首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Co‐existence theories fail to adequately explain observed community patterns (diversity and composition) because they mainly address local extinctions. For a more complete understanding, the regional processes responsible for species formation and geographic dispersal should also be considered. The species pool concept holds that local variation in community patterns is dependent primarily on the availability of species, which is driven by historical diversification and dispersal at continental and landscape scales. However, empirical evidence of historical effects is limited. This slow progress can be attributed to methodological difficulties in determining the characteristics of historical species pools and how they contributed to diversity patterns in contemporary landscapes. A role of landscape‐scale dispersal limitation in determining local community patterns has been demonstrated by numerous seed addition experiments. However, disentangling general patterns of dispersal limitation in communities still requires attention. Distinguishing habitat‐specific species pools can help to meet both applied and theoretical challenges. In conservation biology, the use of absolute richness may be uninformative because the size of species pools varies between habitats. For characterizing the dynamic state of individual communities, biodiversity relative to species pools provides a balanced way of assessing communities in different habitats. Information about species pools may also be useful when studying community assembly rules, because it enables a possible mechanism of trait convergence (habitat filtering) to be explicitly assessed. Empirical study of the role of historic effects and dispersal on local community patterns has often been restricted due to methodological difficulties in determining habitat‐specific species pools. However, accumulating distributional, ecological and phylogenetic information, as well as use of appropriate model systems (e.g. archipelagos with known biogeographic histories) will allow the species pool concept to be applied effectively in future research.  相似文献   

2.
Identifying the mechanisms driving the distribution and diversity of parasitic organisms and characterizing the structure of parasite assemblages are critical to understanding host–parasite evolution, community dynamics, and disease transmission risk. Haemosporidian parasites of the genera Plasmodium and Haemoproteus are a diverse and cosmopolitan group of bird pathogens. Despite their global distribution, the ecological and historical factors shaping the diversity and distribution of these protozoan parasites across avian communities and geographic regions remain unclear. Here we used a region of the mitochondrial cytochrome b gene to characterize the diversity, biogeographical patterns, and phylogenetic relationships of Plasmodium and Haemoproteus infecting Amazonian birds. Specifically, we asked whether, and how, host community similarity and geography (latitude and area of endemism) structure parasite assemblages across 15 avian communities in the Amazon Basin. We identified 265 lineages of haemosporidians recovered from 2661 sampled birds from 330 species. Infection prevalence varied widely among host species, avian communities, areas of endemism, and latitude. Composition analysis demonstrated that both malarial parasites and host communities differed across areas of endemism and as a function of latitude. Thus, areas with similar avian community composition were similar in their parasite communities. Our analyses, within a regional biogeographic context, imply that host switching is the main event promoting diversification in malarial parasites. Although dispersal of haemosporidian parasites was constrained across six areas of endemism, these pathogens are not dispersal‐limited among communities within the same area of endemism. Our findings indicate that the distribution of malarial parasites in Amazonian birds is largely dependent on local ecological conditions and host evolutionary relationships.  相似文献   

3.
Identifying the ecological factors that shape parasite distributions remains a central goal in disease ecology. These factors include dispersal capability, environmental filters and geographic distance. Using 520 haemosporidian parasite genetic lineages recovered from 7,534 birds sampled across tropical and temperate South America, we tested (a) the latitudinal diversity gradient hypothesis and (b) the distance–decay relationship (decreasing proportion of shared species between communities with increasing geographic distance) for this host–parasite system. We then inferred the biogeographic processes influencing the diversity and distributions of this cosmopolitan group of parasites across South America. We found support for a latitudinal gradient in diversity for avian haemosporidian parasites, potentially mediated through higher avian host diversity towards the equator. Parasite similarity was correlated with climate similarity, geographic distance and host composition. Local diversification in Amazonian lineages followed by dispersal was the most frequent biogeographic events reconstructed for haemosporidian parasites. Combining macroecological patterns and biogeographic processes, our study reveals that haemosporidian parasites are capable of circumventing geographic barriers and dispersing across biomes, although constrained by environmental filtering. The contemporary diversity and distributions of haemosporidian parasites are mainly driven by historical (speciation) and ecological (dispersal) processes, whereas the parasite community assembly is largely governed by host composition and to a lesser extent by environmental conditions.  相似文献   

