首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of temperature, irradiance, and daylength on Sargassum horneri growth were examined at the germling and adult stages to discern their physiological differences. Temperature–irradiance (10, 15, 20, 25, 30°C × 20, 40, 80 μmol photons m−2s−1) and daylength (8, 12, 16, 24 h) experiments were carried out. The germlings and blades of S. horneri grew over a wide range of temperatures (10–25°C), irradiances (20–80 μmol photons m−2s−1), and daylengths (8–24 h). At the optimal growth conditions, the relative growth rates (RGR) of the germlings were 21% day−1 (25°C, 20 μmol photons m−2s−1) and 13% day−1 (8 h daylength). In contrast, the RGRs of the blade weights were 4% day−1 (15°C, 20 μmol photons m−2s−1) and 5% day−1 (12 h daylength). Negative growth rates were found at 20 μmol photons m−2s−1 of 20°C and 25°C treatments after 12 days. This phenomenon coincides with the necrosis of S. horneri blades in field populations. In conclusion, we found physiological differences between S. horneri germlings and adults with respect to daylength and temperature optima. The growth of S. horneri germlings could be enhanced at 25°C, 20 μmol photons m−2s−1, and 8 h daylength for construction of Sargassum beds and restoration of barren areas.  相似文献   

2.
In winter of 2009/2010, Aphanizomenon flos-aquae bloomed in the ice and snow covered oligo-mesotrophic Lake Stechlin, Germany. The photosynthesis of the natural population was measured at eight temperatures in the range of 2–35°C, at nine different irradiance levels in the range of 0–1,320 μmol m−2 s−1 PAR at each applied temperature. The photoadaptation parameter (I k) and the maximum photosynthetic rate (P max) correlated positively with the temperature between 2 and 30°C, and there was a remarkable drop in both parameters at 35°C. The low I k at low temperatures enabled the active photosynthesis of overwintering populations at low irradiance levels under ice and snow cover. The optimum of the photosynthesis was above 20°C at irradiances above 150 μmol m−2 s−1. At lower irradiance levels (7.5–30 μmol m−2 s−1), the photosynthesis was the most intensive in the temperature range of 2–5°C. The interaction between light and temperature allowed the proliferation of A. flos-aquae in Lake Stechlin resulting in winter water bloom in this oligo-mesotrophic lake. The applied 2°C is the lowest experimental temperature ever in the photosynthesis/growth studies of A. flos-aquae, and the results of the P–I and P–T measurements provide novel information about the tolerance and physiological plasticity of this species.  相似文献   

3.
Samples of the massive drifting green alga, Ulva linza, were collected from the coastal waters of the Yellow Sea, southwest of Korea, in early July 2009, and cultured under laboratory conditions. The effects of various temperature (10–30°C) and irradiance levels (0–1,000 μmol photons m−2 s−1) on photosynthesis, growth, and tissue nutrient content of U. linza were investigated in laboratory for both individuals of the late-stage vegetation (LSV) and the early-stage vegetation (ESV). After 1 h acclimation to various irradiance and temperature conditions, maximum gross photosynthetic rate of ESV was significantly higher than those of LSV. In the long-term (7-d) acclimation experiments to various irradiance and temperature levels, gross photosynthetic rates of ESV individuals were also significantly higher than those of LSV individuals. High photosynthetic rate of ESV individuals induced increase in mass of about 60% over the growth saturation irradiance (136 μmol photons m−2 s−1) and about 20% under low temperature conditions (10–15°C) during 7-d. The gross photosynthesis of LSV individuals was low when examined under temperature and irradiance conditions that were optimum for ESV growth. Consequently, free-floating U. linza exhibits cellular senescence beginning in early July in the Yellow Sea, and green tides formed by this species cannot be maintained beyond this time in the open sea. However, we expect that U. linza can proliferate quickly after settlement on new coastal habitats of the Yellow Sea because of the high tissue nitrogen utilization for photosynthesis in ESV, which is formed by germination of reproductive cells.  相似文献   

