首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 465 毫秒
1.
Insect growth regulator insecticides are a new class of pesticides, commonly used around the world to control insect damages. Among those compounds, we focused our interest on triflumuron (TFM), which is less toxic than other conventional insecticides. However, not much is known about its toxic effects on mammalian systems. Therefore, our study aimed toward evaluating the cytotoxic and genotoxic effects of TFM using two different cell lines, the human renal embryonic cells (HEK 293) and hepatocytes (Hep G2). We showed, according to the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay, that TFM reduced significantly the cell viability and increased the reactive oxygen species generation, malondialdehyde levels, and mitochondrial membrane potential in both cell lines. The antioxidant system was disturbed as assessed by the increased activities in both catalase and superoxide dismutase. We demonstrated also, that TFM is an inductor of DNA damages quantified by the comet assay. Moreover, we showed an overexpression of proapoptotic Bax and a decrease in antiapoptotic Bcl‐2 expression. As a conclusion, we demonstrate that the liver presents the major target organ to TFM, in which the cytotoxicity and the genotoxic effects were significantly higher in hepatic cells than in renal cells and by consequence its uses must be controlled.  相似文献   

2.
昆虫生长调节剂的毒理机制与抗药性研究进展   总被引:3,自引:0,他引:3       下载免费PDF全文
昆虫生长调节剂是通过干扰昆虫正常生长发育,致使昆虫个体死亡或活动能力下降,从而导致种群灭绝的一类特异性杀虫剂。本文对3类重要的昆虫生长调节剂(保幼激素类似物、几丁质合成抑制剂和蜕皮激素类似物)的毒理作用机制以及害虫对其抗药性的研究进展进行了综述,叙述了害虫对该类药剂的抗药性发展情况,并对其抗药性机理进行了探讨。目前研究表明,害虫对该类药剂的主要抗性机理是解毒代谢酶增强和表皮穿透率降低。  相似文献   

3.
V. Hattingh 《BioControl》1996,41(3-4):513-518
IGRs have been widely promoted as being ideal IPM compatible pesticides. A number of IGRs have been used extensively on citrus in southern Africa providing excellent control of some target pests. However, field experience has indicated that this has had considerable direct and indirect detrimental effects on IPM. Bioassays confirmed that some of the IGRs used are highly detrimental to certain coccinellid and hymenopteran biocontrol agents of economic importance. Field experience and bioassays have indicated extreme persistence and widespread contamination resulting from agricultural use of some of these products. This presents a serious obstacle to maximisation of biocontrol in IPM and the success of future biocontrol projects using IGR-sensitive species. It also gives rise to concern about potential environmental contamination. In conclusion the use of IGRs should not be considered advantageous to IPM without careful investigation of their potential non-target effects in the particular agro-ecosystem and appropriate consideration for non-target effects in the surrounding environment.  相似文献   

4.
《农业工程》2023,43(1):11-19
Mosquitoes serve as the major vector transmitting malaria, dengue, yellow fever and several other diseases of human concern. Rising in mosquito-borne diseases and consequent fatalities throughout the world has made the management of mosquitoes of paramount importance. With the use of various insecticidal agents and their indiscriminate application in the fields for vector control; other issues such as multiple insecticide resistance, lethality to non-specific targets and adverse effects on human and environmental health have emerged making the situation more critical. Hence, the focus of researchers has diverted to the use of Insect Growth Regulators (IGRs) that affect the growth and development of the insects without inducing any appreciable toxic effects. The paper comprehensively reviews various IGRs and their potential use against insect pests and mosquito vectors. A special emphasis has been laid on the utilization of diflubenzuron, its larvicidal potency and growth regulatory effects against mosquitoes. The paper also delivers a detailed discussion on various approaches governing with the application of diflubenzuron, a chitin synthesis inhibitor, for its potent effects over a wide range of other insect species, low toxicity to humans, safety to other non-target animals, negligible deleterious environmental impact along with the possible development of resistance in the mosquitoes, thereby providing insights and the direction for the future in terms of the innovative and technological perspective. Keeping in view the role of multifarious mechanisms in the development of resistance; use of various synergistic compounds, such as hydrolase inhibitors - profenofos and S,S,S-tributyl phosphorotrithioate; glutathione S-transferase inhibitor – diethylmaleate; and oxidase inhibitor - piperonyl butoxide (PBO); has been recommended in combination with IGRs to enhance their efficacy, and reduce or reverse the resistance in target mosquitoes. Another compound, verapamil, has been found extremely efficient in imparting synergistic effect to diflubenzuron by inhibiting P-glycoproteins, a transporter of the insecticides causing their efflux from the cell. Recommendations have been made for safe and effective mosquito control measures, adequate policies and increased awareness about the mosquito-borne diseases among the masses. In addition, regular surveillance of mosquitoes is endorsed for the formulation of an efficient mosquito management strategy.  相似文献   

