首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The honey possum is the only non-volant mammal to feed exclusively on a diet of nectar and pollen. Like other mammalian and avian nectarivores, previous studies indicated that the honey possum’s basal metabolic rate was higher than predicted for a marsupial of equivalent body mass. However, these early measurements have been questioned. We re-examined the basal metabolic rate (2.52 ± 0.222 ml O2 g−1 h−1) of the honey possum and confirm that it is indeed higher (162%) than predicted for other marsupials both before and after accounting for phylogenetic history. This, together with its small body mass (5.4 ± 0.14 g; 1.3% of that predicted by phylogeny) may be attributed to its nectarivorous diet and mesic distribution. Its high-basal metabolic rate is associated with a high-standard body temperature (36.6 ± 0.48°C) and oxygen extraction (19.4%), but interestingly the honey possum has a high point of relative water economy (17.0°C) and its standard evaporative water loss (4.33 ± 0.394 mg H2O g−1 h−1) is not elevated above that of other marsupials, despite its mesic habitat and high dietary water intake.  相似文献   

2.
During summer 2007, Arctic microphytobenthic potential primary production was measured at several stations around the coastline of Kongsfjorden (Svalbard, Norway) at ≤5 m water depth and at two stations at five different water depths (5, 10, 15, 20, 30 m). Oxygen planar optode sensor spots were used ex situ to determine oxygen exchange in the overlying water of intact sediment cores under controlled light (ca. 100 μmol photons m−2 s−1) and temperature (2–4°C) conditions. Patches of microalgae (mainly diatoms) covering sandy sediments at water depths down to 30 m showed high biomass of up to 317 mg chl a m−2. In spite of increasing water depth, no significant trend in “photoautotrophic active biomass” (chl a, ratio living/dead cells, cell sizes) and, thus, in primary production was measured at both stations. All sites from ≤5 to 30 m water depth exhibited variable rates of net production from −19 to +40 mg O2 m−2 h−1 (−168 to +360 mg C m−2 day−1) and gross production of about 2–62 mg O2 m−2 h−1 (17–554 mg C m−2 day−1), which is comparable to other polar as well as temperate regions. No relation between photoautotrophic biomass and gross/net production values was found. Microphytobenthos demonstrated significant rates of primary production that is comparable to pelagic production of Kongsfjorden and, hence, emphasised the importance as C source for the zoobenthos.  相似文献   

3.
This study evaluated the effects of forest fertilization on the forest carbon (C) dynamics in a 36-year-old larch (Larix leptolepis) plantation in Korea. Above- and below-ground C storage, litterfall, root decomposition and soil CO2 efflux rates after fertilization were measured for 2 years. Fertilizers were applied to the forest floor at rates of 112 kg N ha−1 year−1, 75 kg P ha−1 year−1 and 37 kg K ha−1 year−1 for 2 years (May 2002, 2003). There was no significant difference in the above-ground C storage between fertilized (41.20 Mg C ha−1) and unfertilized (42.25 Mg C ha−1) plots, and the C increment was similar between the fertilized (1.65 Mg C ha−1 year−1) and unfertilized (1.52 Mg C ha−1 year−1) plots. There was no significant difference in the soil C storage between the fertilized and unfertilized plots at each soil depth (0–15, 15–30 and 30–50 cm). The organic C inputs due to litterfall ranged from 1.57 Mg C ha−1 year−1 for fertilized to 1.68 Mg C ha−1 year−1 for unfertilized plots. There was no significant difference in the needle litter decomposition rates between the fertilized and unfertilized plots, while the decomposition of roots with 1–2 mm diameters increased significantly with the fertilization relative to the unfertilized plots. The mean annual soil CO2 efflux rates for the 2 years were similar between the fertilized (0.38 g CO2 m−2 h−1) and unfertilized (0.40 g CO2 m−2 h−1) plots, which corresponded with the similar fluctuation in the organic carbon (litterfall, needle and root decomposition) and soil environmental parameters (soil temperature and soil water content). These results indicate that little effect on the C dynamics of the larch plantation could be attributed to the 2-year short-term fertilization trials and/or the soil fertility in the mature coniferous plantation used in this study.  相似文献   