4.
Community assembly is determined by a combination of historical events and contemporary processes that are difficult to disentangle, but eco‐evolutionary mechanisms may be uncovered by the joint analysis of species and genetic diversity across multiple sites. Mountain streams across Europe harbour highly diverse macroinvertebrate communities whose composition and turnover (replacement of taxa) among sites and regions remain poorly known. We studied whole‐community biodiversity within and among six mountain regions along a latitudinal transect from Morocco to Scandinavia at three levels of taxonomic hierarchy: genus, species and haplotypes. Using DNA barcoding of four insect families (>3100 individuals, 118 species) across 62 streams, we found that measures of local and regional diversity and intraregional turnover generally declined slightly towards northern latitudes. However, at all hierarchical levels we found complete (haplotype) or high (species, genus) turnover among regions (and even among sites within regions), which counters the expectations of Pleistocene postglacial northward expansion from southern refugia. Species distributions were mostly correlated with environmental conditions, suggesting a strong role of lineage‐ or species‐specific traits in determining local and latitudinal community composition, lineage diversification and phylogenetic community structure (e.g., loss of Coleoptera, but not Ephemeroptera, at northern sites). High intraspecific genetic structure within regions, even in northernmost sites, reflects species‐specific dispersal and demographic histories and indicates postglacial migration from geographically scattered refugia, rather than from only southern areas. Overall, patterns were not strongly concordant across hierarchical levels, but consistent with the overriding influence of environmental factors determining community composition at the species and genus levels.  相似文献   

5.
One of the oldest challenges in ecology is to understand the processes that underpin the composition of communities. Historically, an obvious way in which to describe community compositions has been diversity in terms of the number and abundances of species. However, the failure to reject contradictory models has led to communities now being characterized by trait and phylogenetic diversities. Our objective here is to demonstrate how species, trait and phylogenetic diversity can be combined together from large to local spatial scales to reveal the historical, deterministic and stochastic processes that impact the compositions of local communities. Research in this area has recently been advanced by the development of mathematical measures that incorporate trait dissimilarities and phylogenetic relatedness between species. However, measures of trait diversity have been developed independently of phylogenetic measures and conversely most of the phylogenetic diversity measures have been developed independently of trait diversity measures. This has led to semantic confusions particularly when classical ecological and evolutionary approaches are integrated so closely together. Consequently, we propose a unified semantic framework and demonstrate the importance of the links among species, phylogenetic and trait diversity indices. Furthermore, species, trait and phylogenetic diversity indices differ in the ways they can be used across different spatial scales. The connections between large‐scale, regional and local processes allow the consideration of historical factors in addition to local ecological deterministic or stochastic processes. Phylogenetic and trait diversity have been used in large‐scale analyses to determine how historical and/or environmental factors affect both the formation of species assemblages and patterns in species richness across latitude or elevation gradients. Both phylogenetic and trait diversity have been used at different spatial scales to identify the relative impacts of ecological deterministic processes such as environmental filtering and limiting similarity from alternative processes such as random speciation and extinction, random dispersal and ecological drift. Measures of phylogenetic diversity combine phenotypic and genetic diversity and have the potential to reveal both the ecological and historical factors that impact local communities. Consequently, we demonstrate that, when used in a comparative way, species, trait and phylogenetic structures have the potential to reveal essential details that might act simultaneously in the assembly of species communities. We highlight potential directions for future research. These might include how variation in trait and phylogenetic diversity alters with spatial distances, the role of trait and phylogenetic diversity in global‐scale gradients, the connections between traits and phylogeny, the importance of trait rarity and independent evolutionary history in community assembly, the loss of trait and phylogenetic diversity due to human impacts, and the mathematical developments of biodiversity indices including within‐species variations.  相似文献   

6.
Species accumulation curves (SACs) chart the increase in recovery of new species as a function of some measure of sampling effort. Studies of parasite diversity can benefit from the application of SACs, both as empirical tools to guide sampling efforts and predict richness, and because their properties are informative about community patterns and the structure of parasite diversity. SACs can be used to infer interactivity in parasite infracommunities, to partition species richness into contributions from different spatial scales and different levels of the host hierarchy (individuals, populations and communities) or to identify modes of community assembly (niche versus dispersal). A historical tendency to treat individual hosts as statistically equivalent replicates (quadrats) seemingly satisfies the sample-based subgroup of SACs but care is required in this because of the inequality of hosts as sampling units. Knowledge of the true distribution of parasite richness over multiple host-derived and spatial scales is far from complete but SACs can improve the understanding of diversity patterns in parasite assemblages.  相似文献   

