首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mechanical stress triggers cardiac hypertrophy and autophagy through an angiotensin II (Ang II) type 1 (AT1) receptor‐dependent mechanism. Low level of high density lipoprotein (HDL) is an independent risk factor for cardiac hypertrophy. This study was designed to evaluate the effect of HDL on mechanical stress‐induced cardiac hypertrophy and autophagy. A 48‐hr mechanical stretch and a 4‐week transverse aortic constriction were employed to induce cardiomyocyte hypertrophy in vitro and in vivo, respectively, prior to the assessment of myocardial autophagy using LC3b‐II and beclin‐1. Our results indicated that HDL significantly reduced mechanical stretch‐induced rise in autophagy as demonstrated by LC3b‐II and beclin‐1. In addition, mechanical stress up‐regulated AT1 receptor expression in both cultured cardiomyocytes and in mouse hearts, whereas HDL significantly suppressed the AT1 receptor. Furthermore, the role of Akt phosphorylation in HDL‐mediated action was assessed using MK‐2206, a selective inhibitor for Akt phosphorylation. Our data further revealed that MK‐2206 mitigated HDL‐induced beneficial responses on cardiac remodelling and autophagy. Taken together, our data revealed that HDL inhibited mechanical stress‐induced cardiac hypertrophy and autophagy through downregulation of AT1 receptor, and HDL ameliorated cardiac hypertrophy and autophagy via Akt‐dependent mechanism.  相似文献   

2.
Inflammation plays a key role in pressure overload‐induced cardiac hypertrophy and heart failure, but the mechanisms have not been fully elucidated. High‐mobility group box 1 (HMGB1), which is increased in myocardium under pressure overload, may be involved in pressure overload‐induced cardiac injury. The objectives of this study are to determine the role of HMGB1 in cardiac hypertrophy and cardiac dysfunction under pressure overload. Pressure overload was imposed on the heart of male wild‐type mice by transverse aortic constriction (TAC), while recombinant HMGB1, HMGB1 box A (a competitive antagonist of HMGB1) or PBS was injected into the LV wall. Moreover, cardiac myocytes were cultured and given sustained mechanical stress. Transthoracic echocardiography was performed after the operation and sections for histological analyses were generated from paraffin‐embedded hearts. Relevant proteins and genes were detected. Cardiac HMGB1 expression was increased after TAC, which was accompanied by its translocation from nucleus to both cytoplasm and intercellular space. Exogenous HMGB1 aggravated TAC‐induced cardiac hypertrophy and cardiac dysfunction, as demonstrated by echocardiographic analyses, histological analyses and foetal cardiac genes detection. Nevertheless, the aforementioned pathological change induced by TAC could partially be reversed by HMGB1 inhibition. Consistent with the in vivo observations, mechanical stress evoked the release and synthesis of HMGB1 in cultured cardiac myocytes. This study indicates that the activated and up‐regulated HMGB1 in myocardium, which might partially be derived from cardiac myocytes under pressure overload, may be of crucial importance in pressure overload‐induced cardiac hypertrophy and cardiac dysfunction.  相似文献   

3.
Objective: Obesity is a complex multifactorial disease that is often associated with cardiac arrhythmias. Various animal models have been used extensively to study the effects of obesity on physiological functions, but, to our knowledge, no study related to ionic membrane currents has been performed on isolated cardiac myocytes. Therefore, we examined the electrophysiological characteristics of four ionic currents from isolated left ventricular myocytes of a high‐energy (HE)‐induced obesity rat model. Research Methods and Procedures: Male Sprague‐Dawley rats were fed with either a control diet or a diet containing 33% kcal as fat (HE) for 14 weeks starting at 6 weeks of age. Voltage‐clamp experiments were performed on ventricular myocytes. Leptin receptor (ObR) expression was measured using ObR enzyme‐linked immunosorbent assay. Results: In the HE group, rats designated as obese did not develop a cardiac hypertrophy, either at the organ level or at the cellular level. Densities and kinetics of the L‐type calcium current, the transient outward potassium current, the delayed rectifier potassium current, and the sodium‐calcium exchange current (INCX) were not significantly different between control and obese rats. A down‐regulation of ObR expression was evidenced in the heart of obese rats compared with controls. Acute exposure (5 minutes) of leptin (100 nM) did not induce a significant modification in the current densities either in control or in obese rats, except for INCX density measured in control rats. Discussion: The absence of effect of leptin on INCX in obese rats could be a potential arrhythmogenic substrate in obesity.  相似文献   

