首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 361 毫秒
1.
Phillips JR  Dalmay T  Bartels D 《FEBS letters》2007,581(19):3592-3597
It was recently discovered that plants respond to environmental stress not only with a specific gene expression programme at the mRNA and protein level but also small RNAs as response modulators play an important role. The small RNAs lead to cleavage or translational inhibition of mRNAs via complementary target sites. Different examples are described where small RNAs have been shown to be involved in stress responses. A link between hormonal action and small RNA activities has frequently been observed thus coupling exogenous factors with endogenous transmitters. Using the CDT-1 gene from the desiccation tolerant plant Craterostigma plantagineum as an example, it is discussed that generation of novel small RNAs could be an evolutionary pathway in plants to adapt to extreme environments.  相似文献   

2.
向日葵作为我国五大油料作物之一,具有极高的食用价值和油用价值。向日葵在我国的种植分布集中在东北、西北和华北地区,时常面临着干旱、盐碱、温度和重金属胁迫的问题。主要综述了近年来向日葵面临的几种主要逆境胁迫的最新研究进展,以及在不同逆境胁迫下向日葵的耐受机制,并根据不同逆境胁迫筛选出了相应的抗逆向日葵品种,同时进行了生理差异和基因信息分析。通过阐明向日葵在逆境胁迫下的耐受机制,以期对向日葵高产育种及耐逆育种提供理论依据和指导方向。  相似文献   

3.
Among the heat shock proteins (HSPs) of higher plants, those belonging to the small HSP (sHSP) family remain the least characterized in functional terms. To improve our understanding of sHSPs, we have characterized RcHSP17.8 from Rosa chinensis . Sequence alignments and phylogenetic analysis reveal this to be a cytosolic class I sHSP. RcHSP17.8 expression in R. chinensis was induced by heat, cold, salt, drought, osmotic and oxidative stresses. Recombinant RcHSP17.8 was overexpressed in Escherichia coli and yeast to study its possible function under stress conditions. The recombinant E. coli and yeast cells that accumulated RcHSP17.8 showed improved viability under thermal, salt and oxidative stress conditions compared with control cultures. We also produced transgenic Arabidopsis thaliana that constitutively expressed RcHSP17.8. These plants exhibited increased tolerance to heat, salt, osmotic and drought stresses. These results suggest that R. chinensis cytosolic class I sHSP (RcHSP17.8) has the ability to confer stress resistance not only to E. coli and yeast but also to plants grown under a wide variety of unfavorable environmental conditions.  相似文献   

4.
Desiccation, resulting from extremely dry environmental conditions, is a serious obstacle to the survival of organisms. Water is vital for the maintenance of intracellular structure and prevents the irreversible formation of aggregates, an occurrence leading to loss of cellular function. To characterize genetic variation in desiccation stress resistance (DSR) in Drosophila melanogaster Meigen, an intercontinental set of recombinant inbred lines (RIL) is used. Flies are exposed to a low humidity environment (<10% relative humidity) at a constant temperature of 25 °C. Desiccation stress resistance is higher in RIL derived from a backcross to the parental stock sensitive to heat stress (from Denmark) than in RIL derived from the reciprocal backcross to the heat‐stress resistant stock (from Australia). Composite interval mapping reveals significant quantitative trail loci (QTL) for DSR in the set of RIL. Both major and minor effects QTL are detected, suggesting a complex genetic architecture. When compared with a previous investigation performed on the same set of RIL, the present study indicates that not all traits of resistance to environmental stressors are affected in the same direction by segregating co‐localized QTL.  相似文献   

5.
转录因子是一类在生物生命活动过程中起到调控作用的重要因子,参与了各种信号转导和调控过程,可以直接或间接结合在顺式作用元件上,实现调控目标基因转录效率的抑制或增强,从而使植物在应对逆境胁迫下做出反应。 WRKY转录因子在大多数植物体内都有分布,是一类进化非常保守的转录因子家族,参与植物生长发育以及响应逆境胁迫的生理过程。众多研究表明,WRKY转录因子在植物中能够应答各种生物胁迫,如细菌、病毒和真菌等;多种非生物胁迫,包括高温、冷害、高光和高盐等;以及在各种植物激素,包括茉莉酸( JA)、水杨酸( SA)、脱落酸( ABA)和赤霉素( GA)等,在其信号传递途径中都起着重要作用。 WRKY转录因子家族蛋白至少含有一段60个氨基酸左右的高度保守序列,被称为WRKY结构域,其中WRKYGQK多肽序列是最为保守的,因此而得名。该转录因子的WRKY结构域能与目标基因启动子中的顺式作用元件W ̄box( TTGAC序列)特异结合,从而调节目标基因的表达,其调控基因表达主要受病原菌、虫咬、机械损伤、外界胁迫压力和信号分子的诱导。该文介绍了植物WRKY转录因子在植物应对冷害、干旱、高盐等非生物胁迫与病菌、虫害等生物胁迫反应中的重要调控功能,并总结了WRKY转录因子在调控这些逆境胁迫反应过程中的主要生理机制。  相似文献   

