首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Stabilities of phenol oxidase and peroxidase from tea plant (Camellia sinensis L.) clone Kolkhida leaves, apple (Mallus domestica L.) cultivar Kekhura fruits, walnut (Juglans regia L.) green pericarp, and horseradish (Armoracia lapathifolia Gilib) roots were studied using different storage temperature modes and storage duration. It was demonstrated that both enzymes retained residual activities (10%) upon 20-min incubation at 8°C. Phenol oxidases from tea, walnut, and especially apple, as well as tea peroxidase, were stable during storage. A technology for the treatment of plant oxidases was proposed, based on the use of a natural inhibitor of phenol oxidase and peroxidase, isolated from tea leaves, which solves the problem of residual activities of these enzymes that arises during pasteurization and storage of beverages and juices. It was demonstrated that browning of apple juice during pasteurization and beer turbidity during storage could be efficiently prevented using the natural inhibitor of these enzymes.Translated from Prikladnaya Biokhimiya i Mikrobiologiya, Vol. 41, No. 2, 2005, pp. 165–170.Original Russian Text Copyright © 2005 by Mchedlishvili, Omiadze, Gulua, Sadunishvili, Zamtaradze, Abutidze, Bendeliani, Kvesitadze.  相似文献   

2.
Contrary to previous reports, the functional and spectral properties of “monomeric” shark cytochrome c oxidases are not entirely similar to those of the “dimeric” beef enzyme. Most significantly, unlike the behavior of beef oxidase, the fully oxidized shark enzyme is not reducible by carbon monoxide. Also, preparations of the shark enzyme, isolated at pH 7.8-8.0, lead to more than 60% of the sample always being obtained in a resting form, whereas similarly prepared beef oxidase is very often obtained, both by ourselves and others, exclusively in the pulsed form. Although the electronic absorption, magnetic circular dichroism and electron paramagnetic resonance (EPR) spectra of cytochrome c oxidase obtained from several shark species are similar to those of the beef enzyme, there are some significant differences. In particular, the Soret maximum is at 422 nm in the case of the fully oxidized resting shark oxidases at physiological pH and not 418 nm as commonly found for the beef enzyme. Moreover, the resting shark oxidases do not necessarily exhibit a “g = 12” signal in their EPR spectra. The turnover numbers of recent preparations of the shark enzyme are higher than previously reported and, interestingly, do not differ within experimental uncertainty from those documented for several beef isoenzymes assayed under comparable conditions.  相似文献   

3.
The thermal stability of copper/quinone containing amine oxidases from Euphorbia characias latex (ELAO) and lentil seedlings (LSAO) was measured in 100 mM potassium phosphate buffer (pH 7.0) following changes in absorbance at 292 nm. ELAO was shown to be about 10°C more stable than LSAO. The dissociative thermal inactivation of ELAO was studied using putrescine as substrate at different temperatures in the range 47–70°C, and a “conformational lock” was developed using the theory pertaining to oligomeric enzyme. Moreover ELAO was shown to be more stable towards denaturants than LSAO, as confirmed by dodecyl trimethylammonium bromide denaturation curves. A comparison of the numbers of contact sites in inter-subunits of ELAO relative to LSAO led us to conclude that the higher stability of ELAO to temperature and towards denaturants was due to the presence of larger number of contact sites in the conformational lock of the enzyme. This study also gives a putative common mechanism for thermal inactivation of amine oxidases and explains the importance of C-terminal conserved amino acids residues in this class of enzymes.  相似文献   

4.
Summary Production of extracellular hydrogen peroxide by fungal oxidases is been investigated as a requirement for lignin degradation. Aryl-alcohol oxidase activity is described in extracellular liquid and mycelium ofPleurotus eryngii and studied under non-limiting nitrogen conditions. This aryl-alcohol oxidase catalyses conversion of primary aromatic alcohols to the corresponding aldehydes and H2O2, showing no activity with aliphatic and secondary aromatic alcohols. The enzyme is stable at pH 4.0–9.0, has maximal activity at 45°–50°C and pH 6.0–6.5, is inhibited by Ag+, Pb2+ and NaN3, and has aK m of 1.2 mM using veratryl alcohol as substrate. A single protein band with aryl-alcohol oxidase activity was found in zymograms of extracellular and intracellular crude enzyme preparations fromP. eryngii.  相似文献   