4.
Breviscapine is a mixture of flavonoid glycosides extracted from the Chinese herbs. Previous studies have shown that breviscapine possesses comprehensive pharmacological functions. However, very little is known about whether breviscapine have protective role on cardiac hypertrophy. The aim of the present study was to determine whether breviscapine attenuates cardiac hypertrophy induced by angiotensin II (Ang II) in cultured neonatal rat cardiac myocytes in vitro and pressure‐overload‐induced cardiac hypertrophy in mice in vivo. Our data demonstrated that breviscapine (2.5–15 µM) dose‐dependently blocked cardiac hypertrophy induced by Ang II (1 µM) in vitro. The results further revealed that breviscapine (50 mg/kg/day) prevented cardiac hypertrophy induced by aortic banding as assessed by heart weight/body weight and lung weight/body weight ratios, echocardiographic parameters, and gene expression of hypertrophic markers. The inhibitory effect of breviscapine on cardiac hypertrophy is mediated by disrupting PKC‐α‐dependent ERK1/2 and PI3K/AKT signaling. Further studies showed that breviscapine inhibited inflammation by blocking NF‐κB signaling, and attenuated fibrosis and collagen synthesis through abrogating Smad2/3 signaling. Therefore, these findings indicate that breviscapine, which is a potentially safe and inexpensive therapy for clinical use, has protective potential in targeting cardiac hypertrophy and fibrosis through suppression of PKC‐α‐dependent signaling. J. Cell. Biochem. 109: 1158–1171, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
While hormonal stimuli and mechanical stretch can induced cardiac-specific gene expression and in some cases cellular hypertrophy, the relationship between myocyte contraction frequency, gene expression, and myocyte growth has not been well characterized. In this study a new model system was developed in which cultures of neonatal rat ventricular myocytes were subjected to long term pacing of contractions with pulsatile electrical stimulation. Myocytes submitted to electrical stimulation for 3 days displayed dramatic increases in cellular size and myofibrillar organization, and a 5-10-fold increase in the expression of the cardiac genes atrial natriuretic factor and myosin light chain-2. Atrial natriuretic factor expression induced by electrical stimulation of contractions was inhibited by nifedipine or W7, indicating a dependence on calcium influx and calmodulin activity. Phosphoinositide hydrolysis and cAMP formation were not affected by electrical stimulation suggesting that gene induction occurred independently of the activation of protein kinases C or A above basal levels. These findings show that the cellular events associated with contraction, such as changes in cytoplasmic free calcium levels and/or cellular stretch, may serve as important determinants of myocyte growth and cardiac gene expression.  相似文献   

6.
Cardiac fibrosis, characterized by excessive deposition of extracellular matrix proteins, is one of the causes of heart failure, and it contributes to the impairment of cardiac function. Fibrosis of various tissues, including the heart, is believed to be regulated by the signalling pathway of angiotensin II (Ang II) and transforming growth factor (TGF)‐β. Transgenic expression of inhibitory polypeptides of the heterotrimeric G12 family G protein (Gα12/13) in cardiomyocytes suppressed pressure overload‐induced fibrosis without affecting hypertrophy. The expression of fibrogenic genes (TGF‐β, connective tissue growth factor, and periostin) and Ang‐converting enzyme (ACE) was suppressed by the functional inhibition of Gα12/13. The expression of these fibrogenic genes through Gα12/13 by mechanical stretch was initiated by ATP and UDP released from cardiac myocytes through pannexin hemichannels. Inhibition of G‐protein‐coupled P2Y6 receptors suppressed the expression of ACE, fibrogenic genes, and cardiac fibrosis. These results indicate that activation of Gα12/13 in cardiomyocytes by the extracellular nucleotides‐stimulated P2Y6 receptor triggers fibrosis in pressure overload‐induced cardiac fibrosis, which works as an upstream mediator of the signalling pathway between Ang II and TGF‐β.  相似文献   

