首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 976 毫秒
1.
Biological diversities of multiple kingdoms potentially respond in similar ways to environmental changes. However, studies either compare details of microbial diversity across general vegetation or land use classes or relate details of plant community diversity with the extent of microbially governed soil processes, via physiological profiling. Here, we test the hypothesis of shared responses of plant and rhizosphere bacterial, fungal and metazoan biodiversities (especially across‐habitat β‐diversity patterns) along a disturbance gradient encompassing grazed to abandoned Alpine pasture, on acid soil in the European Central Alps. Rhizosphere biological diversity was inferred from eDNA fractions specific to bacteria, fungi and metazoans from contrasting plant habitats indicative of different disturbance levels. We found that soil β‐diversity patterns were weakly correlated with plant diversity measures and similarly ordinated along an evident edaphic (pH, C:N, assimilable P) and disturbance gradient but, contrary to our hypothesis, did not demonstrate the same diversity patterns. While plant communities were well separated along the disturbance gradient, correlating with fungal diversity, the majority of bacterial taxa were shared between disturbance levels (75% of bacteria were ubiquitous, cf. 29% plant species). Metazoa exhibited an intermediate response, with communities at the lowest levels of disturbance partially overlapping. Thus, plant and soil biological diversities were only loosely dependent and did not exhibit strictly linked environmental responses. This probably reflects the different spatial scales of organisms (and their habitats) and capacity to invest resources in persistent multicellular tissues, suggesting that vegetation responses to environmental change are unreliable indicators of below‐ground biodiversity responses.  相似文献   

2.
Seed dispersal limitation, which can be exacerbated by a number of anthropogenic causes, can result in local communities having fewer species than they might potentially support, representing a potential diversity deficit. The link between processes that shape natural variation in diversity, such as dispersal limitation, and the consequent effects on productivity is less well known. Here, we synthesised data from 12 seed addition experiments in grassland communities to examine the influence of reducing seed dispersal limitation (from 1 to 60 species added across experiments) on species richness and productivity. For every 10 species of seed added, we found that species richness increased by about two species. However, the increase in species richness by overcoming seed limitation did not lead to a concomitant increase in above‐ground biomass production. This highlights the need to consider the relationship between biodiversity and ecosystem functioning in a pluralistic way that considers both the processes that shape diversity and productivity simultaneously in naturally assembled communities.  相似文献   

3.
Intensification of land‐use threatens biodiversity, especially in tropical ecosystems that harbor the planet's highest species richness. This negative impact of anthropogenic disturbance on species numbers is well established, but the mechanisms underlying the community assembly processes are less well understood. Termites are of fundamental importance in tropical ecosystems where they are critical for nutrient recycling and species diversity. We tested the impact of anthropogenic disturbance on termite species diversity and assembly processes in a West African savanna applying the newest techniques of phylogenetic community analyses. Species richness dropped in areas of intensive land‐use and compositional similarity between intensive land‐use areas was high. This contrasted with a protected National Park where communities were characterized by high species richness and intermediate species turnover between sites. Slightly disturbed areas in the buffer zone surrounding the park were intermediate, they still had high species richness but similarity between sites increased. Strikingly, the assembly pattern also changed with disturbance from more phylogenetic overdispersion to more clustering (coexisting species became phylogenetically more similar), but only when the fungus‐growing termite Macrotermes bellicosus was absent. Our data suggest that the major forces structuring termite communities depend: (1) on the presence of this dominant mound‐building termite; and (2) that they change to more environmental filtering with disturbance. Anthropogenic disturbance seems to function as a filter that allows only a specific subset of species to occur. Such an effect might be widespread in ecology but it is difficult to document quantitatively. Phylogenetic community analyses can help to contribute such evidence.  相似文献   