4.
The microalga Haematococcus pluvialis Flotow has been the subject of a number of studies concerned with maximizing astaxanthin production for use in animal feeds and for human consumption. Several of these studies have specifically attempted to ascertain the optimal temperature and irradiance combination for growth of H. pluvialis, but there has been a great deal of disagreement between laboratories. “Ideal” levels of temperature and irradiance have been reported to range from 14 to 28°C and 30 to 200 μmol photons m−2 s−1. The objective of the present study was to simultaneously explore temperature and irradiance effects for a single strain of H. pluvialis (UTEX 2505) across an experimental region that encompassed the reported “optimal” combinations of these factors for multiple strains. To this end, a two-dimensional experimental design based on response surface methodology (RSM) was created. Maximum growth rates for UTEX 2505 were achieved at 27°C and 260 μmol photons m−2 s−1, while maximum quantum yield for stable charge separation at PSII (Fv/Fm) was achieved at 27°C and 80 μmol photons m−2 s−1. Maximum pigment concentrations correlated closely with maximum Fv/Fm. Numeric optimization of growth rate and Fv/Fm produced an optimal combination of 27°C and 250 μmol photons m−2 s−1. Polynomial models of the various response surfaces were validated with multiple points and were found to be very useful for predicting several H. pluvialis UTEX 2505 responses across the entire two-dimensional experimental design space.  相似文献   

5.
The effects of irradiance and photoperiod on growth rates, chlorophyll a, β-carotene, total protein, and fatty acid content of Chlorella vulgaris were determined. The maximum growth rate (1.13 day−1) was at 100 μmol photons m−2 s−1 and 16:8-h light/dark photoperiod. Chlorophyll a and β-carotene contents significantly differed under different light regimes with chlorophyll a content lower at high irradiance and longer light duration, while β-carotene showed the inverse trend. The total protein and fatty acid content also significantly differed in different light regimes; the maximum percentage of protein (46%) was at 100 μmol photons m−2 s−1 and 16:8 h photoperiod, and minimum (33%) was at 37.5 μmol photons m−2 s−1 and 8:16 h photoperiod; the total saturated fatty acids increased, while monounsaturated and polyunsaturated fatty acids decreased with increasing irradiance and light duration.  相似文献   

6.
Exposure to high temperatures affects the photosynthetic processes in marine benthic microalgae by limiting the transport of electrons, thus reducing the ability of the cell to use light. This causes damage to the Photosystem II (PSII) and may lead to photoinhibition. However, the PSII of benthic microalgal communities from Brown Bay, eastern Antarctica, were relatively unaffected by significant changes in temperature. Benthic microalgae exposed to temperatures up to 8°C and an irradiance of 450 μmol photons m−2 s−1 did not experience any photosynthetic damage or irreversible photoinhibition. The effective quantum yield (∆F/F m′) at 8°C (0.433 ± 0.042) was higher by comparison to cell incubated at −0.1°C (0.373 ± 0.015) with similar irradiances. Temperatures down to −5°C at a similar irradiance showed a decrease in photosynthesis with decreasing temperature, but no severe photoinhibition as the cells were able to dissipate excess energy via non-photochemical quenching and recover from damage. These responses are consistent with those recorded in past studies on Antarctic benthic microalgae and suggest that short-term temperature change (from −5 to 8°C) will not do irreversible damage to the PSII and will not affect the photosynthesis of the benthic microalgae.  相似文献   

7.
We have studied the effects of nitrate supply under photosynthetic active radiation (PAR) plus ultraviolet radiation (UVR) exposure on photosynthetic pigments (chlorophyll a and carotenoids), photoprotective UV screen mycosporine-like amino acids (MAAs), and photosynthetic parameters, including the maximum quantum yield (F v/F m) and electron transport rate (ETR) on the red agarophyte Gracilaria tenuistipitata. Apical tips of G. tenuistipitata were cultivated under ten different concentrations of NO3 for 7 days. It has been shown that G. tenuistipitata cultured under laboratory conditions has the ability to accumulate high amounts of MAAs following a nitrate concentration-dependent manner under PAR + UVR. Two MAAs were identified, shinorine and porphyra-334. The relative concentration of the first increased under high concentrations of nitrate, while the second one decreased. The presence of antheraxanthin is reported for the first time in this macroalgae, which also contains zeaxanthin, lutein, and β-carotene. The accumulation of pigments, photoprotective compounds, and photosynthetic parameters of G. tenuistipitata is directly related to N availability. All variables decreased under low N supplies and reached constant maximum values with supplements higher than 0.5 mM NO3. Our results suggest a high potential to acclimation and photoprotection against stress factors (including high PAR and UVR) directly related to N availability for G. tenuistipitata.  相似文献   