7.
Extremophilic microalgae are primary producers in acidic habitats, such as volcanic sites and acid mine drainages, and play a central role in biogeochemical cycles. Yet, basic knowledge about their species composition and community assembly is lacking. Here, we begin to fill this knowledge gap by performing the first large‐scale survey of microalgal diversity in acidic geothermal sites across the West Pacific Island Chain. We collected 72 environmental samples in 12 geothermal sites, measured temperature and pH, and performed rbcL amplicon‐based 454 pyrosequencing. Using these data, we estimated the diversity of microalgal species, and then examined the relative contribution of contemporary selection (i.e., local environmental variables) and dispersal limitation on the assembly of these communities. A species delimitation analysis uncovered seven major microalgae (four red, two green, and one diatom) and higher species diversity than previously appreciated. A distance‐based redundancy analysis with variation partitioning revealed that dispersal limitation has a greater influence on the community assembly of microalgae than contemporary selection. Consistent with this finding, community similarity among the sampled sites decayed more quickly over geographical distance than differences in environmental factors. Our work paves the way for future studies to understand the ecology and biogeography of microalgae in extreme habitats.  相似文献   

8.
1. The creation or severe disturbance of habitat patches is generally followed by a phase of community (re)assembly. After such an event, the trajectory of community assembly in habitat patches may be highly variable because of stochasticity during the dispersal and colonization process. Conversely, assembly patterns may also be deterministic if communities are shaped by prevalent environmental conditions in the habitat patches (species sorting), or by systematic differences in the dispersal capacities of species. 2. In this study, we investigated the pattern of community assembly of zooplankton species in 25 newly created ponds at 13 different sites in Flanders (Belgium). Over a period of three consecutive years, we assessed at what rate and with what frequency species of the regional species pool colonized the newly created ponds. We also studied the development of community structure over time and tested whether the dynamics were consistent across different ponds at the different locations. In addition, we characterized the dynamics of metacommunity features, such as alpha, beta and gamma diversity in clusters of ponds. 3. Even within the first year after their creation, the new ponds were rapidly colonized by a small subset of species from the regional species pool (Daphnia obtusa, Chydorus sphaericus and Simocephalus vetulus). These species dominated the cladoceran assemblages during the subsequent years. Other species in the regional species pools were only sporadically able to colonize ponds. 4. During the entire study period, we observed no significant shifts in species lists or in the occurrences of species among years. The low incidence of the majority of species may be the result of dispersal limitation or the failure of immigrants to establish due to priority effects exerted by the first colonizers. There was, nevertheless, a consistent change in the relative abundance of species, which was most probably mediated by differences in the hatching time among species influencing species composition in the first year. 5. In contrast to expectations, we observed no increase in average alpha diversity (local species richness) and gamma diversity (total richness of entire pond clusters) during the course of the study period. Beta diversity was relatively low from the beginning and remained constant throughout the study period. These deterministic patterns can mainly be attributed to the dominance of the three first colonizing species and the low success rate of other species in colonizing the ponds.  相似文献   

9.
1. Differences among communities in taxonomic composition – beta diversity – are frequently expected to result from taxon‐specific responses to spatial variation in ecological conditions, through niche partitioning. Such process‐derived patterns are in sharp contrast to arguments from neutral theory, where taxa are ecologically equivalent and beta diversity results primarily from dispersal limitation. 2. Here, we compared beta diversity among assemblages of damselflies (Odonata: Zygoptera), for which previous experiments have shown that niche differences maintain genera within a community, but patterns of relative abundance for species within each genus are shaped primarily by neutral dynamics. 3. Using null‐model and ordination‐based methods, we find that both genera and (in contrast to neutral theory) species assemblage composition vary across the landscape in a deterministic fashion, shaped by environmental and spatial factors. 4. While the observed patterns in species composition conflict with theory, we suggest that this a result of weak ecological filters acting to produce spatial variation in assemblages of ecologically similar species undergoing ecological drift within communities. Such patterns are especially likely in systems of relatively weak dispersers like damselflies.  相似文献   

10.
Miriam N. Ojima  Lin Jiang 《Oikos》2017,126(5):682-691
The traditional debate on alternative community states has been over whether or not they exist. Studies of community assembly have examined the role of assembly history in driving community divergence, but the context in which assembly history becomes important is a continued topic of interest. In this study, we created communities of bacterivorous ciliated protists in laboratory microcosms and manipulated assembly history, disturbance frequency, and the presence of dispersal among local communities to investigate the mechanisms behind community divergence. Specifically, we sought to understand how the role of assembly history changed in response to disturbance, dispersal, and the combination of the two. Assembly history influenced the identity of the dominant species through priority effects, and dispersal and disturbance showed interactive effects on both alpha and beta diversity. Dispersal substantially increased alpha diversity, but only in the absence of disturbance, and it reduced beta diversity, but not in the presence of low or mixed disturbance. These results demonstrate that the role of assembly history and the strength of priority effects depend on community context, suggesting that understanding the interactions between various factors shaping community assembly is important for understanding how ecological communities are structured.  相似文献   