4.
Ecological theory suggests that communities are not random combinations of species but rather the results of community assembly processes filtering and sorting species that are able to coexist together. To date, such processes (i.e., assembly rules) have been inferred from observed spatial patterns of biodiversity combined with null model approaches, but relatively few attempts have been made to assess how these processes may be changing through time. Specifically, in the context of the ongoing biodiversity crisis and global change, understanding how processes shaping communities may be changing and identifying the potential drivers underlying these changes become increasingly critical. Here, we used time series of 460 French freshwater fish communities and assessed both functional and phylogenetic diversity patterns to determine the relative importance of two key assembly rules (i.e., habitat filtering and limiting similarity) in shaping these communities over the last two decades. We aimed to (a) describe the temporal changes in both functional and phylogenetic diversity patterns, (b) determine to what extent temporal changes in processes inferred through the use of standardized diversity indices were congruent, and (c) test the relationships between the dynamics of assembly rules and both climatic and biotic drivers. Our results revealed that habitat filtering, although already largely predominant over limiting similarity, became more widespread over time. We also highlighted that phylogenetic and trait‐based approaches offered complementary information about temporal changes in assembly rules. Finally, we found that increased environmental harshness over the study period (especially higher seasonality of temperature) led to an increase in habitat filtering and that biological invasions increased functional redundancy within communities. Overall, these findings underlie the need to develop temporal perspectives in community assembly studies, as understanding ongoing temporal changes could provide a better vision about the way communities could respond to future global changes.  相似文献   

5.
Aim The role of dispersal in structuring biodiversity across spatial scales is controversial. If dispersal controls regional and local community assembly, it should also affect the degree of spatial species turnover as well as the extent to which regional communities are represented in local communities. Here we provide the first integrated assessment of relationships between dispersal ability and local‐to‐regional spatial aspects of species diversity across a large geographical area. Location Northern Eurasia. Methods Using a cross‐scale analysis covering local (0.64 m2) to continental (the Eurasian Arctic biome) scales, we compared slope parameters of the dissimilarity‐to‐distance relationship in species composition and the local‐to‐regional relationship in species richness among three plant‐like groups that differ in dispersal ability: lichens with the highest dispersal ability; mosses and moss allies with intermediate dispersal ability; and seed plants with the lowest dispersal ability. Results Diversity patterns generally differed between the three groups according to their dispersal ability, even after controlling for niche‐based processes. Increasing dispersal ability is linked to decreasing spatial species turnover and an increasing ratio of local to regional species richness. All comparisons supported our expectations, except for the slope of the local‐to‐regional relationship in species richness for mosses and moss allies which was not significantly steeper than that of seed plants. Main conclusions The negative link between dispersal ability and spatial species turnover and the corresponding positive link between dispersal ability and the ratio of local‐to‐regional species richness support the idea that dispersal affects community structure and diversity patterns across spatial scales.  相似文献   

6.
Functional trait diversity is a popular tool in modern ecology, mainly used to infer assembly processes and ecosystem functioning. Patterns of functional trait diversity are shaped by ecological processes such as environmental filtering, species interactions and dispersal that are inherently spatial, and different processes may operate at different spatial scales. Adding a spatial dimension to the analysis of functional trait diversity may thus increase our ability to infer community assembly processes and to predict change in assembly processes following disturbance or land‐use change. Richness, evenness and divergence of functional traits are commonly used indices of functional trait diversity that are known to respond differently to large‐scale filters related to environmental heterogeneity and dispersal and fine‐scale filters related to species interactions (competition). Recent developments in spatial statistics make it possible to separately quantify large‐scale patterns (variation in local means) and fine‐scale patterns (variation around local means) by decomposing overall spatial autocorrelation quantified by Moran's coefficient into its positive and negative components using Moran eigenvector maps (MEM). We thus propose to identify the spatial signature of multiple ecological processes that are potentially acting at different spatial scales by contrasting positive and negative components of spatial autocorrelation for each of the three indices of functional trait diversity. We illustrate this approach with a case study from riparian plant communities, where we test the effects of disturbance on spatial patterns of functional trait diversity. The fine‐scale pattern of all three indices was increased in the disturbed versus control habitat, suggesting an increase in local scale competition and an overall increase in unexplained variance in the post‐disturbance versus control community. Further research using simulation modeling should focus on establishing the proposed link between community assembly rules and spatial patterns of functional trait diversity to maximize our ability to infer multiple processes from spatial community structure.  相似文献   