5.
The interactions of cyanide with two copper-containing amine oxidases (CuAOs) from pea seedlings (PSAO) and the soil bacterium Arthrobacter globiformis (AGAO) have been investigated by spectroscopic and kinetic techniques. Previously, we rationalized the effects of azide and cyanide for several CuAOs in terms of copper coordination by these exogenous ligands and their effects on the internal redox equilibrium TPQamr-Cu(II)TPQsq-Cu(I). The mechanism of cyanide inhibition was proposed to occur through complexation to Cu(I), thereby directly competing with O2 for reoxidation of TPQ. Although cyanide readily and reversibly reacts with quinones, no direct spectroscopic evidence for cyanohydrin derivatization of TPQ has been previously documented for CuAOs. This work describes the first direct spectroscopic evidence, using both model and enzyme systems, for cyanohydrin derivatization of TPQ. Kd values for Cu(II)-CN and Cu(I)-CN, as well as the Ki for cyanide inhibition versus substrate amine, are reported for PSAO and AGAO. In spite of cyanohydrin derivatization of the TPQ cofactor in these enzymes, the uncompetitive inhibition of amine oxidation is determined to arise almost exclusively through CN complexation of Cu(I).Abbreviations AGAO Arthrobacter globiformis amine oxidase - APAO Arthrobacter P1 amine oxidase - APT attached proton test - BPAO bovine plasma amine oxidase - CuAO quinone-copper containing amine oxidase - LTQ lysyl tyrosylquinone - MAO monoamine oxidase - PKAO porcine kidney amine oxidase - PPAO porcine plasma amine oxidase - PSAO pea seedling amine oxidase - TPQ 2,4,5-trihydroxyphenylalaninequinone - TPQamr TPQ aminoresorcinol - TPQimq TPQ iminoquinone - TPQox TPQ oxidized - TPQsq TPQ semiquinone - WT wild-typeE.M. Shepard and G.A. Juda contributed equally to this workThis revised version was published online in February 2004: Hansenula polymorpha was not italicised at the end of the Introduction, Equation 3 appeared twice, and the resolution of Scheme 3 was insufficient.An erratum to this article can be found at  相似文献   

6.
It is known that Aspergillus fumigatus secretes a serine protease ALP1 of the subtilisin family in the presence of extracellular protein substrates. We found conditions of A. fumigatus culturing that provide a high ALP1 activity inside cells without induction by extracellular proteins. The identity of the properties of the secreted and intracellular enzymes was shown. A thermostable protein inhibitor of the ALP1 protease was isolated from the plasmodium of myxomycete Physarum polycephalum. Its molecular mass is 32–33 kDa. It inhibits the ALP1 protease activity with IC50 of 0.14 μM and was also shown to be a less efficient inhibitor of the activity of HIV-1 protease (IC50 2.5 μM).__________Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 3, 2005, pp. 259–268.Original Russian Text Copyright © 2005 by Davies, Kalinina, Samokhvalova, Malakhova, Scott, Venning, Volynskaya, Nesmeyanov.  相似文献   