8.
The effects of temperature (20, 24 and 28 °C) and irradiance (15 and 40 μmol photon m−2 s−1) on the nitrate and ammonium uptake rates of the subtropical red alga, Laurencia brongniartii, were investigated to prepare for tank cultivation. Nitrate uptake followed saturation kinetics and was faster at higher irradiances and temperatures. In contrast, ammonium uptake was linear over the experimental range and was not affected by an increase in temperature. A parameter, β, was calculated to compare substrate uptake rates of nitrate along the linear portion of the uptake curve with that of ammonium. For nitrate, β was lower at low irradiance and higher at high irradiance (β = 0.007 ± 0.003 and 0.030 ± 0.002 [μmol N L−1 (μmol N gww−1 d)−1], respectively). However, β was 0.023 ± 0.002 and 0.034 ± 0.002 [μmol N L−1 (μmol N gww−1 d−1)−1] for ammonium, suggesting a preference for ammonium over nitrate.  相似文献   

9.
Morphological and culture studies of germlings derived from carpospores of Chrysymenia wrightii (Harvey) Yamada were carried out under various treatments combining temperature and irradiance. Basal, main, and tip branches were applied for inducing callus-like tissue. Focus was on how carpospores develop into germlings, how callus-like tissues are induced from explants, and how temperature and irradiance affect carpospore germination and discoid crust growth. Results show that carpospore development can be divided into three stages: division stage, discoid crust stage, and erect juvenile germling stage. Discoid crusts, even more than ten, might coalesce into a big discoid crust, and then developed into germlings. Filamentous fronds, formed on the rims of discoid crusts, exhibited in self-existence or co-existence form with germlings, could form spherical tufts if cultured separately. Filamentous callus-like tissues appeared on the tip branches after 13 days. PES is suitable for filament induction and culture, and filaments have potential use in germplasm preservation and vegetative propagation. Temperature (10, 15, 20, 25°C) and irradiance (8 and 36 μmol photons m−2 s−1) significantly influenced carpospore germination rate and discoid crust diameter. Carpospores germinated normally under 36 μmol photons m−2 s−1, 15~25°C, and maximum growth of discoid crusts was at 25°C, 36 μmol photons m−2 s−1; 10°C and 8 μmol photons m−2 s−1 did not favor carpospore germination or discoid crust growth.  相似文献   

10.
We report the effect of UV-B radiation (0.8 ± 0.1 mW cm−2) and UV-B radiation supplemented with low-intensity PAR (∼80 μmol photons m−2 s−1) on the photosynthesis, photosynthetic pigments, phosphoglycolipids, oxidative damage, enzymatic antioxidants, and UV-absorbing compounds in Phormidium tenue, a marine cyanobacterium. UV-B radiation resulted in a decline in photosynthesis and photosynthetic pigments leading to lower biomass. P. tenue synthesized UV-absorbing compounds like mycosporine-like amino acids (MAAs) and scytonemin in response to UV-B radiation. Quantity of MAAs and scytonemin was higher when UV-B was supplemented with low-level PAR. UV-B treatment also resulted in quantitative changes in phosphoglycolipids of the membrane. The UV-B treatment resulted in a slight increase in the level of peroxidation of cell membrane and very little increase in the activity of superoxide dismutase (SOD). Results indicate that UV-B affected photosynthesis and that the main protective system was the synthesis of MAAs and scytonemin-like compounds rather than antioxidant enzymes such as SOD.  相似文献   

11.
Two cultivars (Katy and Erhuacao) of apricot (Prunus armeniaca L.) were evaluated under open-field and solar-heated greenhouse conditions in northwest China, to determine the effect of photosynthetic photon flux density (PPFD), leaf temperature, and CO2 concentration on the net photosynthetic rate (P N). In greenhouse, Katy registered 28.3 μmol m−2 s−1 for compensation irradiance and 823 μmol m−2 s−1 for saturation irradiance, which were 73 and 117 % of those required by Erhuacao, respectively. The optimum temperatures for cvs. Katy and Erhuacao were 25 and 35 °C in open-field and 22 and 30 °C in greenhouse, respectively. At optimal temperatures, P N of the field-grown Katy was 16.5 μmol m−2 s−1, 21 % less than for a greenhouse-grown apricot. Both cultivars responded positively to CO2 concentrations below the CO2 saturation concentration, whereas Katy exhibited greater P N (18 %) and higher carboxylation efficiency (91 %) than Erhuacao at optimal CO2 concentration. Both cultivars exhibited greater photosynthesis in solar-heated greenhouses than in open-field, but Katy performed better than Erhuacao under greenhouse conditions.  相似文献   