5.
Laboratory studies were carried out to compare the toxicity of seven foliar insecticides to four species of adult beneficial insects representing two families of Hymenoptera: Aphelinidae (Aphytis melinus Debach, Eretmocerus eremicus Rose & Zolnerowich, and Encarsiaformosa Gahan) and Mymaridae (Gonatocerus ashmeadi Girault) that attack California red scale, Aonidiella aurantii (Maskell); sweetpotato whitefly, Bemisia tabaci (Gennadius) (both E. eremicus and E. formosa); and glassy-winged sharpshooter, Homalodisca vitripennis (Germar), respectively. Insecticides from four pesticide classes were evaluated using a petri dish bioassay technique across a range of concentrations to develop dosage-mortality regressions. Insecticides tested included acetamiprid (neonicotinoid); chlorpyrifos (organophosphate); bifenthrin, cyfluthrin, and fenpropathrin (pyrethroids); and buprofezin and pyriproxyfen (insect growth regulators [IGRs]). Chlorpyrifos was consistently the most toxic pesticide to all four species of beneficial insects tested based on LC50 values recorded 24 h posttreatment compared with 48-h LC50 values with the neonicotinoid and pyrethroids or 96 h with the IGRs. Among the three pyrethroids, fenpropathrin was usually less toxic (except similar toxicity to A. melinus) than was cyfluthrin, and it was normally less toxic (except similar toxicity with E. formosa) than was bifenthrin. Acetamiprid was generally less toxic than bifenthrin (except similar toxicity with G. ashmeadi). The IGRs buprofezin and pyriproxyfen were usually less toxic than the contact pesticides, but we did not test for possible impacts on female fecundity. For all seven pesticides tested, A. melinus was the most susceptible parasitoid of the four test species. The data presented here will provide pest managers with specific information on the compatibility of select insecticides with natural enemies attacking citrus and cotton, Gossypium hirsutum L., pests.  相似文献   

6.
Extensive use of chemical insecticides to control insect pests in agriculture has improved yields and production of high-quality food products. However, chemical insecticides have been shown to be harmful also to beneficial insects and many other organisms like vertebrates. Thus, there is a need to replace those chemical insecticides by other control methods in order to protect the environment. Insect pest pathogens, like bacteria, viruses or fungi, are interesting alternatives for production of microbial-based insecticides to replace the use of chemical products in agriculture. Organic farming, which does not use chemical pesticides for pest control, relies on integrated pest management techniques and in the use of microbial-based insecticides for pest control. Microbial-based insecticides require precise formulation and extensive monitoring of insect pests, since they are highly specific for certain insect pests and in general are more effective for larval young instars. Here, we analyse the possibility of using microbial-based insecticides to replace chemical pesticides in agricultural production.  相似文献   

7.
Antibiotic-resistant bacterial infections result in higher patient mortality rates, prolonged hospitalizations, and increased health care costs. Extensive use of antibiotics as growth promoters in the animal industry represents great pressure for evolution and selection of antibiotic-resistant bacteria on farms. Despite growing evidence showing that antibiotic use and bacterial resistance in food animals correlate with resistance in human pathogens, the proof for direct transmission of antibiotic resistance is difficult to provide. In this review, we make a case that insects commonly associated with food animals likely represent a direct and important link between animal farms and urban communities for antibiotic resistance traits. Houseflies and cockroaches have been shown to carry multidrug-resistant clonal lineages of bacteria identical to those found in animal manure. Furthermore, several studies have demonstrated proliferation of bacteria and horizontal transfer of resistance genes in the insect digestive tract as well as transmission of resistant bacteria by insects to new substrates. We propose that insect management should be an integral part of pre- and postharvest food safety strategies to minimize spread of zoonotic pathogens and antibiotic resistance traits from animal farms. Furthermore, the insect link between the agricultural and urban environment presents an additional argument for adopting prudent use of antibiotics in the food animal industry.  相似文献   