4.
To explore within-gap spatial patterns of soil surface CO2 flux, we measured instantaneous soil surface CO2 flux, soil surface temperature, and soil moisture in north–south transects across canopy gaps and in adjacent contiguous forest from April to November 2010 in a second-growth northern hardwood forest in Wisconsin, USA. Throughout the growing season, soil surface CO2 flux was higher in the northern 1/3 and northern edge of gaps compared to the central and southern portions. These patterns were driven primarily by within-gap variation in soil temperature, which was itself driven by within-gap patterns of insolation. Most locations in the northern 1/3 and northern edge of gaps had significantly higher modeled total growing season C flux (mean 725 g C m−2) compared to the contiguous forest (mean 706 g C m−2), whereas C flux in the central and southern portions of gaps (mean 555 g C m−2) was significantly lower than both the contiguous forest and the northern portions of gaps.  相似文献   

5.
To identify the controls on dissolved organic carbon (DOC) production, we incubated soils from 18 sites, a mixture of 52 forest floor and peats and 41 upper mineral soil samples, at three temperatures (3, 10, and 22°C) for over a year and measured DOC concentration in the leachate and carbon dioxide (CO2) production from the samples. Concentrations of DOC in the leachate were in the range encountered in field soils (<2 to >50 mg l−1). There was a decline in DOC production during the incubation, with initial rates averaging 0.03–0.06 mg DOC g−1 soil C day−1, falling to averages of 0.01 mg g−1 soil C day−1; the rate of decline was not strongly related to temperature. Cumulative DOC production rates over the 395 days ranged from less than 0.01 to 0.12 mg g−1 soil C day−1 (0.5–47.6 mg g−1 soil C), with an average of 0.021 mg g−1 soil C day−1 (8.2 mg g−1 soil C). DOC production rate was weakly related to temperature, equivalent to Q10 values of 0.9 to 1.2 for mineral samples and 1.2 to 1.9 for organic samples. Rates of DOC production in the organic samples were correlated with cellulose (positively) and lignin (negatively) proportion in the organic matter, whereas in the mineral samples C and nitrogen (N) provided positive correlations. The partitioning of C released into CO2–C and DOC showed a quotient (CO2–C:DOC) that varied widely among the samples, from 1 to 146. The regression coefficient of CO2–C:DOC production (log10 transformed) ranged from 0.3 to 0.7, all significantly less than 1. At high rates of DOC production, a smaller proportion of CO2 is produced. The CO2–C:DOC quotient was dependent on incubation temperature: in the organic soil samples, the CO2–C:DOC quotient rose from an average of 6 at 3 to 16 at 22°C and in the mineral samples the rise was from 7 to 27. The CO2–C:DOC quotient was related to soil pH in the organic samples and C and N forms in the mineral samples.  相似文献   

6.
The effects of temperature, irradiance, and daylength on Sargassum horneri growth were examined at the germling and adult stages to discern their physiological differences. Temperature–irradiance (10, 15, 20, 25, 30°C × 20, 40, 80 μmol photons m−2s−1) and daylength (8, 12, 16, 24 h) experiments were carried out. The germlings and blades of S. horneri grew over a wide range of temperatures (10–25°C), irradiances (20–80 μmol photons m−2s−1), and daylengths (8–24 h). At the optimal growth conditions, the relative growth rates (RGR) of the germlings were 21% day−1 (25°C, 20 μmol photons m−2s−1) and 13% day−1 (8 h daylength). In contrast, the RGRs of the blade weights were 4% day−1 (15°C, 20 μmol photons m−2s−1) and 5% day−1 (12 h daylength). Negative growth rates were found at 20 μmol photons m−2s−1 of 20°C and 25°C treatments after 12 days. This phenomenon coincides with the necrosis of S. horneri blades in field populations. In conclusion, we found physiological differences between S. horneri germlings and adults with respect to daylength and temperature optima. The growth of S. horneri germlings could be enhanced at 25°C, 20 μmol photons m−2s−1, and 8 h daylength for construction of Sargassum beds and restoration of barren areas.  相似文献   