12.
To assess the short- and long-term impacts of Ultraviolet radiation (UVR, 280–400 nm) on the red tide alga Chaetoceros curvisetus, we exposed cells to three different solar radiation treatments–PAB:280–700 nm, PA:320–700 nm, and P:400–700 nm under 20°C incubated temperature. Short-term exposures were investigated: the photochemical efficiency (ΦPSII) versus irradiance curves under six levels of solar radiation by covering the incubators with a variable number of neutral density screens (the irradiance thus varied from 100 to 3%) lasting 1 h, and long-term exposures were designed to assess how the cells acclimate to solar radiation (the growth, UVabc and ratio of repair to damage rates of D1 protein were detected). A significant decrease in the photochemical efficiency (ΦPSII) at high irradiance (100% of incident solar radiation, 261.6 Wm−2) was observed in short-term exposure (1 h). UVR-induced photoinhibition was reduced to 7% in 3% solar radiation (4.08 Wm−2), compared with 66% in 100% solar radiation (261.6 Wm−2). In long-term experiments (11 days) using batch cultures, cell densities during the first 6 days were relatively constant for treatment P, and decreased slightly under PA and PAB treaments, reflecting a change in the irradiance experienced in the laboratory to that of incident solar irradiance. Thereafter, cell density increased and UV-induced photoinhibition decreased with the following days, indicating acclimation to solar UV. At the end of experiment, cells were found to exhibit both higher ratios of repair to UV-related damage and increased concentrations of UV-absorbing compounds, whose maximum absorption was found to be at 329 nm. Our data indicate that C. curvisetus is sensitive to ultraviolet radiation, but was able to acclimate relatively rapidly (ca. 6 days) by synthesizing UV-absorbing compounds and by increasing the rates of repair processes of D1 protein in PSII.  相似文献   

13.
This paper focuses on modelling the growth rate and exopolysaccharides production of Anabaena sp. ATCC 33047, to be used in carbon dioxide removal and biofuels production. For this, the influence of dilution rate, irradiance and aeration rate on the biomass and exopolysaccharides productivity, as well as on the CO2 fixation rate, have been studied. The productivity of the cultures was maximum at the highest irradiance and dilution rate assayed, resulting to 0.5 gbio l−1 day−1 and 0.2 geps l−1 day−1, and the CO2 fixation rate measured was 1.0 gCO2 l−1 day−1. The results showed that although Anabaena sp. was partially photo-inhibited at irradiances higher than 1,300 μE m−2 s−1, its growth rate increases hyperbolically with the average irradiance inside the culture, and so does the specific exopolysaccharides production rate. The latter, on the other hand, decreases under high external irradiances, indicating that the exopolysaccharides metabolism hindered by photo-damage. Mathematical models that consider these phenomena have been proposed. Regarding aeration, the yield of the cultures decreased at rates over 0.5 v/v/min or when shear rates were higher than 60 s−1, demonstrating the existence of thus existence of stress damage by aeration. The behaviour of the cultures has been verified outdoors in a pilot-scale airlift tubular photobioreactor. From this study it is concluded that Anabaena sp. is highly recommended to transform CO2 into valuable products as has been proved capable of metabolizing carbon dioxide at rates of 1.2 gCO2 l−1 day−1 outdoors. The adequacy of the proposed equations is demonstrated, resulting to a useful tool in the design and operation of photobioreactors using this strain.  相似文献   

14.
Bdelloid rotifers are basal consumers in aquatic and limnoterrestrial communities that feed primarily on small bacteria. Unfortunately, we know only a little of the role they play in the trophic dynamics in some unusual habitats they inhabit. Habrotrocha thienemanni is a typical example; it is a typical tree-hole inhabitant, commonly achieving dense populations. Filtering rates of H. thienemanni were estimated using fluorescent microspheres of a size close to natural bacterial community (0.5 μm in diameter) at two temperatures (15 and 20°C). This microspheres artificial food had been coated with BSA protein. Mean clearance rates of this rotifer varied between 1.65 and 3.79 μl ind−1 h−1 under different temperatures. Uptake of particles coated with protein was significantly higher than that on uncoated particles (t = 2.85; P = 0.005). Particle uptake also was correlated to the body size of the animal (r = 0.44; P = 0.004,). The clearance rate of the natural H. thienemanni population (56,800 ind l−1) ranged from 981 to 5170 ml l−1 d−1.  相似文献   