7.
Laccases (EC 1.10.3.2) are multi-copper oxidases that catalyse the one-electron oxidation of a broad range of compounds including substituted phenols, arylamines and aromatic thiols to the corresponding radicals. Owing to their broad substrate range, copper-containing laccases are versatile biocatalysts, capable of oxidizing numerous natural and non-natural industry-relevant compounds, with water as the sole by-product. In the present study, 10 of the 11 multi-copper oxidases, hitherto considered to be laccases, from fungi, plant and bacterial origin were compared. A substrate screen of 91 natural and non-natural compounds was recorded and revealed a fairly broad but distinctive substrate spectrum amongst the enzymes. Even though the enzymes share conserved active site residues we found that the substrate ranges of the individual enzymes varied considerably. The EC classification is based on the type of chemical reaction performed and the actual name of the enzyme often refers to the physiological substrate. However, for the enzymes studied in this work such classification is not feasible, even more so as their prime substrates or natural functions are mainly unknown. The classification of multi-copper oxidases assigned as laccases remains a challenge. For the sake of simplicity we propose to introduce the term “laccase-like multi-copper oxidase” (LMCO) in addition to the term laccase that we use exclusively for the enzyme originally identified from the sap of the lacquer tree Rhus vernicifera.  相似文献   

8.
In the present study, we have demonstrated that membrane-free extracts of etiolated shoots of Phaseolus coccineus seedlings show tocopherol oxidase activity. For this reaction, presence of membrane lipids, such as lecithin and mixture of plant lipids was required. The rate of the reaction was the highest for α-tocopherol and decreased in the order α ? β > γ > δ tocopherols. In the case of α-tocopherol, the main oxidation product was α-tocopherolquinone, while for the other tocopherol homologues the dominant products were other derivatives. When the enzyme activity was measured in leaves, hypocotyls and roots of etiolated seedlings of P. coccineus, the oxidase activity was the highest in extracts of leaves and decreased towards the roots where no activity was detected. The effect of hydrogen peroxide and of different inhibitors on the reaction suggest that tocopherol oxidase does not belong to peroxidases or flavin oxidases but rather to multi-copper oxidases, such as polyphenol oxidases or laccases. On the other hand, catechol, the well-known substrate of polyphenol oxidases and laccases, was not oxidized by the enzyme, indicating a high substrate specificity of the tocopherol oxidase.  相似文献   

9.
The objective of this work is to obtain an abundant source of cholesterol oxidases for industrial and medicinal needs. Thirteen bacterial strains that express high level of inducible extracellular cholesterol oxidase (COX) were isolated from carnivore feces. One of these strains, named COX8-9, belonging to the genus Enterobacter, was found to produce the highest level of cholesterol oxidase. COX from strain COX8-9 was purified from the culture supernatant by ultrafiltration followed with two consecutive Q-Sepharose chromatographies at different pH values, and then by Superdex-75 gel filtration. The purified enzyme was a monomer with a molecular weight of 58 kDa, and exhibited maximum absorption at 280 nm. The K m value for oxidation of cholesterol by this enzyme was 1.2 × 10−4 M, with optimum activity at pH 7.0. Enzymatic activity of COX was enhanced 3-fold in the presence of metal ion Cu2+, and the enzyme was stable during long-term aqueous storage under various temperatures, indicating its potential as a clinical diagnostic reagent. Preparation and characterization of cholesterol oxidases from the other selected strains are under way. Deping Ye and Jiahong Lei are contributed equally to this work.  相似文献   

10.
At 5 g/l, ferulic acid, a plant cell-wall phenolic, severely repressed growth of the lignocellulose-degrading fungi Trichoderma harzianum, Chaetomium cellulolyticum, Phanaerochaete chrysosporium, Trametes versicolor and Pleurotus sajor-caju. At 0.5 g/l, howerver, it slightly stimulated growth of the latter two organisms. Two classes of extracellular enzymes involved in cellulose and glycolignin breakdown were assayed: cellulases; and phenol oxidases as laccases. All of the strains depolymerized cellulose but two (T. versicolor and P. sajor-caju) also secreted laccases. Laccase-secreting fungal species had normal levels of cellulose saccharification except in the presence of 5 g ferulic acid/l, whereas saccharification by the other strains was suppressed at all concentrations of the phenolic tested.  相似文献   

