have greatly exaggerated eye span, which they use as a sexual display. To investigate eye span development we have compared eye-antennal disc morphology and the expression of three key regulator genes of Drosophila head development, Distal-less ( Dll ) , engrailed ( en ), and wingless ( wg ), in the stalk-eyed flies and Drosophila . We found great similarity in the basic division of the disc into anterior-antennal and posterior-eye portions and in the general patterning of Dll, en , and wg . Unexpectedly, our results showed that although the eye and antenna are adjacent in adult stalk-eyed flies, their primordia are physically separated by the presence of an intervening region between the anterior and posterior portions of the disc. This region is absent from Drosophila eye-antennal discs. We chose two stalk-eyed fly species that differed in the degree of eyestalk exaggeration but surprisingly we found no corresponding difference in the size of the en-wg expression domains that mark the boundaries of the dorsal head capsule primordia. In summary, our expression data establish the regional identity of the eye-antennal disc and provide a framework from which to address the developmental genetics of hypercephaly.  相似文献   

8.
Diopsid flies have eye stalks up to a centimeter in length, displacing the retina laterally from the rest of the head. This bizarre condition, called hypercephaly, is rare, but has evolved independently among several insect orders and is most common in flies (Diptera). Earlier studies of geometrical optics and behavior have led to various hypotheses about possible adaptive advantages of eye stalks, such as enhanced stereoscopic vision while other hypothesis suggest that eye stalks are an outcome of sexual selection. Here, we focus on how these curious distortions of head/eye morphology are accompanied by changes in the neural organization of the visual system of Cyrtodiopsis quinqueguttata. Histological examinations reveal that the optic lobes, lamina (La), medulla (Me), lobula (Lo), and lobula plate (LP) are contained entirely within the fly's eye bulbs, which are located at the distal ends of the eye stalks. We report that the organization of the peripheral visual system (La and Me) is similar to that of other Diptera (e.g., Musca and Drosophila), but deeper visual areas (Lo and LP) have been more strongly modified. For example, in both the lobula and lobula plate, fewer but larger giant collector neurons are found. The most pronounced difference is the reduction in the number of wide-field vertical cells of the lobula plate, where there are only four relatively large fibers, as opposed to 11 in Musca. The “fewer but larger” neural organization may enhance the conduction velocities of these cells, but may result in a loss of spatial resolution. At the base of the eye bulb, axon bundles collect and form a long optic nerve that extends the length of the eye stalk. We suggest that this organization of the diopsid visual system provides evidence for the costs of possessing long eye stalks. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 449–468, 1998  相似文献   

9.
Larger male Caribbean fruit flies are more likely to be chosen as mates and defeat rivals in territorial contests. Yet males are smaller than females. Adaptive explanations for relatively small male size include (1) acceleration of male development to maximize female encounter rates, (2) selection for greater female size to increase fecundity, and (3) selection for body sizes most suitable for sexually dimorphic degrees of mobility, speed, and distance flight. None of these unambiguously accounts for the degree of sexual dimorphism. Male development is not accelerated relative to that of females. On average, males remain inside fruit longer than females and those males with extended development periods are smaller than more rapidly developing individuals. There is no evidence that female enlargement alone, presumably for greater fecundity, has generated the degree of dimorphism in the Caribbean fruit fly or other fruit flies. The relationship between dimorphism and mean female body size in 27 species of Tephritidae is the opposite of what would be predicted if differences in dimorphism were due to differences in unilateral female enlargement. Larger size in a species or in one sex of a species may be an adaptation for extensive flight. In general, among 32 species of fruit flies, as body size increases, wing shape becomes progressively more suited for distance flight. However, there are important exceptions to this correlation. Both sexual selection and nonadaptive allometries may contribute to the range of dimorphisms within the family.  相似文献   