7.
The extent that biotic interactions and dispersal influence species ranges and diversity patterns across scales remains an open question. Answering this question requires framing an analysis on the frontier between species distribution modelling (SDM), which ignores biotic interactions and dispersal limitation, and community ecology, which provides specific predictions on community and meta‐community structure and resulting diversity patterns such as species richness and functional diversity. Using both empirical and simulated datasets, we tested whether predicted occurrences from fine‐resolution SDMs provide good estimates of community structure and diversity patterns at resolutions ranging from a resolution typical of studies within reserves (250 m) to that typical of a regional biodiversity study (5 km). For both datasets, we show that the imprint of biotic interactions and dispersal limitation quickly vanishes when spatial resolution is reduced, which demonstrates the value of SDMs for tracking the imprint of community assembly processes across scales.  相似文献   

8.
Anthropogenic habitat disturbance is a strong biodiversity change driver that compromises not only the species persistence but also the ecological interactions in which they are involved. Even though seed dispersal is a key interaction involved in the recruitment of many tree species and in consequence critical for biodiversity maintenance, studies assessing the effect of different anthropogenic disturbance drivers on this interaction have not been performed under a meta‐analytical framework. We assessed the way habitat fragmentation and degradation processes affect species diversity (abundance and species richness) and interaction rates (i.e., fruit removal and visitation rates) of different groups of seed‐disperser species at a global scale. We obtained 163 case studies from 37 articles. Results indicate that habitat degradation had a negative effect on seed‐disperser animal diversity, whereas habitat fragmentation had a negative effect on interaction rates. Birds and insects were more sensitive in terms of their diversity, whereas mammals showed a negative effect on interaction rates. Regarding habitat, both fragmentation and degradation had a negative effect on seed‐disperser animal diversity only in temperate habitats, and negative effects on interaction rates in tropical and temperate habitats. Our results indicate that the impact of human disturbance on seed‐disperser species and interactions is not homogeneous. On the contrary, the magnitude of effects seems to be dependent on the type of disturbance, taxonomic group under assessment, and geographical region where the human impact occurs.  相似文献   

9.
10.
Site‐to‐site variation in species composition (β‐diversity) generally increases from low‐ to high‐diversity regions. Although biogeographical differences in community assembly mechanisms may explain this pattern, random sampling effects can create this pattern through differences in regional species pools. Here, we compared assembly mechanisms between spatially extensive networks of temperate and tropical forest plots with highly divergent species pools (46 vs. 607 species). After controlling for sampling effects, β‐diversity of woody plants was similar and higher than expected by chance in both forests, reflecting strong intraspecific aggregation. However, different mechanisms appeared to explain aggregation in the two forests. In the temperate forest, aggregation reflected stronger environmental correlations, suggesting an important role for species‐sorting (e.g. environmental filtering) processes, whereas in the tropics, aggregation reflected stronger spatial correlations, more likely reflecting dispersal limitation. We suggest that biogeographical differences in the relative importance of different community assembly mechanisms contribute to these striking gradients in global biodiversity.  相似文献   