11.
Inhibition of terminal oxidases by nitric oxide (NO) has been extensively investigated as it plays a role in regulation of cellular respiration and pathophysiology. Cytochrome bd is a tri-heme (b558, b595, d) bacterial oxidase containing no copper that couples electron transfer from quinol to O2 (to produce H2O) with generation of a transmembrane protonmotive force. In this work, we investigated by stopped-flow absorption spectroscopy the reaction of NO with Escherichia coli cytochrome bd in the fully oxidized (O) state. We show that under anaerobic conditions, the O state of the enzyme binds NO at heme d with second-order rate constant kon = 1.5 ± 0.2 × 102 M−1 s−1, yielding a nitrosyl adduct (d3+–NO or d2+–NO+) with characteristic optical features (an absorption increase at 639 nm and a red shift of the Soret band). The reaction mechanism is remarkably different from that of O cytochrome c oxidase in which the heme–copper binuclear center reacts with NO approximately three orders of magnitude faster, forming nitrite. The data allow us to conclude that in the reaction of NO with terminal oxidases in the O state, CuB is indispensable for rapid oxidation of NO into nitrite.  相似文献   

12.
A method for isolating extracellular glucose oxidase from the fungus Penicillium funiculosum 46.1 using ultrafiltration membranes was developed. Two samples of the enzyme with a specific activity of 914–956 IU were obtained. The enzyme exhibited a high catalytic activity at pH above 6.0. The effective rate constant of glucose oxidase inactivation at pH 2.6 and 16°C was 2.74 × 10–6 s–1. This constant decreased significantly as the pH of the medium increased (4.0–10.0). The temperature optimum for glucose oxidase–catalyzed -D-glucose oxidation was in the range 30–65°C. At temperatures below 30°C, the activation energy for -D-glucose oxidation was 6.42 kcal/mol; at higher temperatures, this parameter was equal to 0.61 kcal/mol. Kinetic parameters of glucose oxidase–catalyzed -D-glucose oxidation depended on the initial concentration of the enzyme in the solution. Glucose oxidase also catalyzed the oxidation of 2-deoxy-D-glucose, maltose, and galactose.  相似文献   

13.
Following our previous findings of high extracellular redox activity in lichens, the results of the work presented here identify the enzymes involved as laccases. Despite numerous data on laccases in fungi and flowering plants, this is the first report of the occurrence of laccases in lichenized ascomycetes. Extracellular laccase activity was measured in 40 species of lichens from different taxonomic groupings and contrasting habitats. Out of 20 species tested from suborder Peltigerineae, 18 displayed laccase activity, while activity was absent in species tested from other lichen groups. Identification of the enzymes as laccases was confirmed by the ability of lichen leachates to readily metabolize substrates such as 2,2′-azino(bis-3-ethylbenzthiazoline-6-sulfonate) (ABTS), syringaldazine and o-tolidine in the absence of hydrogen peroxide, sensitivity of the enzymes to cyanide and azide, the enzymes having typical laccase pH and temperature optima, and an absorption spectrum with a peak at 614 nm. Desiccation and wounding stimulated laccase activity. Laccase activity was not increased after treatment with normal inducers of laccase synthesis, suggesting that they are constitutively expressed. Electrophoresis showed that the active form of laccase from Peltigera malacea was a tetramer with an unusually high molecular mass of 340 kDa and an isoelectric point (pI) of 4.7. The finding of abundant extracellular redox enzymes known to actively produce reactive oxygen species suggest that their roles may include increasing nutrient supply to lichens by delignification, and deterring pathogens by contributing to the oxidative burst. Furthermore, once released into the environment, they may participate in the carbon cycle by facilitating the breakdown or formation of humic substances.  相似文献   