7.
Panting is a mechanism that increases respiratory evaporative heat loss (REHL) under heat load. Because REHL uses body water, it is physiologically and ecologically relevant to know under what conditions free-ranging animals use panting. We investigated whether the cranial arterio-venous temperature difference could provide information about REHL. We exposed sheep to environments varying in ambient dry bulb temperatures (Env 1: ~15°C, Env 2: ~25°C, Env 3: ~40°C, Env 4: ~40°C + infrared radiation) and measured REHL simultaneously with carotid arterial (T car) and jugular venous (T jug) blood temperatures, as well as brain (T brain) and rectal (T rec) temperatures. REHL increased significantly with ambient temperature, from 18.4 ± 4.5 W at Env 1 to 79.5 ± 12.6 W at Env 4 (P < 10−6). While there was no effect of environment on T car (P = 0.7) or T jug (P = 0.09), the difference between them (T a-v = T car − T jug) increased from Env 1 to Env 2 (P = 0.04) and from Env 3 to Env 4 (P = 0.008). T a-v reached a maximum of 0.7 ± 0.2°C at Env 4 and was positively correlated with REHL across environments (r 2 = 0.78, F = 34.7, P < 10−3). Calculated cranial blood flow changed only from Env 2 to Env 3 (P = 0.002). The increase in REHL maintained homeothermy when dry heat loss decreased. While REHL could increase without generating an increase in T a-v, any increase in T a-v was always associated with an increase in REHL. We conclude that the cranial T a-v provides useful information about REHL in panting animals.  相似文献   

8.
Closure of the Clipperton Island atoll (10°17′ N 109°13′ W), now a meromictic lake, is estimated to have occurred between 1839 and 1849. It was still closed in 2005. Brackish waters in the upper layer (0–10 m) were oxygenated, while saline waters in the deep layer (>20 m) were anoxic. Allowing for the methodological difficulties of earlier measurements, the physical characteristics of the lagoon did not seem to have changed significantly since the last expedition (1980). The intermediate layer between brackish and saline waters was characterized by a strong density gradient and a temperature inversion of up to 1.6°C. Microbial activity, water exchange between the deep layer and surrounding oceanic waters and the geothermal flux hypothesis are discussed. The low DIN and SRP concentrations observed in the upper layer, despite high nutrient input by seabird droppings, reflect the high nutrient uptake by primary producers as attested by the elevated overall gross primary production (6.6 g C m−2 day−1), and high suspended photosynthetic biomass (2.23 ± 0.23 μg Chl a l−1) and production (263 ± 27 μg C l−1 day−1). Phytoplankton composition changed in 67 years with the advent of new taxa and the disappearance of previously recorded species. The freshwater phytoplanktonic community comprised 43 taxa: 37 newly identified during the expedition and 6 previously noted; 16 species previously found were not seen in 2005. The closure of the lagoon, combined with the positive precipitation–evaporation budget characteristic of the region, has induced drastic changes in lagoon functioning compared with other closed atolls.  相似文献   

9.
The cold tolerance abilities of only a few nematode species have been determined. This study shows that the oatmeal nematode, Panagrellus redivivus, has modest cold tolerance with a 50% survival temperature (S 50) of −2.5°C after cooling at 0.5°C min−1 and freezing for 1 h. It can survive low temperatures by freezing tolerance and cryoprotective dehydration; although freezing tolerance appears to be the dominant strategy. Freezing survival is enhanced by low temperature acclimation (7 days at 5°C), with the S 50 being lowered by a small but significant amount (0.42°C). There is no cold shock or rapid cold hardening response under the conditions tested. Cryoprotective dehydration enhances the ability to survive freezing (the S 50 is lowered by 0.55°C, compared to the control, after 4 h freezing at −1°C) and this effect is in addition to that produced by acclimation. Breeding from survivors of a freezing stress did not enhance the ability to survive freezing. The cold tolerance abilities of this nematode are modest, but sufficient to enable it to survive in the cold temperate environments it inhabits.  相似文献   