11.
Organismal movement is ubiquitous and facilitates important ecological mechanisms that drive community and metacommunity composition and hence biodiversity. In most existing ecological theories and models in biodiversity research, movement is represented simplistically, ignoring the behavioural basis of movement and consequently the variation in behaviour at species and individual levels. However, as human endeavours modify climate and land use, the behavioural processes of organisms in response to these changes, including movement, become critical to understanding the resulting biodiversity loss. Here, we draw together research from different subdisciplines in ecology to understand the impact of individual‐level movement processes on community‐level patterns in species composition and coexistence. We join the movement ecology framework with the key concepts from metacommunity theory, community assembly and modern coexistence theory using the idea of micro–macro links, where various aspects of emergent movement behaviour scale up to local and regional patterns in species mobility and mobile‐link‐generated patterns in abiotic and biotic environmental conditions. These in turn influence both individual movement and, at ecological timescales, mechanisms such as dispersal limitation, environmental filtering, and niche partitioning. We conclude by highlighting challenges to and promising future avenues for data generation, data analysis and complementary modelling approaches and provide a brief outlook on how a new behaviour‐based view on movement becomes important in understanding the responses of communities under ongoing environmental change.  相似文献   

12.
Anthropogenic habitat disturbance has potential consequences for ant communities. However, there is limited information on the effects of ant responses on associated ecological processes such as seed dispersal. We investigated the effect of disturbance on the abundance, richness, and composition of ant communities and the resulting seed‐dispersal services for a herbaceous myrmecochore, Corydalis giraldii (Papaveraceae), in an undisturbed habitat (forest understory), moderately disturbed habitat (abandoned arable field), and highly disturbed habitat (road verge) on Qinling Mountains, China. In total, we recorded 13 ant species, and five out of these were observed to transport seeds. The community composition of dispersers was significantly different amongst habitats. The richness of the dispersers did not differ among the habitats, but their total abundance varied significantly across habitats and was 21% lower in the road verge than in the abandoned arable fields. The major seed‐dispersing ant species in both the forest understory and the abandoned arable field were large‐bodied (Myrmica sp. and Formica fusca, respectively), whereas the major seed‐dispersing ants found in the road verge were the small‐bodied Lasius alienus. This difference resulted in lower seed removal rates and dispersal distances in the road verge than in the other two habitats. The different dispersal patterns were attributed primarily to differences in dispersing ant abundance and identity, most likely in response to habitats with different degree of anthropogenic disturbance. The possible influence of disturbance on the ecological specialization of ant‐seed dispersal interaction is also discussed.  相似文献   

13.
Aim Dispersal assembly and niche assembly are two competing theories proposed to explain the maintenance of species diversity in tropical forests. Dispersal theory emphasizes the role of chance colonization events and distance‐limited seed dispersal in explaining species abundance and distribution, whereas niche theory emphasizes differences among species in requirements for potentially limiting resources. Species distribution patterns in tropical forests often correlate with geology and topography, but tests of the relative importance of dispersal and niche partitioning have been hampered by an inadequate characterization of resource availability. The aim of this study was to explore how soil chemical and physical properties, climate, and geographic distance affect understorey palm communities in lower montane forests. Location Fortuna Forest Reserve, Chiriqui Province, and Palo Seco Forest Reserve, Bocas del Toro Province, in western Panama. Methods Understorey palms and soil nutrient concentrations were surveyed within 10 sites on different soil types across a 13‐km transect. Variation in palm community composition was examined in relation to spatial and environmental variables. Results The 25 understorey palm species recorded in the study were non‐randomly distributed among forests differing in soil nutrient availability. In support of dispersal theory, floristic similarity decreased predictably with increasing geographic distance. However, environmental and soil variables were also correlated with geographic distance. Floristic similarity was also highly associated with a subset of environmental variables. Variation in palm community similarity was most strongly correlated with inorganic nitrogen availability and cation concentration. A subset of soil variables had a stronger relationship with floristic similarity when geographic distance was controlled for than did geographic distance when differences in soils were controlled for. Main conclusions Both dispersal and niche processes affect palm species distribution patterns. Although spatially limited dispersal may influence species distribution patterns, soil‐based habitat associations, particularly with respect to soil nitrogen, cation availability and aluminium concentrations, remain important factors influencing palm community composition at the mesoscale level in this tropical montane forest.  相似文献   