11.
Aims Studies integrating phylogenetic history and large-scale community assembly are few, and many questions remain unanswered. Here, we use a global coastal dune plant data set to uncover the important factors in community assembly across scales from the local filtering processes to the global long-term diversification and dispersal dynamics. Coastal dune plant communities occur worldwide under a wide range of climatic and geologic conditions as well as in all biogeographic regions. However, global patterns in the phylogenetic composition of coastal dune plant communities have not previously been studied.Methods The data set comprised vegetation data from 18463 plots in New Zealand, South Africa, South America, North America and Europe. The phylogenetic tree comprised 2241 plant species from 149 families. We calculated phylogenetic clustering (Net Relatedness Index, NRI, and Nearest Taxon Index, NTI) of regional dune floras to estimate the amount of in situ diversification relative to the global dune species pool and evaluated the relative importance of land and climate barriers for these diversification patterns by geographic analyses of phylogenetic similarity. We then tested whether dune plant communities exhibit similar patterns of phylogenetic structure within regions. Finally, we calculated NRI for local communities relative to the regional species pool and tested for an association with functional traits (plant height and seed mass) thought to vary along sea–inland gradients.Important findings Regional species pools were phylogenetically clustered relative to the global pool, indicating regional diversification. NTI showed stronger clustering than NRI pointing to the importance of especially recent diversifications within regions. The species pools grouped phylogenetically into two clusters on either side of the tropics suggesting greater dispersal rates within hemispheres than between hemispheres. Local NRI plot values confirmed that most communities were also phylogenetically clustered within regions. NRI values decreased with increasing plant height and seed mass, indicating greater phylogenetic clustering in communities with short maximum height and good dispersers prone to wind and tidal disturbance as well as salt spray, consistent with environmental filtering along sea–inland gradients. Height and seed mass both showed significant phylogenetic signal, and NRI tended to correlate negatively with both at the plot level. Low NRI plots tended to represent coastal scrub and forest, whereas high NRI plots tended to represent herb-dominated vegetation. We conclude that regional diversification processes play a role in dune plant community assembly, with convergence in local phylogenetic community structure and local variation in community structure probably reflecting consistent coastal-inland gradients. Our study contributes to a better understanding of the globally distributed dynamic coastal ecosystems and the structuring factors working on dune plant communities across spatial scales and regions.  相似文献   

12.
1. Studies seeking to explain local patterns of diversity have typically relied on niche explanations, reflected in correlations with local environmental conditions, or neutral theory, invoking dispersal processes and speciation. 2. We used macroinvertebrate community data from 10 streams that varied independently in local ecological conditions and spatial proximity. Neutral theory predicts that similarity in communities will be negatively associated with distance between sites, while niche theory suggests that community similarity will be positively associated with similarity in local ecological conditions. 3. Similarity in total invertebrate, grazer and predator assemblages showed negative relationships with distance and, for grazers and predators, positive relationships with local ecological conditions. However, the best model predicting community similarity in all three cases included aspects of both local ecological conditions and distance between sites. 4. When assemblages were analysed according to dispersal ability, high-dispersal species were shown to be freely accessing all sites and community similarity was not well predicted by either local ecology or spatial separation. Assemblages of species with low and moderate dispersal ability were best predicted by combined models, including distance between sites and local ecological factors. 5. The results suggest that the perceived dichotomy between neutral and local environmental processes in determining local patterns of diversity may not be useful. Neutral and niche processes structured these communities differentially depending on trophic level and species traits. 6. We emphasize the potential for both dispersal processes and local environmental conditions to explain local patterns of diversity.  相似文献   