7.
Mechanical stretch and para- and/or autocrine factors, including endothelin-1, induce hypertrophy of cardiac myocytes and proliferation of fibroblasts. To investigate the effect of mechanical load on endothelin-1 production and endothelin system gene expression in neonatal rat ventricular myocytes and fibroblasts, we exposed cells to cyclic mechanical stretch in vitro (0.5 Hz, 10-25% elongation, from 1 min to 24 h). Endothelin-1 peptide levels were measured from culture media of myocytes and fibroblasts and human umbilical vein endothelial cells (positive control) by specific radioimmunoassay. Preproendothelin-1 promoter activity was measured via transfection of reporter plasmids and mRNA levels with Northern blot analysis or quantitative RT-PCR. Activity of extracellular signal-regulated kinase was quantified with specific kinase assay. We found that stretching of myocytes activated preproendothelin-1 gene expression, including promoter activation, transient mRNA level increases, and augmented endothelin-1 secretion. In contrast, preproendothelin-1 gene expression was inhibited in stretched fibroblasts. Endothelin-converting enzyme-1beta mRNA levels elevated in stretched fibroblasts but decreased in stretched myocytes. Endothelin receptor type A mRNA levels declined in stretched myocytes, whereas levels were below detection in fibroblasts. Stretch activated extracellular signal-regulated kinase in myocytes, and when the kinase activity was pharmacologically inhibited, the preproendothelin-1 induction was suppressed. Transient overexpression of mitogen-activated ERK-activating kinase-1 induced preproendothelin-1 promoter in myocytes. In summary, mechanical stretch distinctly regulates endothelin system gene expression in cardiac myocytes and fibroblasts. The inhibition of the endothelin system may affect cardiac mechanotransduction and therefore provides an approach in treatment of load-induced cardiac pathology.  相似文献   

8.
G protein-coupled receptor kinase-2 (GRK2) is a critical regulator of β-adrenergic receptor (β-AR) signaling and cardiac function. We studied the effects of mechanical stretch, a potent stimulus for cardiac myocyte hypertrophy, on GRK2 activity and β-AR signaling. To eliminate neurohormonal influences, neonatal rat ventricular myocytes were subjected to cyclical equi-biaxial stretch. A hypertrophic response was confirmed by “fetal” gene up-regulation. GRK2 activity in cardiac myocytes was increased 4.2-fold at 48 h of stretch versus unstretched controls. Adenylyl cyclase activity was blunted in sarcolemmal membranes after stretch, demonstrating β-AR desensitization. The hypertrophic response to mechanical stretch is mediated primarily through the Gαq-coupled angiotensin II AT1 receptor leading to activation of protein kinase C (PKC). PKC is known to phosphorylate GRK2 at the N-terminal serine 29 residue, leading to kinase activation. Overexpression of a mini-gene that inhibits receptor-Gαq coupling blunted stretch-induced hypertrophy and GRK2 activation. Short hairpin RNA-mediated knockdown of PKCα also significantly attenuated stretch-induced GRK2 activation. Overexpression of a GRK2 mutant (S29A) in cardiac myocytes inhibited phosphorylation of GRK2 by PKC, abolished stretch-induced GRK2 activation, and restored adenylyl cyclase activity. Cardiac-specific activation of PKCα in transgenic mice led to impaired β-agonist-stimulated ventricular function, blunted cyclase activity, and increased GRK2 phosphorylation and activity. Phosphorylation of GRK2 by PKC appears to be the primary mechanism of increased GRK2 activity and impaired β-AR signaling after mechanical stretch. Cross-talk between hypertrophic signaling at the level of PKC and β-AR signaling regulated by GRK2 may be an important mechanism in the transition from compensatory ventricular hypertrophy to heart failure.  相似文献   

