首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
The rice blast pathogen, Magnaporthe oryzae has been widely used as a model pathogen to study plant infection-related fungal morphogenesis, such as penetration via appressorium and plant-microbe interactions at the molecular level. Previously, we identified a gene encoding peroxisomal alanine: glyoxylate aminotransferase 1 (AGT1) in M. oryzae and demonstrated that the AGT1 was indispensable for pathogenicity. The AGT1 knockout mutants were unable to penetrate the host plants, such as rice and barley, and therefore were non-pathogenic. The inability of ∆Moagt1 mutants to penetrate the susceptible plants was likely due to the disruption in coordination of the β-oxidation and the glyoxylate cycle resulted from a blockage in lipid droplet mobilization and eventually utilization during conidial germination and appressorium morphogenesis, respectively. Here, we further demonstrate the role of AGT1 in lipid mobilization by in vitro germination assays and confocal microscopy.  相似文献   

4.
Endocytosis is an essential cellular process in eukaryotic cells that involves concordant functions of clathrin and adaptor proteins, various protein and lipid kinases, phosphatases and the actin cytoskeleton. In Saccharomyces cerevisiae, Ark1p is a member of the serine/threonine protein kinase (SPK) family that affects profoundly the organization of the cortical actin cytoskeleton. To study the function of MoArk1, an Ark1p homologue identified in Magnaporthe oryzae, we disrupted the MoARK1 gene and characterized the ΔMoark1 mutant strain. The ΔMoark1 mutant exhibited various defects ranging from mycelial growth and conidial formation to appressorium‐mediated host infection. The ΔMoark1 mutant also exhibited decreased appressorium turgor pressure and attenuated virulence on rice and barley. In addition, the ΔMoark1 mutant displayed defects in endocytosis and formation of the Spitzenkörper, and was hyposensitive to exogenous oxidative stress. Moreover, a MoArk1‐green fluorescent protein (MoArk1‐GFP) fusion protein showed an actin‐like localization pattern by localizing to the apical regions of hyphae. This pattern of localization appeared to be regulated by the N‐ethylmaleimide‐sensitive factor attachment protein receptor (SNARE) proteins MoSec22 and MoVam7. Finally, detailed analysis revealed that the proline‐rich region within the MoArk1 serine/threonine kinase (S_TKc) domain was critical for endocytosis, subcellular localization and pathogenicity. These results collectively suggest that MoArk1 exhibits conserved functions in endocytosis and actin cytoskeleton organization, which may underlie growth, cell wall integrity and virulence of the fungus.  相似文献   

5.
6.
7.
8.
Summary During germination and subsequent growth of fatty seeds, higher plants obtain energy from the glyconeogenic pathway in which fatty acids are converted to succinate in glyoxysomes, which contain enzymes for fatty acid -oxidation and the glyoxylate cycle. TheArabidopsis thaliana ped1 gene encodes a 3-ketoacyl-CoA thiolase (EC 2.3.1.16) involved in fatty acid -oxidation. Theped1 mutant shows normal germination and seedling growth under white light. However, etiolated cotyledons of theped1 mutant grow poorly in the dark and have small cotyledons. To elucidate the mechanisms of lipid degradation during germination in theped1 mutant, we examined the morphology of theped1 mutant. The glyoxysomes in etiolated cotyledons of theped1 mutant appeared abnormal, having tubular structures that contained many vesicles. Electron microscopic analysis revealed that the tubular structures in glyoxysomes are derived from invagination of the glyoxysomal membrane. By immunoelectron microscopic analysis, acyl-CoA synthetase (EC 6.2.1.3), which was located on the membrane of glyoxysomes in wild-type plants, was located on the membranes of the tubular structures in the glyoxysomes in theped1 mutant. These invagination sites were always in contact with lipid bodies. The tubular structure had many vesicles containing substances with the same electron density as those in the lipid bodies. From these results, we propose a model in which there is a direct mechanism of transporting lipids from the lipid bodies to glyoxysomes during fatty acid -oxidation.  相似文献   

9.
10.
Endocytosis plays key roles during infection of plant-pathogenic fungi, but its regulatory mechanisms are still largely unknown. Here, we identified a putative endocytosis-related gene, PAL1, which was highly expressed in appressorium of Magnaporthe oryzae, and was found to be important for appressorium formation and maturation. Deletion of PAL1 significantly reduced the virulence of M. oryzae due to defects in appressorial penetration and invasive growth in host cells. The Pal1 protein interacted and colocalized with the endocytosis protein Sla1, suggesting it is involved in endocytosis. The Δpal1 mutant was significantly reduced in appressorium formation, which was recovered by adding exogenous cAMP and 3-isobutyl-1-methylxanthine (IBMX). Moreover, the phosphorylation level of Pmk1 in Δpal1 was also reduced, suggesting Pal1 functions upstream of both the cAMP and Pmk1 signalling pathways. As a consequence, the utilization of glycogen and lipid, appressorial autophagy, actin ring formation, localization of septin proteins, as well as turgor accumulation were all affected in the Δpal1 mutant. Taken together, Pal1 regulates cAMP and the Pmk1 signalling pathway for appressorium formation and maturation to facilitate infection of M. oryzae.  相似文献   