10.
Fungus weevils, Exechesops leucopis (Anthribidae), are sexually dimorphic in the degree of eye protrusion and antenna elongation. I examined the allometric relationships of eye span, eyestalk length, antenna length, elytra width, and wing length against body size (pronotum width), and their effects on the outcome of male-male combat in the laboratory. Male eye span, eyestalk length, and antenna length indicated positive allometry, while elytra width showed isometry, and wing length showed negative allometry. In male-male combat, males with a larger eye span, antenna length, and body size defeated those with smaller attributes. However, when males fought experimentally males of similar body size, only eye span affected the outcome of combat, independent of body size and antenna length. In the female-female contests, the prior residency was an important determinant of victory the other than any morphological traits.  相似文献   

11.
Females of the stalk-eyed fly, Cyrtodiopsis dalmanni, mate repeatedly during their lifetime and exhibit mating preferencefor males with large eye span. How these mating decisions affectfemale fitness is not fully understood. In this study, we examinedthe effects of multiple mating and male eye span on short-termreproductive output in this species. Experiments that manipulatedthe number of copulations and partners a female received suggested that obtaining a sufficient sperm supply is an important benefitassociated with multiple mating. The average percentage offertile eggs laid by females increased as a function of matingfrequency and ranged from 40% for females mated once, to 80%for females mated continuously. In addition, a high proportionof copulations in this species appeared to be unsuccessful. One-third of all females mated once laid less than 10% fertileeggs. There was no significant difference in reproductive performancebetween females mated to multiple partners and females matedto a single partner. There was also no indication that femalesreceived any short-term reproductive benefits from mating withmales with large eye span. In fact, females mated to males with short eye span laid a higher percentage of fertile eggs thanfemales mated to large eye span males.  相似文献   

12.
The placement of eyes on insect head is an important evolutionary trait. The stalk‐eyed fly, Cyrtodopsis whitei, exhibits a hypercephaly phenotype where compound eyes are located on lateral extension from the head while the antennal segments are placed inwardly on this stalk. This stalk‐eyed phenotype is characteristic of the family Diopsidae in the Diptera order and dramatically deviates from other dipterans, such as Drosophila. Like other insects, the adult eye and antenna of stalk‐eyed fly develop from a complex eye‐antennal imaginal disc. We analyzed the markers involved in proximo‐distal (PD) axis of the developing eye imaginal disc of the stalk‐eyed flies. We used homothorax (hth) and distalless (dll), two highly conserved genes as the marker for proximal and distal fate, respectively. We found that lateral extensions between eye and antennal field of the stalk‐eyed fly's eye‐antennal imaginal disc exhibit robust Hth expression. Hth marks the head specific fate in the eye‐ and proximal fate in the antenna‐disc. Thus, the proximal fate marker Hth expression evolves in the stalk‐eyed flies to generate lateral extensions for the placement of the eye on the head. Moreover, during pupal eye metamorphosis, the lateral extension folds back on itself to place the antenna inside and the adult compound eye on the distal tip. Interestingly, the compound eye in other insects does not have a prominent PD axis as observed in the stalk‐eyed fly.  相似文献   

13.
The factors maintaining sex chromosome meiotic drive, or sex ratio (SR), in natural populations remain uncertain. Coevolution between segregation distortion and modifiers should produce transient SR distortion while selection can result in a stable polymorphism. We hypothesize that if SR is maintained by selection, then phylogenetically related populations should exhibit similar SR frequency and intensity. Furthermore, when drive is present, females should mate with multiple males more often both to insure fertility and to increase the probability of producing male progeny. In this paper we report on variation in SR frequency and multiple mating among seven populations and three species of stalk-eyed flies, genus Cyrtodiopsis, from southeast Asia. Using a phylogenetic hypothesis based on 1100 bp of mtDNA sequence we find that while sex chromosome meiotic drive is present in all populations of C. whitei and C. dalmanni, the frequency and intensity of drive only differs between populations or species with greater than 4.8% sequence divergence. The frequency of females mating with multiple males is higher in populations with SR. In addition, SR males mate less often, possibly to compensate for sperm depletion. Our results suggest that sex chromosome drive is maintained by balancing selection in populations of C. whitei and C. dalmanni. Nevertheless, coevolution between drive and suppressors deserves further study.  相似文献   