13.
Aim To contrast floristic spatial patterns and the importance of habitat fragmentation in two plant communities (grassland and scrubland) in the context of ecological succession. We ask whether plant assemblages are affected by habitat fragmentation and, if so, at what spatial scale? Does the relative importance of the niche differentiation and dispersal‐limitation mechanisms change throughout secondary succession? Is the dispersal‐limitation mechanism related to plant functional traits? Location A Mediterranean region, the massif of Albera (Spain). Methods Using a SPOT satellite image to describe the landscape, we tested the effect of habitat fragmentation on species composition, determining the spatial scale of the assemblage response. We then assessed the relative importance of dispersal‐related factors (habitat fragmentation and geographical distance) and environmental constraints (climate‐related variables) influencing species similarity. We tested the association between dispersal‐related factors and plant traits (dispersal mode and life form). Results In both community types, plant composition was partially affected by the surrounding vegetation. In scrublands, animal‐dispersed and woody plants were abundant in landscapes dominated by closed forests, whereas wind‐dispersed annual herbs were poorly represented in those landscapes. Scrubby assemblages were more dependent on geographical distance, habitat fragmentation and climate conditions (temperature, rainfall and solar radiation); grasslands were described only by habitat fragmentation and rainfall. Plant traits did not explain variation in spatial structuring of assemblages. Main conclusions Plant establishment in early Mediterranean communities may be driven primarily by migration from neighbouring established communities, whereas the importance of habitat specialization and community drift increases over time. Plant life forms and dispersal modes did not explain the spatial variation of species distribution, but species richness within the community with differing plant traits was affected by habitat patchiness.  相似文献   

14.
A major challenge in ecology, conservation and global‐change biology is to understand why biodiversity responds differently to similar environmental changes. Contingent biodiversity responses may depend on how disturbance and dispersal interact to alter variation in community composition (β‐diversity) and assembly mechanisms. However, quantitative syntheses of these patterns and processes across studies are lacking. Using null‐models and meta‐analyses of 22 factorial experiments in herbaceous plant communities across Europe and North America, we show that disturbance diversifies communities when dispersal is limited, but homogenises communities when combined with increased immigration from the species pool. In contrast to the hypothesis that disturbance and dispersal mediate the strength of niche assembly, both processes altered β‐diversity through neutral‐sampling effects on numbers of individuals and species in communities. Our synthesis suggests that stochastic effects of disturbance and dispersal on community assembly play an important, but underappreciated, role in mediating biotic homogenisation and biodiversity responses to environmental change.  相似文献   

15.
Rabosky DL  Reid J  Cowan MA  Foulkes J 《Oecologia》2007,154(3):561-570
Both local and regional processes may contribute to community diversity and structure at local scales. Although many studies have investigated patterns of local or regional community structure, few have addressed the extent to which local community structure influences patterns within regional species pools. Here we investigate the role of body size in community assembly at local and regional scales in Ctenotus lizards from arid Australia. Ctenotus has long been noted for its exceptional species diversity in the Australian arid-zone, and previous studies have attempted to elucidate the processes underlying species coexistence within communities of these lizards. However, no consensus has emerged on the role of interspecific competition in the assembly and maintenance of Ctenotus communities. We studied Ctenotus communities at several hundred sites in the arid interior of Australia to test the hypothesis that body sizes within local and regional Ctenotus assemblages should be overdispersed relative to null models of community assembly, and we explored the relationship between body size dispersion at local and regional scales. Results indicate a striking pattern of community-wide overdispersion of body size at local scales, as measured by the variance in size ratios among co-occurring species. However, we find no evidence for body size overdispersion within regional species pools, suggesting a lack of correspondence between processes influencing the distribution of species phenotypes at local and regional scales. We suggest that size ratio constancy in Ctenotus communities may have resulted from contemporary ecological interactions among species or ecological character displacement, and we discuss alternative explanations for the observed patterns. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Zhichao Pu  Lin Jiang 《Oikos》2015,124(10):1327-1336
Ample evidence suggests that ecological communities can exhibit historical contingencies. However, few studies have explored whether differences in assembly history can generate alternative local community states in metacommunities in which local communities are linked by dispersal. In a protist microcosm experiment, we examined the influence of species colonization history on metacommunity assembly under homogeneous environmental conditions, by manipulating both the sequence of species colonization into local communities and the rate of dispersal among local communities. Whereas the role of dispersal in structuring local communities decreased over time and became non‐significant towards the end of the experiment, species colonization history significantly influenced local communities throughout the experiment. Local communities, regardless of the rate of dispersal among them, exhibited two alternative states characterized by the dominance of different species. The alternative community states, however, emerged in the absence of priority effects that were often associated with alternative community states found in other assembly studies. Rather, they were driven by variation in species interaction strength among local communities with different assembly histories. These results suggest that dispersal among local communities may not necessarily reduce the role of species colonization history in shaping metacommunity assembly, and that differences in species colonization history need to be explicitly considered as an important factor in causing heterogeneous community states in metacommunities.  相似文献   