9.
10.
Hypertension causes cardiac hypertrophy and leads to heart failure. Apoptotic cells are common in hypertensive hearts. Ca2+/calmodulin‐dependent protein kinase II (CaMKII) is associated with apoptosis. We recently demonstrated that gallic acid reduces nitric oxide synthase inhibition‐induced hypertension. Gallic acid is a trihydroxybenzoic acid and has been shown to have beneficial effects, such as anti‐cancer, anti‐calcification and anti‐oxidant activity. The purpose of this study was to determine whether gallic acid regulates cardiac hypertrophy and apoptosis in essential hypertension. Gallic acid significantly lowered systolic and diastolic blood pressure in spontaneously hypertensive rats (SHRs). Wheat germ agglutinin (WGA) and H&E staining revealed that gallic acid reduced cardiac enlargement in SHRs. Gallic acid treatment decreased cardiac hypertrophy marker genes, including atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), in SHRs. The four isoforms, α, β, δ and γ, of CaMKII were increased in SHRs and were significantly reduced by gallic acid administration. Gallic acid reduced cleaved caspase‐3 protein as well as bax, p53 and p300 mRNA levels in SHRs. CaMKII δ overexpression induced bax and p53 expression, which was attenuated by gallic acid treatment in H9c2 cells. Gallic acid treatment reduced DNA fragmentation and the TUNEL positive cells induced by angiotensin II. Taken together, gallic acid could be a novel therapeutic for the treatment of hypertension through suppression of CaMKII δ‐induced apoptosis.  相似文献   

11.
Angiotensin II (Ang II) plays an important role in the onset and development of cardiac remodelling associated with changes of autophagy. Angiotensin1‐7 [Ang‐(1‐7)] is a newly established bioactive peptide of renin–angiotensin system, which has been shown to counteract the deleterious effects of Ang II. However, the precise impact of Ang‐(1‐7) on Ang II‐induced cardiomyocyte autophagy remained essentially elusive. The aim of the present study was to examine if Ang‐(1‐7) inhibits Ang II‐induced autophagy and the underlying mechanism involved. Cultured neonatal rat cardiomyocytes were exposed to Ang II for 48 hrs while mice were infused with Ang II for 4 weeks to induce models of cardiac hypertrophy in vitro and in vivo. LC3b‐II and p62, markers of autophagy, expression were significantly elevated in cardiomyocytes, suggesting the presence of autophagy accompanying cardiac hypertrophy in response to Ang II treatment. Besides, Ang II induced oxidative stress, manifesting as an increase in malondialdehyde production and a decrease in superoxide dismutase activity. Ang‐(1‐7) significantly retarded hypertrophy, autophagy and oxidative stress in the heart. Furthermore, a role of Mas receptor in Ang‐(1‐7)‐mediated action was assessed using A779 peptide, a selective Mas receptor antagonist. The beneficial responses of Ang‐(1‐7) on cardiac remodelling, autophagy and oxidative stress were mitigated by A779. Taken together, these result indicated that Mas receptor mediates cardioprotection of angiotensin‐(1‐7) against Ang II‐induced cardiomyocyte autophagy and cardiac remodelling through inhibition of oxidative stress.  相似文献   

12.
13.
Abstract

Mechanical loading of cardiac muscles causes rapid activation of a number of immediate-early (IE) genes and hypertrophy. However, little is known as to how muscle cells sense mechanical load and regulate gene expression. We examined roles of several putative mechanotransducers in stretch-induced hypertrophy of cardiac myocytes grown on a deformable silicone sheet. Using the patch-clamp technique, we found a single class of stretch-activated cation channels which was completely and reversibly blocked by gadolinium. The inhibition of this channel by gadolinium did not affect either stretch-induced expression of the IE genes or hypertrophy. Neither disruption of microtubules with colchicine nor that of actin microfilaments by cytochalasin D prevented the stretch-induced IE gene expression. Arresting contractile activity by tetrodotoxin did not affect the stretch-induced IE gene expression or hypertrophy. These results suggest that stretch-activated cation channels, microtubules, microfilaments, and contractile activity are not the mechanotransducers. Preliminary results suggest that cell stretch may cause a release of a growth factor(s), which in turn initiates a cascade of hypertrophic response of cardiac myocytes.  相似文献   