8.
The current state of knowledge regarding the effect of pesticides on insect immunity is reviewed here. A basic understanding of these interactions is needed for several reasons, including to improve methods for controlling pest insects in agricultural settings, for controlling insect vectors of human diseases, and for reducing mortality in beneficial insects. Bees are particularly vulnerable to sublethal pesticide exposures because they gather nectar and pollen, concentrating environmental toxins in their nests in the process. Pesticides do have effects on immunity. Organophosphates and some botanicals have been found to impact hemocyte number, differentiation, and thus affect phagocytosis. The phenoloxidase cascade and malanization have also been shown to be affected by several insecticides. Many synthetic insecticides increase oxidative stress, and this could have severe impacts on the production of some antimicrobial peptides in insects, but research is needed to determine the actual effects. Pesticides can also affect grooming behaviors, rendering insects more susceptible to disease. Despite laboratory data documenting pesticide/pathogen interactions, little field data is available at the population level.  相似文献   

9.
Nanotechnology is a promising field of interdisciplinary research. It opens up a wide array of opportunities in various fields like medicine, pharmaceuticals, electronics and agriculture. The potential uses and benefits of nanotechnology are enormous. These include insect pests management through the formulations of nanomaterials-based pesticides and insecticides, enhancement of agricultural productivity using bio-conjugated nanoparticles (encapsulation) for slow release of nutrients and water, nanoparticle-mediated gene or DNA transfer in plants for the development of insect pest-resistant varieties and use of nanomaterials for preparation of different kind of biosensors, which would be useful in remote sensing devices required for precision farming. Traditional strategies like integrated pest management used in agriculture are insufficient, and application of chemical pesticides like DDT have adverse effects on animals and human beings apart from the decline in soil fertility. Therefore, nanotechnology would provide green and efficient alternatives for the management of insect pests in agriculture without harming the nature. This review is focused on traditional strategies used for the management of insect pests, limitations of use of chemical pesticides and potential of nanomaterials in insect pest management as modern approaches of nanotechnology.  相似文献   

10.
农用化学品污染及预防建议   总被引:1,自引:0,他引:1       下载免费PDF全文
农用化学品是农业生产的重要组成部分,其安全问题也成为人们关注的焦点。农用化学品可分为化肥、农药、农膜3类。化肥主要用于提高土壤肥力,增加农作物产量,不合理使用则会改变土壤性质,降低土壤肥力,并且对生态环境以及人类健康造成不可忽视的危害。农药主要用于杀菌、杀虫、除草等,在促进和保障农作物健康生长中发挥重要作用,但农药的滥用造成农药事故频发,农药的毒性富集作用以及残留问题越发引起人们的关注。农膜主要用于农膜覆盖栽培技术,农膜的原料主要是聚乙烯树脂等高分子化学物质,在土壤中很难降解,造成的环境污染问题日益突出。各种农用化学品的不合理使用,可降低农产品的质量,使其在出口贸易中受到极大限制,造成巨大的经济损失。本文在肯定农用化学品在现代化农业生产中的巨大贡献的同时,深入分析了其污染状况及危害,总结了当前国际上对于化肥、农药、农膜的研究进展以及所取得的成果,最后提出了科学使用农用化学品的建议。  相似文献   

11.
Current industrialised farming applies multiple pesticides to fight against competitors of agricultural products. The consequences lead to direct and indirect detrimental effects on the environment. Neonicotinoids are particularly frequently applied to fight against pest insects but pollinating insects are also effected. These insecticides bind to the nicotinic acetylcholine receptors in the insect brain and interfere with neuronal processed underlying learning, memory formation and memory retrieval. Experience dependent behaviors are essential for effective pollination. Experimental studies with honeybees documented that even extremely small doses of neonicotinoids taken up with nectar and pollen massively interfere with learning, memory, navigation, social communication and foraging motivation. Besides these direct actions on non‐target insects neonicotinoids impoverish the environment, reduce the number of wild life and destroy the quality of the agricultural ground. The multiple effects are caused by the high water solubility and the persistence of the insecticides.  相似文献   