17.
Recent attempts to understand the processes governing community assembly have increasingly focused on patterns of phylogenetic relatedness and functional similarity among co-existing species. Considerations of the species pool, the number and identity of functional traits and the metrics used to identify patterns have come under scrutiny as possible influences on the detection of non-random patterns. Most mechanistic explanations of community assembly based on functional and phylogenetic approaches rely on deterministic explanations, while ignoring the role of stochastic processes and historical contingency, despite the prominent historical role of both types of explanations of species coexistence. We evaluated the phylogenetic and functional structure of 20 temperate forest bird assemblages in northeastern North America. We compared three approaches for characterizing the functional structure of assemblages. Regardless of approach, assemblages were generally no different than expected by chance. In contrast, phylogenetic structures of bird assemblages were overdispersed, clumped or consistent with random assembly depending on the site. Nonetheless, we found little evidence for differences in phylogenetic structure arising as a consequence of the identity of the species pool. We identified a strong relationship between the proportion of residents and phylogenetic relatedness that was unrelated to the species richness of assemblages. Our results suggest that different assembly mechanisms may structure resident and migratory subsets of temperate breeding bird communities. Resident assemblages are likely structured by interspecific interactions and habitat filtering prior to arrival of migrants. In contrast, the composition of migrant assemblages may be a consequence of priority effects in which the presence and abundance of residents and earliest arriving species affect the ability of subsequent migrants to colonize sites. This phenomenon enhances the likelihood of multiple alternative community structures in similar environments.  相似文献   

18.
The extent that biotic interactions and dispersal influence species ranges and diversity patterns across scales remains an open question. Answering this question requires framing an analysis on the frontier between species distribution modelling (SDM), which ignores biotic interactions and dispersal limitation, and community ecology, which provides specific predictions on community and meta‐community structure and resulting diversity patterns such as species richness and functional diversity. Using both empirical and simulated datasets, we tested whether predicted occurrences from fine‐resolution SDMs provide good estimates of community structure and diversity patterns at resolutions ranging from a resolution typical of studies within reserves (250 m) to that typical of a regional biodiversity study (5 km). For both datasets, we show that the imprint of biotic interactions and dispersal limitation quickly vanishes when spatial resolution is reduced, which demonstrates the value of SDMs for tracking the imprint of community assembly processes across scales.  相似文献   

19.
How are ecologically diverse organisms added to local assemblages to create the community structure we see today? In general, within a given region or community, a given trait (character state) may either evolve in situ or be added through dispersal after having evolved elsewhere. Here, we develop simple metrics to quantify the relative importance of these processes and then apply them to a case study in Middle American treefrogs. We examined two ecologically important characters (larval habitat and body size) among 39 communities, using phylogenetic and ecological information from 278 species both inside and outside the region. For each character, variation among communities reflects complex patterns of evolution and dispersal. Our results support several general hypotheses about community assembly, which may apply to many other systems: (1) elevation can play an important role in creating patterns of community structure within a region, (2) contrary to expectations, species can invade communities in which species with similar ecological traits are already present, (3) dispersal events tend to occur between areas with similar climatic regimes, and (4) the first lineage to invade a region diversifies the most ecologically, whereas later invasions show limited change.  相似文献   

20.
Dispersal among local communities can have a variety of effects on species composition and diversity at local and regional scales. Local conditions (e.g., resource and predator densities) can have independent effects, as well as interact with dispersal, to alter these patterns. Based on metacommunity models, we predicted that local diversity would show a unimodal relationship with dispersal frequency. We manipulated dispersal frequencies, resource levels, and the presence of predators (mosquito larvae) among communities found in the water-filled leaves of the pitcher plant Sarracenia purpurea. Diversity and abundance of species of the middle trophic level, protozoa and rotifers, were measured. Increased dispersal frequencies significantly increased regional species richness and protozoan abundance while decreasing the variance among local communities. Dispersal frequency interacted with predation at the local community scale to produce patterns of diversity consistent with the model. When predators were absent, we found a unimodal relationship between dispersal frequency and diversity, and when predators were present, there was a flat relationship. Intermediate dispersal frequencies maintained some species in the inquiline communities by offsetting extinction rates. Local community composition and the degree of connectivity between communities are both important for understanding species diversity patterns at local and regional scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号