14.
IL‐17 plays a key role in a variety of autoimmune diseases. MCP‐1 is involved in the infiltration of mononuclear cells of myocardium in VMC. However, the relationship between IL‐17 and MCP‐1 in myocardial injury remains unclear. In this study, expression of MCP‐1 mRNA and protein in cardiac myocytes was detected with qRT‐PCR and ELISA, respectively. It was found that IL‐17A induced MCP‐1 expression in a dose‐ and time‐dependent manner in cardiac myocytes, which could be blocked by IL‐17A and IL‐17RA neutralizing antibodies. NF‐κB p65 and p‐p65 protein expression in cardiac myocytes was studied with western blotting. Rates of p‐p65 in whole lysates and in nuclear lysates all increased in the first 15 min. Meanwhile, the amount of NF‐κB p65 in whole lysates did not change, but the amount of NF‐κB p65 in nuclear lysates increased in the first 15 min. Then the optimal sequence and concentration of NF‐κB p65 siRNAs was selected. After transfection of 10 nM siRNA‐2 of NF‐κB p65 into cardiac myocytes before stimulation by IL‐17A, expression of MCP‐1 mRNA and protein obviously decreased. In conclusion, expression of MCP‐1 induced by IL‐17 requires NF‐κB through the phosphorylation of p65 in cardiac myocytes, which is meaningful to study the onset of chronic viral myocarditis and will provide a new target for the treatment of viral myocarditis.
  相似文献   

15.
16.
Apoptosis of cardiac myocytes has been implicated in cardiac dysfunction due to chronic hemodynamic overload. Reports on the role of apoptosis in the transition from hypertrophy to decompensated heart failure are not unequivocal. In this study we analysed the direct relationship between mechanical overload and induction of apoptosis in an in vitro model of cultured heart cells. Cyclic mechanical stretch was applied to cultured neonatal rat ventricular myocytes and fibroblasts. Several indicators of apoptosis were examined, such as morphological features, caspase-3 activity and DNA fragmentation. Mechanical strain did not induce any significant change in these parameters as compared to non-stretched myocytes or fibroblasts. However, administration of staurosporine, a known inducer of apoptosis, induced massive apoptosis in myocytes as well as fibroblasts. We conclude that this in vitro cell model system lacks a direct link between mechanical stretch and apoptosis. The three-dimensional structure-function relationship of myocardial tissue in the intact heart may elicit stretch-induced molecular signaling cascades in a much more complex way than in monolayer cultures of cardiac cells.  相似文献   

17.
Xie J  Lu W  Gu R  Dai Q  Zong B  Ling L  Xu B 《PloS one》2011,6(9):e24115

Background

Integrin linked kinase (ILK), as an important component of mechanical stretch sensor, can initiate cellular signaling response in the heart when cardiac preload increases. Previous work demonstrated increased ILK expression could induce angiogenesis to improved heart function after MI. However the patholo-physiological role of ILK in cardiac remodeling after MI is not clear.

Method and Results

Hearts were induced to cardiac remodeling by infarction and studied in Sprague-Dawley rats. Until 4 weeks after infarction, ILK expression was increased in non-ischemic tissue in parallel with myocytes hypertrophy and compensatory cardiac function. 8 weeks later, when decompensation of heart function occurred, ILK level returned to baseline. Followed ILK alternation, vascular endothelial growth factor (VEGF) expression and phosphorylation of endothelial nitric oxide synthase (eNOS) was significantly decreased 8 weeks after MI. Histology study also showed significantly microvessel decreased and myocytes loss 8 weeks paralleled with ILK down-regualtion. While ILK expression was maintained by gene delivery, tissue angiogenesis and cardiac function was preserved during cardiac remodeling.