12.
Wheat is an important food crop that provides over 40% of the per capita dietary supply of calories and proteins in many developing countries. Wheat production has a crucial role in food security and the global economy. With the world's population estimated to reach 9.6 billion by 2050, the demand for wheat is expected to increase 60%. Sunn Pest, Eurygaster integriceps Puton (Hemiptera: Scutelleridae), is one of the major constraints to wheat production in Central and West Asia, Eastern Europe and North Africa. The economic impact of Sunn Pest is around 42 million USD for the region and that is only the cost of the chemicals used for its management. Application of chemical insecticides has been the main strategy for management of Sunn Pest. However, emergence of resistance in Sunn Pest populations against most pesticides and increased awareness of their adverse impacts on the environment have prompted investigation of alternative approaches. This review provides information on the most current literatures on Sunn Pest management with emphasis on practices such as application of chemical insecticides, insect growth regulators (IGRs) and anti-juvenile hormones, use of Sunn Pest egg parasitoids, entomopathogenic nematodes, entomopathogenic fungi, use of digestive enzyme inhibitors and development of resistant wheat varieties.  相似文献   

13.
The susceptibility of the predatory pentatomidPodisus maculiventris (Say) to the insect growth regulators (IGRs) diflubenzuron and pyriproxyfen was investigated in the laboratory. Fifth-instar nymphs were exposed to formulated materials of each compound via direct contact, residual contact and ingestion. Diflubenzuron was harmless toP. maculiventris by direct and residual contact, but was highly toxic when ingested via drinking water. Pyriproxyfen caused severe deformities at ecdysis whatever the method of exposure. Exposure of fifth instars to sublethal concentrations (around LC10) of both compounds had no adverse effects on reproduction of emerging adults. The data suggest that the use of these IGRs in the integrated management of insect pests should be evaluated with caution.  相似文献   

14.
Entomopathogenic fungi have a great potential in biological control of insect pest population. Fungal pathogens are promising source of insecticides and notable alterative to chemical pesticides. These fungi possess a unique mechanism of insects paralysis. As natural enemies of insects they attack direct host cuticle via a combination of mechanical pressure and cuticle-degrading enzymes. Entomopathogenic fungi produce several proteo-, chitino- and lipolytic enzymes, which are accepted as key factors in insect mycosis. The role of extracellular enzymes in pathogenesis is still not well understood. Profound understanding the mechanisms of insect paralysis by entomopathogenic fungi will help in the production of safer for environment and more efficiency mycoinsecticides.  相似文献   

15.
害虫的遗传与行为调控   总被引:1,自引:0,他引:1  
本文综述了昆虫的行为遗传机制、昆虫的发育与变态、昆虫对主要环境因子变化的响应、害虫与寄主植物的化学通讯和多营养级信息网及其对昆虫行为调控等国内外研究进展,提出了害虫治理要从杀灭防治转变为行为调控的新思路和新理念,认为未来的研究将围绕害虫暴发成灾的遗传与行为机理等科学问题,通过深入研究害虫发育变态、行为遗传,及其对关键生态因子和食物网内信号物质适应机制,揭示影响害虫发生的内外关键因素,寻找基于基因和生态调控行为治理害虫的新技术和新方法,为有效开展害虫治理、减少化学农药做出贡献。  相似文献   

16.
廖文宇  吕卓鸿  张友军  杨中侠 《昆虫学报》2022,65(11):1547-1564
作为最成功的生物农药,苏云金芽孢杆菌Bacillus thuringiensis (Bt)杀虫剂已在农业生产中应用了约80年。Bt由于其特异性强、安全高效的特点而得到广泛、成功的应用,极大减少了化学农药的用量,为环境保护作出了巨大贡献。然而,由于长期使用,一些靶标害虫逐渐对Bt产生抗性。本文对昆虫体液免疫及昆虫Bt抗性机制的研究成果进行了总结,已有研究认为害虫对Bt产生抗性的主要原因是毒素激活受阻及(或)毒素受体突变或减少。然而近年越来越多的研究表明,昆虫的Bt抗性还与其免疫系统,特别是与Toll, IMD和proPO-AS等体液免疫通路有关。由此,本文对昆虫体液免疫系统参与昆虫Bt抗性形成的主要通路进行了归纳和推论。IMD免疫通路可能通过MAPK信号通路参与调节昆虫Bt抗性,或可能通过多种免疫反应对抗因中肠组织被Bt破坏而引起的败血症,并通过JNK信号通路促使中肠组织愈合,进而提高其对Bt的抗性。从体液免疫系统切入研究,可能成为深入探索昆虫Bt抗性机制的新方向。  相似文献   