15.
The phycoerythrin-deficient strain (green phenotype) of Hypnea musciformis (Rhodophyta) originated from a green branch, which had arisen as a spontaneous mutation in a wild plant (brown phenotype) collected from the Brazilian coast. The present study describes the growth responses to irradiance, photoperiod and temperature variations, pigment contents, and photosynthetic characteristics of the brown and green strains of H. musciformis. The results showed that growth rates increased as a function of irradiance (up to 40 μmol photons m−2 s−1) but, with further increase in irradiance (from 40 to 120 μmol photons m−2 s−1), became light-saturated and remained almost unchanged. The highest growth rates of the brown and green strains were observed in temperatures of 20–25°C under long (14:10 h LD) and short (10:14 h LD) photoperiods. The brown strain had higher growth rates than the green strain in the short photoperiod, which could be related to the high concentrations of phycobiliproteins. Phycoerythrin was not detected in the green strain. The brown strain had higher concentrations of allophycocyanin and phycoerythrin in the short photoperiod while the green strain had higher concentrations of phycocyanin. The brown strain presented higher photosynthetic efficiency (α), and lower saturation parameter (Ik) and compensation irradiance (Ic) than the green strain. The brown strain exhibited the characteristics of shade-adapted plants, and its higher value of photosynthetic efficiency could be attributed to the higher phycoerythrin concentrations. Results of the present study indicate that both colour strains of H. musciformis could be selected for aquaculture, since growth rates were similar (although in different optimal light conditions), as the green strain seems to be adapted to higher light levels than the brown strain. Furthermore, these colour strains could be a useful experimental system to understand the regulation of biochemical processes of photosynthesis and metabolism of light-harvesting pigments in red algae.  相似文献   

16.
We combined measurements of short-term (during gas exchange) and long-term (from plant dry matter) carbon isotope discrimination to estimate CO2 leakiness from bundle sheath cells in six C4 species (three grasses and three dicots) as a function of leaf insertion level, growth temperature and short-term irradiance. The two methods for determining leakiness yielded similar results (P > 0.05) for all species except Setaria macrostachya, which may be explained by the leaf of this species not being accommodating to gas exchange. Leaf insertion level had no effect on leakiness. At the highest growth temperature (36°C) leakiness was lower than at the two lower growth temperatures (16°C and 26°C), between which no differences in leakiness were apparent. Higher irradiance decreased leakiness in three species, while it had no significant effect on the others (there was an opposite trend in two species). The inverse response to increasing irradiance was most marked in the two NAD-ME dicots (both Amaranthus species), which both showed almost 50% leakiness at low light (300 μmol quanta m−2 s−1) compared to about 30% at high light (1,600 μmol quanta m−2 s−1). NADP-ME subtype grasses had lower leakiness than NAD-ME dicots. Although there were exceptions, particularly in the effect of irradiance on leakiness in Sorghum and Boerhavia, we conclude that conditions favourable to C4 photosynthesis (high temperature and high light) lead to a reduction in leakiness.  相似文献   

17.
For the last 2 years, vast accumulations of the unattached filamentous green alga, Enteromorpha prolifera, have occurred during summer along the coastal region of the Yellow Sea, China. However, algae do not seem to occur after the end of the fertile season. It has been suggested that banks of microscopic forms of the algae, primarily spores, function as a survival mechanism for this opportunistic alga. Therefore, in this study, field surveys and laboratory cultures were conducted to determine if somatic cells were serving as a propagule bank to enable the algae to survive through periods of unfavorable conditions. Laboratory experiments demonstrated that somatic regeneration was one of the most important approaches by which E. prolifera colonized and flourished in the study area. Indeed, at least 19.32% of somatic cells from the filamentous segments could survive for 2 months under various temperatures (0, 5, 10, 15, 20, and 30°C at an irradiance of 60 μmol photons m−2 s−1) and irradiances (darkness, 5 10, 15, 20 and 30 μmol photons m−2 s−1 at a temperature of 20°C). Additionally, greater than 35.85% of the somatic cells could survive at 0°C or in darkness for 2 months, and no less than 15.99% of these cells resumed growth when the temperature and irradiance were adjusted to the normal levels (20°C and 60 μmol photons m−2 s−1). Furthermore, the results of field surveys revealed that viable E. prolifera was widespread in high quantities in the sediment of the Yellow Sea when the macroalga was absent. Taken together, the results of this study suggest that somatic cells may act as an overwintering stage for the annual spring bloom of E. prolifera. These findings should be useful in future studies conducted to behavior of somatic cells in green tide as well as in the management of future spring blooms of E. prolifera.  相似文献   