14.
Enzyme catalyzed reactions are commonly used at laboratory or industrial scale. Contrarily, the whole cell catalyzed reactions are restricted to special cases. The tremendous advances in the last years in Molecular Biology and more specifically in Metabolic Engineering and Directed Enzyme Evolution have opened the door to create tailor-made microorganisms or “designer bugs” for industrial purposes. Whole cell catalysts can be much more readily and inexpensively prepared than purified enzymes and the enzymes – inside the cells – are protected from the external environment and stabilized by the intracellular medium. Three situations have traditionally been considered convenient to select the use of whole cell catalyzed processes against the free enzyme catalyzed process: i) when the enzyme is intracellular; ii) when the enzyme needs a cofactor to carry out the catalytic act and iii) in the development of multienzymatic processes. Red–ox reactions represent the molecular basis for energy generation in the cell. These reactions are catalyzed by intracellular enzymes and are cofactor dependent as red–ox reactions need electron carriers as helpers in reduction reactions (gain of electrons) or oxidation (loss of electrons).In this review we present an overview of the state of the art of red–ox biotransformations catalyzed by whole cells — wild-type or genetically engineered microorganisms. Stereoselective reductions, hydroxylations of arenes and unfunctionalized alkanes, alkene monooxygenation, and Baeyer–Villiger reactions are among the processes described along the text, focusing in their chemo-, regio- and stereoselectivity.  相似文献   

15.
Alleles and genotypes of polymorphic markers of paraoxonase 1 and paraoxonase 2 genes (PON1 and PON2) encoding enzymes of the organism antioxidant defense were compared in type 1 diabetes mellitus patients with or without diabetic nephropathy. The patients with nonoverlapping (“polar”) phenotypes constituted different groups. The first group contained patients with diabetic nephropathy (DN+, n = 62), clinical proteinuria (albuminuria above 300 mg per day), and at least 15-year disease duration. In control group, the patients had no diabetic nephropathy (DN−, n = 68), their albuminuria was below 200 mg per day, and disease duration was at least 20 years. Comparative analysis with exact Fisher’s test revealed no significant differences in frequencies of alleles and genotypes of the PON1 gene polymorphic marker Gln192Arg and of PON2 gene polymorphic markers Ala148Gly and Cys311Ser. Our results suggest that the polymorphic markers studied are not associated with diabetic nephropathy among Russian patients in Moscow.__________Translated from Genetika, Vol. 41, No. 6, 2005, pp. 844–849.Original Russian Text Copyright © 2005 by Voron’ko, Yakunina, Shestakova, Zotova, Chugunova, Shamkhalova, Vikulova, Debabov, Dedov, Nosikov.  相似文献   

16.
Allozyme spectra of peroxidase, esterase, superoxid dismutase, tyrosinase, alcohol dehydrogenase, lactate dehydrogenase, and acid phosphatase were examined in populations of sexual (Taraxacum serotinum and Pilosella echioides) and apomictic (T. officinale and P. officinarum) plant species. The heterozygosity in these populations (0.455–0.620) proved to be considerably higher than the average level characteristic of plant populations (0.058–0.185). The populations examined did not differ in the mean phenotype number , i.e., they exhibited the same diversity (3.188–3.380). The proportion of rare phenotypes h also did not differ between the sexual and apomictic species of the same genus, whereas this parameter in the Pilosella populations (0.150–0.174) was significantly higher than in the Taraxacum ones (0.093–0.114). The populations were characterized by numerous isozyme spectra (more than 11 per populations) and displayed multiple allelism (the mean allele frequency was 3.63–4.38 per locus). They exhibited a high percentage of rare (occurring at a frequency lower than 5%) spectra (35–80%). This indicates that agamic complexes, to which these populations belong, may have a more complicated genetic structure of both apomictic and sexual populations than the species that do not belong to agamic complexes.Translated from Genetika, Vol. 41, No. 2, 2005, pp. 203–215.Original Russian Text Copyright © 2005 by Kashin, Anfalov, Demochko.  相似文献   