14.
The cichlid family features some of the most spectacular examples of adaptive radiation. Evolutionary studies have highlighted the importance of both trophic adaptation and sexual selection in cichlid speciation. However, it is poorly understood what processes drive the composition and diversity of local cichlid species assemblages on relatively short, ecological timescales. Here, we investigate the relative importance of niche‐based and neutral processes in determining the composition and diversity of cichlid communities inhabiting various environmental conditions in the littoral zone of Lake Tanganyika, Zambia. We collected data on cichlid abundance, morphometrics, and local environments. We analyzed relationships between mean trait values, community composition, and environmental variation, and used a recently developed modeling technique (STEPCAM) to estimate the contributions of niche‐based and neutral processes to community assembly. Contrary to our expectations, our results show that stochastic processes, and not niche‐based processes, were responsible for the majority of cichlid community assembly. We also found that the relative importance of niche‐based and neutral processes was constant across environments. However, we found significant relationships between environmental variation, community trait means, and community composition. These relationships were caused by niche‐based processes, as they disappeared in simulated, purely neutrally assembled communities. Importantly, these results can potentially reconcile seemingly contrasting findings in the literature about the importance of either niche‐based or neutral‐based processes in community assembly, as we show that significant trait relationships can already be found in nearly (but not completely) neutrally assembled communities; that is, even a small deviation from neutrality can have major effects on community patterns.  相似文献   

15.
The initial response of individuals to human‐induced environmental change is often behavioural. This can improve the performance of individuals under sudden, large‐scale perturbations and maintain viable populations. The response can also give additional time for genetic changes to arise and, hence, facilitate adaptation to new conditions. On the other hand, maladaptive responses, which reduce individual fitness, may occur when individuals encounter conditions that the population has not experienced during its evolutionary history, which can decrease population viability. A growing number of studies find human disturbances to induce behavioural responses, both directly and by altering factors that influence fitness. Common causes of behavioural responses are changes in the transmission of information, the concentration of endocrine disrupters, the availability of resources, the possibility of dispersal, and the abundance of interacting species. Frequent responses are alterations in habitat choice, movements, foraging, social behaviour and reproductive behaviour. Behavioural responses depend on the genetically determined reaction norm of the individuals, which evolves over generations. Populations first respond with individual behavioural plasticity, whereafter changes may arise through innovations and the social transmission of behavioural patterns within and across generations, and, finally, by evolution of the behavioural response over generations. Only a restricted number of species show behavioural adaptations that make them thrive in severely disturbed environments. Hence, rapid human‐induced disturbances often decrease the diversity of native species, while facilitating the spread of invasive species with highly plastic behaviours. Consequently, behavioural responses to human‐induced environmental change can have profound effects on the distribution, adaptation, speciation and extinction of populations and, hence, on biodiversity. A better understanding of the mechanisms of behavioural responses and their causes and consequences could improve our ability to predict the effects of human‐induced environmental change on individual species and on biodiversity.  相似文献   

16.
Theoretical models predict that effects of dispersal on local biodiversity are influenced by the size and composition of the species pool, as well as ecological filters that limit local species membership. We tested these predictions by conducting a meta-analysis of 28 studies encompassing 62 experiments examining effects of propagule supply (seed arrival) on plant species richness under contrasting intensities of ecological filters (owing to disturbance and resource availability). Seed arrival increased local species richness in a wide range of communities (forest, grassland, montane, savanna, wetland), resulting in a positive mean effect size across experiments. Mean effect size was 70% higher in disturbed relative to undisturbed communities, suggesting that disturbance increases recruitment opportunities for immigrating species. In contrast, effect size was not significantly influenced by nutrient or water availability. Among seed-addition experiments, effect size was positively correlated with species and functional diversity within the pool of added seeds (species evenness and seed-size diversity), primarily in disturbed communities. Our analysis provides experimental support for the general hypothesis that species pools and local environmental heterogeneity interactively structure plant communities. We highlight empirical gaps that can be addressed by future experiments and discuss implications for community assembly, species coexistence, and the maintenance of biodiversity.  相似文献   