Conclusion

Temporally up-regulation of ILK level in non-ischemic myocytes by increased external load is associated with beneficial angiogenesis to maintain infarction-induced cardiac hypertrophy. When ILK expression returns to normal, this cardiac adaptive response for infarction is weaken. Understanding the ILK related mechanism of cardiac maladaptation leads to a new strategy for treatment of heart failure after infarction.  相似文献   

18.
Atrial myocyte hypertrophy is one of the most important substrates in the development of atrial fibrillation (AF). The TWEAK/Fn14 axis is a positive regulator of cardiac hypertrophy in cardiomyopathy. This study therefore investigated the effects of Fn14 on atrial hypertrophy and underlying cellular mechanisms using HL‐1 atrial myocytes. In patients with AF, Fn14 protein levels were higher in atrial myocytes from atrial appendages, and expression of TWEAK was increased in peripheral blood mononuclear cells, while TWEAK serum levels were decreased. In vitro, Fn14 expression was up‐regulated in response to TWEAK treatment in HL‐1 atrial myocytes. TWEAK increased the expression of ANP and Troponin T, and Fn14 knockdown counteracted the effect. Inhibition of JAK2, STAT3 by specific siRNA attenuated TWEAK‐induced HL‐1 atrial myocytes hypertrophy. In conclusion, TWEAK/Fn14 axis mediates HL‐1 atrial myocytes hypertrophy partly through activation of the JAK2/STAT3 pathway.  相似文献   

19.
Cyclodipeptides, formed from two amino acids by cyclodehydration, are produced naturally by many organisms, and are known to possess a large number of biological activities. In this study, we found that cyclo (l ‐Pro‐l ‐Pro) and cyclo (d ‐Pro‐d ‐Pro) (where Pro is proline) could induce defence responses and systemic resistance in Nicotiana benthamiana. Treatment with the two cyclodipeptides led to a reduction in disease severity by Phytophthora nicotianae and Tobacco mosaic virus (TMV) infections compared with controls. Both cyclopeptides triggered stomatal closure, induced reactive oxygen species production and stimulated cytosolic calcium ion and nitric oxide production in guard cells. In addition, the application of cyclodipeptides significantly up‐regulated the expression of the plant defence gene PR‐1a and the PR‐1a protein, and increased cellular salicylic acid (SA) levels. These results suggest that the SA‐dependent defence pathway is involved in cyclodipeptide‐mediated pathogen resistance in N. benthamiana. We report the systemic resistance induced by cyclodipeptides, which sheds light on the potential of cyclodipeptides for the control of plant diseases.  相似文献   

20.
Chronic kidney disease (CKD) increases the risk of arrhythmia. The right ventricular outflow tract (RVOT) is a crucial site of ventricular tachycardia (VT) origination. We hypothesize that CKD increases RVOT arrhythmogenesis through its effects on calcium dysregulation. We analysed measurements obtained using conventional microelectrodes, patch clamp, confocal microscopy, western blotting, immunohistochemical examination and lipid peroxidation for both control and CKD (induced by 150 mg/kg neomycin and 500 mg/kg cefazolin daily) rabbit RVOT tissues or cardiomyocytes. The RVOT of CKD rabbits exhibited a short action potential duration, high incidence of tachypacing (20 Hz)-induced sustained VT, and long duration of isoproterenol and tachypacing-induced sustained and non-sustained VT. Tachypacing-induced sustained and non-sustained VT in isoproterenol-treated CKD RVOT tissues were attenuated by KB-R7943 and partially inhibited by KN93 and H89. The CKD RVOT myocytes had high levels of phosphorylated CaMKII and PKA, and an increased expression of tyrosine hydroxylase-positive neural density. The CKD RVOT myocytes exhibited large levels of Ito, IKr, NCX and L-type calcium currents, calcium leak and malondialdehyde but low sodium current, SERCA2a activity and SR calcium content. The RVOT in CKD with oxidative stress and autonomic neuron hyperactivity exhibited calcium handling abnormalities, which contributed to the induction of VT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号