17.
Large regions of temperate forest are subject to elevated atmospheric nitrogen (N) deposition which can affect soil organic matter dynamics by altering mass loss rates, soil respiration, and dissolved organic matter production. At present there is no general model that links these responses to changes in the organization and operation of microbial decomposer communities. Toward that end, we studied the response of litter and soil microbial communities to high levels of N amendment (30 and 80 kg ha–1 yr–1) in three types of northern temperate forest: sugar maple/basswood (SMBW), sugar maple/red oak (SMRO), and white oak/black oak (WOBO). We measured the activity of extracellular enzymes (EEA) involved directly in the oxidation of lignin and humus (phenol oxidase, peroxidase), and indirectly, through the production of hydrogen peroxide (glucose oxidase, glyoxal oxidase). Community composition was analyzed by extracting and quantifying phospholipid fatty acids (PLFA) from soils. Litter EEA responses at SMBW sites diverged from those at oak-bearing sites (SMRO, BOWO), but the changes were not statistically significant. For soil, EEA responses were consistent across forests types: phenol oxidase and peroxidase activities declined as a function of N dose (33–73% and 5–41%, respectively, depending on forest type); glucose oxidase and glyoxal oxidase activities increased (200–400% and 150–300%, respectively, depending on forest type). Principal component analysis (PCA) ordinated forest types and treatment responses along two axes; factor 1 (44% of variance) was associated with phenol oxidase and peroxidase activities, factor 2 (31%) with glucose oxidase. Microbial biomass did not respond to N treatment, but nine of the 23 PLFA that formed >1 mol% of total biomass showed statistically significant treatment responses. PCA ordinated forest types and treatment responses along three axes (36%, 26%, 12% of variance). EEA factors 1 and 2 correlated negatively with PLFA factor 1 (r = –0.20 and –0.35, respectively, n = 108) and positively with PLFA factor 3 (r = +0.36 and +0.20, respectively, n = 108). In general, EEA responses were more strongly tied to changes in bacterial PLFA than to changes in fungal PLFA. Collectively, our data suggests that N inhibition of oxidative activity involves more than the repression of ligninase expression by white-rot basidiomycetes.This revised version was published online in November 2004 with corrections to Volume 48.  相似文献   

18.
Three extracellular oxidases were purified and characterized from a solid-state culture of the ligninolytic fungus Panus tigrinus 8/18. Oxidases 1 and 2 have physicochemical properties and substrate specificity typical for laccases but have no "blue" maximum in the absorption spectra. They seem to be forms of modified "yellow" laccase. The absorption spectrum of oxidase 4 is similar to that of oxidases 1 and 2. However, the molecular weight (35 kD) and substrate specificity (no reaction with guaiacol, catechol, syringic acid, and syringaldazine) are different.  相似文献   

19.
3α-Hydroxysteroid dehydrogenases (3α-HSDs) inactivate steroid hormones in the liver, regulate 5α-dihydrotestosterone (5α-DHT) levels in the prostate, and form the neurosteroid, allopregnanolone in the CNS. Four human 3α-HSD isoforms exist and correspond to AKR1C1–AKR1C4 of the aldo-keto reductase (AKR) superfamily. Unlike the related rat 3α-HSD (AKR1C9) which is positional and stereospecific, the human enzymes display varying ratios of 3-, 17-, and 20-ketosteroid reductase activity as well as 3α-, 17β-, and 20α-hydroxysteroid oxidase activity. Their kcat values are 50–100-fold lower than that observed for AKR1C9. Based on their product profiles and discrete tissue localization, the human enzymes may regulate the levels of active androgens, estrogens, and progestins in target tissues. The X-ray crystal structures of AKR1C9 and AKR1C2 (human type 3 3α-HSD, bile acid binding protein and peripheral 3α-HSD) reveal that the AKR1C2 structure can bind steroids backwards (D-ring in the A-ring position) and upside down (β-face inverted) relative to the position of a 3-ketosteroid in AKR1C9 and this may account for its functional plasticity. Stopped-flow studies on both enzymes indicate that the conformational changes associated with binding cofactor (the first ligand) are slow; they are similar in both enzymes but are not rate-determining. Instead the low kcat seen in AKR1C2 (50-fold less than AKR1C9) may be due to substrate “wobble” at the plastic active site.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号