6.
旨在揭示马铃薯OSM-3b基因表达对胁迫的响应。分离获得了OSM-3b的cDNA,构建OSM-3b的重组菌株DH-OSM,实现OSM-3b在大肠杆菌中的表达,RT-PCR检测了NaCl和PEG6000不同浓度梯度下OSM-3b的表达。结果显示,NaCl浓度在1%以上随盐浓度升高,OSM-3b mRNA的表达逐渐下降;在PEG6000浓度从0.25%升至4.0%时,OSM-3b的mRNA表达明显上升;在NaCl胁迫和PEG6000浓度梯度渗透胁迫下,重组菌株DH-OSM菌的菌落存活数统计分析结果显示,在不同NaCl浓度下重组菌的菌落存活数与对照趋势一致,重组菌菌落存活数峰值出现在的PEG6000浓度2.0%时,而对照菌DH-28c峰值则出现在PEG6000浓度1.0%时。结果表明,OSM-3b在大肠杆菌中表达对NaCl胁迫没有响应,但可缓冲渗透胁迫对其存活的影响。  相似文献   

7.
The role of phytochrome in stress tolerance   总被引:1,自引:0,他引:1  
It is well-documented that phytochromes can control plant growth and development from germination to flowering. Additionally, these photoreceptors have been shown to modulate both biotic and abiotic stress. This has led to a series of studies exploring the molecular and biochemical basis by which phytochromes modulate stresses, such as salinity, drought, high light or herbivory. Evidence for a role of phytrochromes in plant stress tolerance is explored and reviewed.  相似文献   

8.
盐碱混合生态条件的人工模拟及其对羊草胁迫作用因素分析   总被引:12,自引:0,他引:12  
将中性盐NaCl和Na2SO4,碱性盐NaHCO3和Na2CO3按不同比例混合,模拟出30种盐度和pH各不相同的盐碱生态条件,并对羊草苗进行盐碱混合胁迫处理,测定其日相对生长率(RGR)等7项胁变指标,用数学方法分析盐度,缓冲量等各种胁迫因素与诸项胁变指标间的相互关系,结果表明:30种处理均匀覆盖了总盐度50-350mmol/L,pH7.14-10.81范围内的各种盐碱条件,用盐度,缓冲量,pH和[Cl^-]即可代表盐碱混合胁迫的所有胁迫作用因素,诸胁变指标与这4因素间均具有高度线性相关性,4因素对胁变的贡献明显不同,其中缓冲量和盐度是决定性的主导因素,pH和[Cl^-]的作用明显次之,有时甚至可以忽略,不同胁变指标与各因素的关系也有不同。分析结果表明,对于盐碱混合胁迫来说,以盐度加缓冲量代表总胁强较为合理。  相似文献   

9.
Seedlings of Aneurolepidium chinense (Trin.) Kitag. were subjected to stress with 30 kinds of 50 to 350 mmol/L of salt mixture which were composed of NaC1, NaHCO3, Na2SO4, and Na2CO3 in various proportion. The results showed that all the responded strains, such as changes in the relative growth rate (RGR), K+ and Na+ contents, content of proline accumulation, and leave electrolyte leakage rate, were aggravated with the increasing salt concentrations and the proportion of the basic salts. The strain reaction from high pH caused by the basic salt was closely related to salinity. The high pH reaction was weaker when the salinity was lower and became progressively stronger intensely with the increasing salinity. The results indicated that there were actually two stresses, the salt and the alkaline stress in the mixed salt stress. It was reasonable to consider the total salt concentration as the strength value of salt stress and the buffer capacity as the strength value of alkaline stress. When the alkaline stress was weak, the strain effect was mainly associated with the total salt concentration, but the buffer capacity became the dominant factor effecting strain with the increasing alkaline stress.  相似文献   

10.
11.
Chicory (Cichorium intybus) roots contain high amounts of inulin, a fructose polymer used as a storage carbohydrate by the plant and as a human dietary and prebiotic compound. We performed 2‐D electrophoretic analysis of proteins from root material before the first freezing period. The proteins were digested with trypsin and the peptides analyzed by MS (MALDI‐TOF/TOF). From the 881 protein spots analyzed, 714 proteins corresponded to a database accession, 619 of which were classified into functional categories. Besides expected proteins (e.g. related to metabolism, energy, protein synthesis, or cell structure), other well‐represented categories were proteins related to folding and stability (49 spots), proteolysis (49 spots), and the stress response (67 spots). The importance of abiotic stress response was confirmed by the observation that 7 of the 21 most intense protein spots are known to be involved in cold acclimation. These results suggest a major effect of the low temperature period that preceded root harvesting.  相似文献   

12.
脂质是生命有机体中一类重要的化合物,可以参与并调节多种生命活动,并且在植物应答非生物胁迫(盐胁迫、干旱胁迫和温度胁迫等)过程中发挥着重要生理功能。但长期以来,对于脂质的研究多集中于动物细胞和医学领域,却疏于关注植物研究领域。借助于"组"学思想和生物技术的快速发展,脂质组学由于可以深层次、全面地揭示脂质的组分与功能,近年来备受关注。基于此,文中通过对脂质的功能与分类、脂质组学技术进展、植物脂质响应干旱胁迫、盐胁迫和温度胁迫生理功能进展等的国内外现有研究进行了归纳与总结,并提出了不足与展望,为探索脂质在植物抗逆过程的生理功能和脂质组学等领域深入研究提供一定的基础。  相似文献   