17.
Plants are continuously exposed to a wide variety of perturbations including variation of temperature and/or light, mechanical forces, gravity, air and soil pollution, drought, deficiency or surplus of nutrients, attacks by insects and pathogens, etc., and hence, it is essential for all plants to have survival sensory mechanisms against such perturbations. Consequently, plants generate various types of intracellular and intercellular electrical signals mostly in the form of action and variation potentials in response to these environmental changes. However, over a long period, only certain plants with rapid and highly noticeable responses for environmental stresses have received much attention from plant scientists. Of particular interest to our recent studies on ultra fast action potential measurements in green plants, we discuss in this review the evidence supporting the foundation for utilizing green plants as fast biosensors for molecular recognition of the direction of light, monitoring the environment, and detecting the insect attacks as well as the effects of pesticides, defoliants, uncouplers, and heavy metal pollutants.Key Words: plant signaling, plant electrophysiology, action potential, biosensor  相似文献   

18.
Pesticides are widely used in agricultural and other settings, resulting in continued human exposure. Pesticide toxicity has been clearly demonstrated to alter a variety of neurological functions. Particularly, there is strong evidence suggesting that pesticide exposure predisposes to neurodegenerative diseases. Epidemiological data have suggested a relationship between pesticide exposure and brain neurodegeneration. However, an increasing debate has aroused regarding this issue. Paraquat is a highly toxic quaternary nitrogen herbicide which has been largely studied as a model for Parkinson's disease providing valuable insight into the molecular mechanisms involved in the toxic effects of pesticides and their role in the progression of neurodegenerative diseases. In this work, we review the molecular mechanisms involved in the neurotoxic action of pesticides, with emphasis on the mechanisms associated with the induction of neuronal cell death by paraquat as a model for Parkinsonian neurodegeneration.  相似文献   

19.
Symbiotic bacteria in herbivorous insects can have strong beneficial impacts on their host's survival, including conferring resistance to natural enemies such as parasitoid wasps or pathogens, while also imposing energetic costs on the host, resulting in cost‐benefit trade‐offs. Whether these trade‐offs favour the hosting of symbionts depends on the growth environment of the herbivore. Long‐term experimental grassland studies have shown that increasing plant species richness leads to an increased diversity of associated herbivores and their natural enemies. Such a change in natural enemy diversity, related to changes in plant diversity, could also drive changes in the community of symbionts hosted by the herbivorous insects. Aphids are one model system for studying symbionts in insects, and effects of host‐plant species and diversity on aphid‐symbiont interactions have been documented. Yet, we still understand little of the mechanisms underlying such effects. We review the current state of knowledge of how biodiversity can impact aphid‐symbiont communities and the underlying drivers. Then, we discuss this in the framework of sustainable agriculture, where increased plant biodiversity, in the form of wildflower strips, is used to recruit natural enemies to crop fields for their pest control services. Although aphid symbionts have the potential to reduce biological control effectiveness through conferring protection for the host insect, we discuss how increasing plant and natural enemy biodiversity can mitigate these effects and identify future research opportunities. Understanding how to promote beneficial interactions in ecological systems can help in the development of more sustainable agricultural management strategies.  相似文献   

20.
Bacillus thuringiensis (Bt) is a soil bacterium that forms spores during the stationary phase of its growth cycle. The spores contain crystals, predominantly comprising one or more Cry and/or Cyt proteins (also known as δ-endotoxins) that have potent and specific insecticidal activity. Different strains of Bt produce different types of toxin, each of which affects a narrow taxonomic group of insects. Therefore, Bt toxins have been used as topical pesticides to protect crops, and more recently the proteins have been expressed in transgenic plants to confer inherent pest resistance. Bt transgenic crops have been overwhelmingly successful and beneficial, leading to higher yields and reducing the use of chemical pesticides and fossil fuels. However, their deployment has attracted some criticism particularly with regard to the potential evolution of pest-resistant insect strains. Here, we review recent progress in the development of Bt technology and the countermeasures that have been introduced to prevent the evolution of resistant insect populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号