14.
Circadian clocks regulate the daily temporal structure of physiological and behavioural functions. In the fruit fly Drosophila melanogaster Meigen, disruption of daily rhythms is suggested to reduce the fly's lifespan. In the present study, because pairs of mixed‐sex flies are known to show an activity pattern different from that of individual flies, this hypothesis is tested by measuring the lifespan of flies housed same‐sexually or mixed‐sexually under an LD 12 : 12 h photocycle at a constant temperature of 25 °C. The effect of housing wild‐type (Canton‐S) flies with period (per) circadian clock mutant flies is also examined because the mutant flies have different daily activity patterns. When males and females of wild‐type flies are housed together, their lifespan is substantially lengthened (males) or shortened (females) compared with same‐sex housed flies. The shortening of the lifespan in females is significantly enhanced when mated with per mutant males. The shortening effects are significantly reduced when the mixed‐sex interaction is limited for the first 5 days after emergence. A slight elongation in lifespan, rather than a reduction, occurs when wild‐type females are housed same‐sexually with per0 or perL mutant flies. In male flies, the elongation of lifespan occurs not only when wild‐type males are housed with wild‐type, per0 or perL females, but also when housed with per0 or perS mutant males. Mixed‐sex couples always show altered daily locomotor rhythms with an enhanced night‐time activity, whereas same‐sex couples show daily behavioural profiles slightly altered but essentially similar to a sum of the respective two flies. No significant correlation is found between the lifespan and reproductive capacity. These results suggest that the alteration of daily activity rhythms and sexual interaction may have significant impact on the fly's lifespan.  相似文献   

15.
Comparative analysis of the wing apparatus and flight in nine species of flower flies (Syrphidae) has been performed. Data on the flight velocity, aerodynamic force, wing-beat frequency, stroke amplitude and stroke plane angle, wing area, body mass and volume, as well as correlations between these parameters at the intraspecific and family levels, have been obtained. Based on the obtained data, the subfamilies Syrphinae and Eristalinae have been compared.  相似文献   

16.
Sex‐linked segregation distorters cause offspring sex ratios to differ from equality. Theory predicts that such selfish alleles may either go to fixation and cause extinction, reach a stable polymorphism or initiate an evolutionary arms race with genetic modifiers. The extent to which a sex ratio distorter follows any of these trajectories in nature is poorly known. Here, we used X‐linked sequence and simple tandem repeat data for three sympatric species of stalk‐eyed flies (Teleopsis whitei and two cryptic species of T. dalmanni) to infer the evolution of distorting X chromosomes. By screening large numbers of field and recently laboratory‐bred flies, we found no evidence of males with strongly female‐biased sex ratio phenotypes (SR) in one species but high frequencies of SR males in the other two species. In the two species with SR males, we find contrasting patterns of X‐chromosome evolution. T. dalmanni‐1 shows chromosome‐wide differences between sex‐ratio (XSR) and standard (XST) X chromosomes consistent with a relatively old sex‐ratio haplotype based on evidence including genetic divergence, an inversion polymorphism and reduced recombination among XSR chromosomes relative to XST chromosomes. In contrast, we found no evidence of genetic divergence on the X between males with female‐biased and nonbiased sex ratios in T. whitei. Taken with previous studies that found evidence of genetic suppression of sex ratio distortion in this clade, our results illustrate that sex ratio modification in these flies is undergoing recurrent evolution with diverse genomic consequences.  相似文献   

17.
The oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is a pest of fruit and vegetable production that has become established in 42 countries in Africa after its first detection in 2003 in Kenya. It is likely that this rapid expansion is partly due to the reported strong capacity for flight by the pest. This study investigated the tethered flight performance of B. dorsalis over a range of constant temperatures in relation to sex and age. Tethered flight of unmated B. dorsalis aged 3, 10 and 21 days was recorded for 1 h using a computerized flight mill at temperatures of 12, 16, 20, 24, 28, 32 and 36 °C. Variations in fly morphology were observed as they aged. Body mass and wing loading increased with age, whereas wing length and wing area reduced as flies aged. Females had slightly larger wings than males but were not significantly heavier. The longest total distance flown by B. dorsalis in 1 h was 1559.58 m. Frequent short, fast flights were recorded at 12 and 36 °C, but long-distance flight was optimal between 20 and 24 °C. Young flies tended to have shorter flight bouts than older flies, which was associated with them flying shorter distances. Heavier flies with greater wing loading flew further than lighter flies. Flight distances recorded on flight mills approximated those recorded in the field, and tethered flight patterns suggest a need to factor temperature into the interpretation of trap captures.  相似文献   