10.
A regional data set on water chemistry from 1995 was used to set critical values for the survival of brown trout in Norwegian lakes (n = 790) in relation to pH, inorganic Al and acid neutralizing capacity (ANC). ANC was estimated both traditionally (ANCtrad) and modified by treating one-third of the dissolved organic matter as part of the strong acid anions (ANCmod). The threshold value to avoid fish damage (ANClimit) was compared with that found in a similar study from 1986. Brown trout populations were categorized as unaffected, damaged or extinct on the basis of questionnaires. In 1995, threshold values to avoid fish damage on the basis of ANCtrad and ANCmod were 67 and 48 μeq l−1, respectively, compared with 20 and 8 μeq l−1, respectively, in 1986. The higher ANClimit found for the data from 1995 is probably caused by a lower pH and a higher inorganic Al concentration at a given ANC value in 1995 than in the 1980s. ANClimit was highly related to organic carbon concentrations in the study lakes, being estimated at 33, 73 and >100 μeq l−1 for three different TOC categories (<2 mg C l−1, 2–5 mg C l−1 and >5 mg C l−1). These differences in ANClimit are due to lower pH and higher concentrations of inorganic Al in humic lakes than in clear water lakes at the same level of ANC. It is suggested that the change in ANClimit for fish in acidified lakes is linked to increased concentrations of TOC in recent years.  相似文献   

11.
Landfast ice algal communities were studied in the strongly riverine-influenced northernmost part of the Baltic Sea, the Bothnian Bay, during the winter-spring transition of 2004. The under-ice river plume, detected by its low salinity and elevated nutrient concentrations, was observed only at the station closest to the river mouth. The bottommost ice layer at this station was formed from the plume water (brine volume 0.71%). This was reflected by the low flagellate-dominated (93%) algal biomass in the bottom layer, which was one-fifth of the diatom-dominated (74%) surface-layer biomass of 88 μg C l−1. Our results indicate that habitable space plays a controlling role for ice algae in the Bothnian Bay fast ice. Similarly to the water column in the Bothnian Bay, average dissolved inorganic N:P-ratios in the ice were high, varying between 12 and 265. The integrated chlorophyll a (0.1–2.2 mg m−2) and algal biomass in the ice (1–31 mg C m−2) correlated significantly (Spearman ρ = 0.79), with the highest values being measured close to the river mouth in March and during the melt season in April. Flagellates <20 μm generally dominated in both the ice and water columns in February–March. In April the main ice-algal biomass was composed of Melosira arctica and unidentified pennate diatoms, while in the water column Achnanthes taeniata, Scrippsiella hangoei and flagellates dominated. The photosynthetic efficiency (0.003–0.013 (μg C [μg chl a −1] h−1)(μE m−2s−1)−1) and maximum capacity (0.18–1.11 μg C [μg chl a −1] h−1) could not always be linked to the algal composition, but in the case of a clear diatom dominance, pennate species showed to be more dark-adapted than centric diatoms.  相似文献   

12.
Copepods are considered to be the main component of the Arctic marine zooplankton. We examined the copepod distribution and diversity off Franz Josef Land (northern Barents Sea) in August 2006 and 2007. A total of 18 and 14 copepod taxa were identified from the sampling layers (100–0 m or bottom–0 m) in 2006 and in 2007, respectively. There were no significant differences in the total copepod abundance between the years (means ± SE: 118,503 ± 24,115 individuals m−2 in 2006 vs. 113,932 ± 28,564 individuals m−2 in 2007). However, the copepod biomass in 2006 (4,518 ± 1,091 mg C m−2) exceeded clearly the value in 2007 (1,253 ± 217 mg C m−2). The copepod community showed low species richness and diversity in both years (Simpson index D: 0.34 and 0.38, respectively). Biomass of the large and small copepod species strongly decreased from 2006 to 2007. The total abundance of copepods was negatively correlated with water temperature in 2006 and positively correlated with salinity in 2007. The patchiness in copepod distribution was associated with local hydrography and temperature conditions.  相似文献   