11.
12.
The CreA protein mediates carbon catabolite repression in the fungus Aspergillus nidulans. Its DNA-binding domain belongs to the Cys2-His2 class, binding specifically to a 5′ SYGGRG 3′ nucleotide sequence. EMSA experiments showed that the CreA(G27D) mutation resulted in a 30-fold increase of the Kdiss, and footprinting revealed a altered pattern of protein/DNA contacts. We modeled the CreA and the CreA(G27D) complexes in silico. A 15?ns molecular dynamics simulation of the solvated CreA(G27D) and CreA models was carried out using the MOE 2007.09 suite and the Amber99 force field. We have focused our analysis in residues Arg14, Glu16, His17, and Arg20 and Arg44, Asp46, and Arg50, previously, shown to be responsible for the specific contacts of the two Zn fingers. The electrostatic and the total potential energies showed the CreA(G27D) mutation to decrease the affinity of the complex, in agreement with the Kdiss′s values. The in silico approach highlighted the role of the inter-finger linker. We identified several differential structural characteristics of the CreA and CreA(G27D)/DNA complexes and observed that the latter resulted in a lower dynamic flexibility of the complex.  相似文献   

13.
14.
Summary Mutants of Saccharomyces cerevisiae with reduced glucose phosphorylation were investigated. They were all recessive and belonged to one gene HEX1, mutant designation hex1. Carbon catabolite repression of alpha-glucosidases, invertase and part of the total malate dehydrogenase was reduced. Repression of the glyoxylate cycle enzymes, isocitrate lyase and malate synthetase, as well as that of gluconeogenetic fructose-1, 6-bisphosphatase was normal. A slight effect on repression of succinate: cytochrome c oxidoreductase and respiration was to be detected. The effect on repression by fructose was much less pronounced but still clear. However, there was a paradoxical effect of hexose concentration with higher concentrations repressing less. Maltose was also less repressing in the mutant. Growth on all sugars degraded via the hexose phosphorylation reaction was reduced and more strongly so at higher concentrations. Intracellular concentrations of glucose-6-phosphate, fructose-6-phosphate and fructose-1,6-bisphosphate were largely the same in mutant and wild type. The only striking difference between mutant and wild type was a fourfold higher intracellular glucose concentration in maltose grown mutants cells. The data obtained do not support the contention that carbon catabolite repression of the enzymes studied is triggered by intracellular hexoses or their metabolites alone. They rather suggest that it is some component of the hexose phosphorylating system that contributes to carbon catabolite repression.  相似文献   

15.
16.
17.
18.
19.
Glutamate homeostasis plays a vital role in central nitrogen metabolism and coordinates several key metabolic functions. However, its function in fungal pathogenesis and development has not been investigated in detail. In this study, we identified and characterized a glutamate synthase gene MoGLT1 in the rice blast fungus Magnaporthe oryzae that was important to glutamate homeostasis. MoGLT1 was constitutively expressed, but showed the highest expression level in appressoria. Deletion of MoGLT1 resulted in a significant reduction in conidiation and virulence. The ΔMoglt1 mutants were defective in appressorial penetration and the differentiation and spread of invasive hyphae in penetrated plant cells. The addition of exogenous glutamic acid partially rescued the defects of the ΔMoglt1 mutants in conidiation and plant infection. Assays for MoAtg8 expression and localization showed that the ΔMoglt1 mutants were defective in autophagy. The ΔMoglt1 mutants were delayed in the mobilization of glycogens and lipid bodies from conidia to developing appressoria. Taken together, our results show that glutamate synthase MoGlt1‐mediated glutamate homeostasis is important for pathogenesis and development in the rice blast fungus, possibly via the regulation of autophagy.  相似文献   

20.
Tetragenococcus halophila is a Gram-positive halophilic lactic acid bacterium used for soy sauce fermentation. We isolated a mutant, T. halophila 3E4, triply defective in phosphoenolpyruvate:mannose phosphotransferase, phosphofructokinase, and glucokinase. 3E4 selectively metabolized pentoses such as xylose and arabinose in the presence of hexoses such as glucose and galactose. We present here an example of the metabolic engineering of catabolite control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号