13.
14.
Variation in the steady state (FT) to fluorescence peak (FP) ratio of Nicotiana tabacum L. cv. Xanthi-nc leaves in relation to their position on the plant were correlated with the survival in vitro of protoplasts isolated. The FT/FP ratio detected variation in the protoplast survival potential in individual plants in a batch and between batches of donor plants. Deliberately waterlogged and droughted plants had increased FT/FP values and decreased protoplast survival potential.
The use of slow-phase chlorophyll fluorescence characteristics as a predictive parameter of protoplast survival potential is discussed and compared with the use of stress ethylene and stress ethane measurements for the same purpose.  相似文献   

15.
逆境胁迫对水稻DNA甲基化水平的影响   总被引:1,自引:0,他引:1  
植物在逆境胁迫下发生复杂的表现遗传变化,包括DNA甲基化、组蛋白修饰和RNA介导的基因沉默等.其中DNA甲基化是表现遗传学中的重要组成部分,主要通过甲基化、去甲基化来参与逆境胁迫下基因表达的调控,进而增强植物体的抗逆性,调节植物体的生长发育.就非生物与生物胁迫对水稻DNA甲基化水平的影响进行综述,为从表观遗传水平研究水稻抗逆性的机制提供理论参考.  相似文献   

16.
《Fungal biology》2021,125(11):891-904
Light is an important signal for fungi in the environment and induces many genes with roles in stress and virulence responses. Conidia of the entomopathogenic fungi Aschersonia aleyrodis, Beauveria bassiana, Cordyceps fumosorosea, Lecanicillium aphanocladii, Metarhizium anisopliae, Metarhizium brunneum, Metarhizium robertsii, Simplicillium lanosoniveum, Tolypocladium cylindrosporum, and Tolypocladium inflatum were produced on potato dextrose agar (PDA) medium under continuous white light, on PDA medium in the dark, or under nutritional stress (= Czapek medium without sucrose = MM) in the dark. The conidial tolerance of these species produced under these different conditions were evaluated in relation to heat stress, oxidative stress (menadione), osmotic stress (KCl), UV radiation, and genotoxic stress caused by 4-nitroquinoline 1-oxide (4-NQO). Several fungal species demonstrated greater stress tolerance when conidia were produced under white light than in the dark; for instance white light induced higher tolerance of A. aleyrodis to KCl and 4-NQO; B. bassiana to KCl and 4-NQO; C. fumosorosea to UV radiation; M. anisopliae to heat and menadione; M. brunneum to menadione, KCl, UV radiation, and 4-NQO; M. robertsii to heat, menadione, KCl, and UV radiation; and T. cylindrosporum to menadione and KCl. However, conidia of L. aphanocladii, S. lanosoniveum, and T. inflatum produced under white light exhibited similar tolerance as conidia produced in the dark. When conidia were produced on MM, a much stronger stress tolerance was found for B. bassiana to menadione, KCl, UV radiation, and 4-NQO; C. fumosorosea to KCl and 4-NQO; Metarhizium species to heat, menadione, KCl, and UV radiation; T. cylindrosporum to menadione and UV radiation; and T. inflatum to heat and UV radiation. Again, conidia of L. aphanocladii and S. lanosoniveum produced on MM had similar tolerance to conidia produced on PDA medium in the dark. Therefore, white light is an important factor that induces higher stress tolerance in some insect-pathogenic fungi, but growth in nutritional stress always provides in conidia with stronger stress tolerance than conidia produced under white light.  相似文献   

17.
木质纤维素预处理过程中产生的有毒副产物严重影响了纤维素乙醇发酵,提高酿酒酵母抑制物耐受性是提高纤维素乙醇发酵效率的有效方法。文中通过过表达LCB4基因,研究了重组菌株S288C-LCB4在乙酸、糠醛和香草醛胁迫下的细胞生长和乙醇发酵性能。结果表明,LCB4过表达菌株在分别含有10 g/L乙酸、1.5 g/L糠醛和1 g/L香草醛的平板中生长均优于对照菌株;在分别含有10 g/L乙酸、3 g/L糠醛和2 g/L香草醛的液体乙醇发酵过程中,重组菌株S288C-LCB4乙醇发酵产率分别为0.85 g/(L·h)、0.76 g/(L·h)和1.12 g/(L·h),比对照菌株提高了34.9%、85.4%和330.8%;且糠醛和香草醛胁迫下发酵时间分别缩短了30 h和44 h。根据发酵终点发酵液代谢物分析发现重组菌株比对照菌株产生了更多甘油、海藻糖和琥珀酸,这些物质有利于增强菌株的抑制物耐受性。综上所述,LCB4基因过表达可显著提高酿酒酵母S288C在乙酸、糠醛和香草醛胁迫下的乙醇发酵性能。  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号