18.
To gain insight into how temperature affects locomotor performance in insects, the limits of flight performance have been estimated in freely flying fruit flies Drosophila melanogaster by determining the maximum load that a fly could carry following take-off. At a low ambient temperature of 15 °C, muscle mechanical power output matches the minimum power requirements for hovering flight. Aerodynamic force production rises with increasing temperature and eventually saturates at a flight force that is roughly equal to 2.1 times the body mass. Within the two-fold range of different body sizes, maximum flight force production during free flight does not decrease with decreasing body size as suggested by standard aerodynamic theories. Estimations of flight muscle mechanical power output yields a peak performance of 110 W kg−1 muscle tissue for short-burst flight that was measured at an ambient temperature of 30 °C. With respect to the uncertainties in estimating muscle mechanical power during free flight, the estimated values are similar to those that were published for flight under tethered flight conditions. Accepted: 5 January 1999  相似文献   

19.
Abstract. Body temperatures and kinematics are measured for male Centris pallida bees engaged in a variety of flight behaviours (hovering, patrolling, pursuit) at a nest aggregation site in the Sonoran Desert. The aim of the study is to test for evidence of thermoregulatory variation in convective heat loss and metabolic heat production and to assess the mechanisms of acceleration and forward flight in field conditions. Patrolling males have slightly (1–3 °C) cooler body temperatures than hoverers, despite similar wingbeat frequencies and larger body masses, suggesting that convective heat loss is likely to be greater during patrolling flight than during hovering. Comparisons of thorax and head temperature as a function of air temperature (Ta) indicate that C. pallida males are thermoregulating the head by increasing heat transfer from the thorax to the head at cool Ta. During patrolling flight and hovering, wingbeat frequency significantly decreases as Ta increases, indicating that variation in metabolic heat production contributes to thermal stability during these behaviours, as has been previously demonstrated for this species during flight in a metabolic chamber. However, wingbeat frequency during brief (1–2 s) pursuits is significantly higher than during other flight behaviours and independent of Ta. Unlike most other hovering insects, C. pallida males hover with extremely inclined stroke plane angles and nearly horizontal body angles, suggesting that its ability to vary flight speed depends on changes in wingbeat frequency and other kinematic mechanisms that are not yet described.  相似文献   

20.
Several patterns of sexual shape dimorphism, such as male body elongation, eye stalks, or extensions of the exoskeleton, have evolved repeatedly in the true flies (Diptera). Although these dimorphisms may have evolved in response to sexual selection on male body shape, conserved genetic factors may have contributed to this convergent evolution, resulting in stronger phenotypic convergence than might be expected from functional requirements alone. I compared phenotypic variation in body shape in two distantly related species exhibiting sexually dimorphic body elongation: Prochyliza xanthostoma (Piophilidae) and Telostylinus angusticollis (Neriidae). Although sexual selection appears to act differently on male body shape in these species, they exhibited strikingly similar patterns of sexual dimorphism. Likewise, patterns of within-sex shape variation were similar in the two species, particularly in males: relative elongation of the male head capsule, antenna, and legs was associated with reduced head capsule width and wing length, but was nearly independent of variation in thorax length. However, the two species presented contrasting patterns of static allometry: male sexual traits exhibited elevated allometric slopes in T. angusticollis, but not in P. xanthostoma. These results suggest that a shared pattern of covariation among traits may have channeled the evolution of sexually dimorphic body elongation in these species. Nonetheless, static allometries may have been shaped by species-specific selection pressures or genetic architectures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号