17.
The question of whether species co‐occurrence is random or deterministic has received considerable attention, but little is known about how anthropogenic disturbance mediates the outcomes. By combining experiments, field surveys and analysis against null models, we tested the hypothesis that anthropogenic habitat modification disrupts species co‐occurrence in stream invertebrates across spatial scales. Whereas communities in unmodified conditions were structured deterministically with significant species segregation, catchment‐scale conversion to agriculture and sediment deposition at the patch‐ or micro‐habitat scale apparently randomized species co‐occurrences. This shift from non‐random to random was mostly independent of species richness, abundance and spatial scale. Data on community‐wide life‐history traits (body size, dispersal ability and predatory habits) and beta‐diversity indicated that anthropogenic modification disrupted community assembly by affecting biotic interactions and, to a lesser extent, altering habitat heterogeneity. These data illustrate that the balance between predictable and stochastic patterns in communities can reflect anthropogenic modifications that not only transcend scales but also change the relative forces that determine species coexistence. Research into the effects of habitat modification as a key to understanding global change should extend beyond species richness and composition to include species co‐occurrence, species interactions and any functional consequences.  相似文献   

18.
19.
Identifying the current and past processes driving community assembly is critical in the effort to understand the Earth's biodiversity and its response to future environmental change. But while studies on community assembly often emphasize the role of contemporary ecological drivers, it has been particularly challenging to account for the effects of past processes in shaping present‐day communities. In this issue of Molecular Ecology, Hao et al. (2020) provide a holistic analysis of factors driving the assembly of diverse communities of Lepidoptera in two mountain ranges in northeastern China. The authors use an impressively large data set and exceptionally comprehensive analyses to test how processes of range expansion and gene flow, speciation and extinction, dispersal limitation, environmental filtering and competition have led to present‐day diversity patterns. A key novelty of this work is the exhaustive use of DNA barcodes, relatively simple yet powerful molecular markers, to tackle complex biological questions. The authors elegantly show the utility of DNA barcoding data for research beyond simple taxonomic assignment. Their approach is remarkable as it manages to integrate population genetics, phylogenetic history, species diversity and ecology into a well‐rounded picture of community assembly. With this work, Hao et al. demonstrate the great promise of DNA barcoding for exhaustive community analysis of even highly diverse and complex systems, raising the bar for future research.  相似文献   

20.
Beta‐diversity has been repeatedly shown to decline with increasing elevation, but the causes of this pattern remain unclear, partly because they are confounded by coincident variation in alpha‐ and gamma‐diversity. We used 8795 forest vegetation‐plot records from the Czech National Phytosociological Database to compare the observed patterns of beta diversity to null‐model expectations (beta‐deviation) controlling for the effects of alpha‐ and gamma‐diversity. We tested whether β‐diversity patterns along a 1200 m elevation gradient exclusively depend on the effect of varying species pool size, or also on the variation of the magnitude of community assembly mechanisms determining the distribution of species across communities (e.g. environmental filtering, dispersal limitation). The null model we used is a novel extension of an existing null‐model designed for presence/absence data and was specifically designed to disrupt the effect of community assembly mechanisms, while retaining some key features of observed communities such as average species richness and species abundance distribution. Analyses were replicated in ten subregions with comparable elevation ranges. Beta‐diversity declined along the elevation gradient due to a decrease in gamma‐diversity, which was steeper than the decrease in alpha‐diversity. This pattern persisted after controlling for alpha‐ and gamma‐diversity variation, and the results were robust when different resampling schemes and diversity metrics were used. We conclude that in temperate forests the pattern of decreasing beta‐diversity with elevation does not exclusively depend on variation in species pool size, as has been hypothesized, but also on variation in community assembly mechanisms. The results were consistent across resampling schemes and diversity measures, thus supporting the use of vegetation‐plot databases for understanding patterns of beta‐diversity at the regional scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号