18.
Blue-green algal blooms formed by Microcystis and Oscillatoria often occur in shallow eutrophic lakes, such as Lake Taihu (China) and Lake Kasumigaura (Japan). Growth characteristics and competitions between Microcystis aeruginosa and Oscillatoria mougeotii were investigated using lake simulator systems (microcosms) at various temperatures. Oscillatoria was the superior competitor, which suppressed Microcystis, when temperature was <20°C, whereas the opposite phenomenon occurred at 30°C. Oscillatoria had a long exponential phase (20 day) and a low growth rate of 0.22 day−1 and 0.20 day−1 at 15°C and 20°C, respectively, whereas Microcystis had a shorter exponential phase (2–3 days) at 30°C and a higher growth rate (0.86 day−1). Interactions between the algae were stronger and more complex in the lake simulator system than flask systems. Algal growth in the lake simulator system was susceptible to light attenuation and pH change, and algae biomasses were lower than those in flasks. The outcome of competition between Microcystis and Oscillatoria at different temperatures agrees with field observations of algal communities in Lake Taihu, indicating that temperature is a significant factor affecting competition between Microcystis and Oscillatoria in shallow, eutrophic lakes.  相似文献   

19.
Quolls (Dasyurus) are medium-sized carnivorous dasyurid marsupials. Tiger (3,840 g) and eastern quolls (780 g) are mesic zone species, northern quolls (516 g) are tropical zone, and chuditch (1,385 g) were once widespread through the Australian arid zone. We found that standard physiological variables of these quolls are consistent with allometric expectations for marsupials. Nevertheless, inter-specific patterns amongst the quolls are consistent with their different environments. The lower T b of northern quolls (34°C) may provide scope for adaptive hyperthermia in the tropics, and they use torpor for energy/water conservation, whereas the larger mesic species (eastern and tiger quolls) do not appear to. Thermolability varied from little in eastern (0.035°C °C−1) and tiger quolls (0.051°C oC−1) to substantial in northern quolls (0.100°C oC−1) and chuditch (0.146°C oC−1), reflecting body mass and environment. Basal metabolic rate was higher for eastern quolls (0.662 ± 0.033 ml O2 g−1 h−1), presumably reflecting their naturally cool environment. Respiratory ventilation closely matched metabolic demand, except at high ambient temperatures where quolls hyperventilated to facilitate evaporative heat loss; tiger and eastern quolls also salivated. A higher evaporative water loss for eastern quolls (1.43 ± 0.212 mg H2O g−1 h−1) presumably reflects their more mesic distribution. The point of relative water economy was low for tiger (−1.3°C), eastern (−12.5°C) and northern (+3.3) quolls, and highest for the chuditch (+22.6°C). We suggest that these differences in water economy reflect lower expired air temperatures and hence lower respiratory evaporative water loss for the arid-zone chuditch relative to tropical and mesic quolls.  相似文献   

20.
The catabolic diversity of wetland microbial communities may be a sensitive indicator of nutrient loading or changes in environmental conditions. The objectives of this study were to assess the response of periphyton and microbial communities in water conservation area-2a (WCA-2a) of the Everglades to additions of C-substrates and inorganic nutrients. Carbon dioxide and CH4 production rates were measured using 14 days incubation for periphyton, which typifies oligotrophic areas, and detritus, which is prevalent at P-impacted areas of WCA-2a. The wetland was characterized by decreasing P levels from peripheral to interior, oligotrophic areas. Microbial biomass and N mineralization rates were higher for oligotrophic periphyton than detritus. Methane production rates were also higher for unamended periphyton (80 mg CH4-C kg−1 d−1) than detritus (22 mg CH4-C kg−1 d−1), even though the organic matter content was higher for detritus (80%) than periphyton (69%). Carbon dioxide production for unamended periphyton (222 mg CO2-C kg−1 d−1) was significantly greater than unamended detritus (84 mg CO2-C kg−1 d−1). The response of the heterotrophic microbial community to added C-substrates was related to the nutrient status of the wetland, as substrate-induced respiration (SIR) was higher for detritus than periphyton. Amides and polysaccharides stimulated SIR more than other C-substrates, and methanogenesis was greater contributor to SIR for periphyton than detritus. Inorganic P addition stimulated CO2 and CH4 production for periphyton but not detritus, indicating a P limitation in the interior areas of WCA-2a. Continued nutrient loading into oligotrophic areas of WCA-2a or enhanced internal nutrient cycling may stimulate organic matter decomposition and further contribute to undesirable changes to the Everglades ecosystem caused by nutrient enrichment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号