13.
In winter of 2009/2010, Aphanizomenon flos-aquae bloomed in the ice and snow covered oligo-mesotrophic Lake Stechlin, Germany. The photosynthesis of the natural population was measured at eight temperatures in the range of 2–35°C, at nine different irradiance levels in the range of 0–1,320 μmol m−2 s−1 PAR at each applied temperature. The photoadaptation parameter (I k) and the maximum photosynthetic rate (P max) correlated positively with the temperature between 2 and 30°C, and there was a remarkable drop in both parameters at 35°C. The low I k at low temperatures enabled the active photosynthesis of overwintering populations at low irradiance levels under ice and snow cover. The optimum of the photosynthesis was above 20°C at irradiances above 150 μmol m−2 s−1. At lower irradiance levels (7.5–30 μmol m−2 s−1), the photosynthesis was the most intensive in the temperature range of 2–5°C. The interaction between light and temperature allowed the proliferation of A. flos-aquae in Lake Stechlin resulting in winter water bloom in this oligo-mesotrophic lake. The applied 2°C is the lowest experimental temperature ever in the photosynthesis/growth studies of A. flos-aquae, and the results of the P–I and P–T measurements provide novel information about the tolerance and physiological plasticity of this species.  相似文献   

14.
Bacterioplankton abundance and production, chlorophyll a (Chl a) concentrations and primary production (PP) were measured from the equatorial Indian Ocean (EIO) during northeast (NEM), southwest (SWM) and spring intermonsoon (SpIM) seasons from 1°N to 5°S along 83°E. The average bacterial abundance was 0.52 ± 0.29, 0.62 ± 0.33 and 0.46 ± 0.19 (× 108 cells l−1), respectively during NEM, SWM and SpIM in the top 100 m. In the deep waters (200 m and below), the bacterial counts averaged ∼0.35 ± 0.14 × 108 cells l−1 in SWM and 0.39 ± 0.16 × 108 cells l−1 in SpIM. The 0–120 m column integrated bacterial production (BP) ranged from 19 to 115 and from 10 to 51 mg C m−2 d−1 during NEM and SWM, respectively. Compared with many open ocean locations, bacterial abundance and production in this region are lower. The bacterial carbon production, however, is notably higher than that of phytoplankton PP (BP:PP ratio 102% in SWM and 188% in NEM). With perpetually low PP (NEM: 20, SWM: 18 and SpIM: 12 mg C m−2 d−1) and Chl a concentration (NEM: 16.5, SWM: 15.0 and SpIM: 20.9 mg m−2), the observed bacterial abundance and production are pivotal in the trophodynamics of the EIO. Efficient assimilation and mineralization of available organics by bacteria in the euphotic zone might serve a dual role in the ultra-oligotrophic regions including EIO. Thus, bacteria probably sustain microheterotrophs (micro- and meso-zooplankton) through microbial loop. Further, rapid mineralization by bacteria will make essential nutrients available to autotrophs.  相似文献   

15.
Exposure to high temperatures affects the photosynthetic processes in marine benthic microalgae by limiting the transport of electrons, thus reducing the ability of the cell to use light. This causes damage to the Photosystem II (PSII) and may lead to photoinhibition. However, the PSII of benthic microalgal communities from Brown Bay, eastern Antarctica, were relatively unaffected by significant changes in temperature. Benthic microalgae exposed to temperatures up to 8°C and an irradiance of 450 μmol photons m−2 s−1 did not experience any photosynthetic damage or irreversible photoinhibition. The effective quantum yield (∆F/F m′) at 8°C (0.433 ± 0.042) was higher by comparison to cell incubated at −0.1°C (0.373 ± 0.015) with similar irradiances. Temperatures down to −5°C at a similar irradiance showed a decrease in photosynthesis with decreasing temperature, but no severe photoinhibition as the cells were able to dissipate excess energy via non-photochemical quenching and recover from damage. These responses are consistent with those recorded in past studies on Antarctic benthic microalgae and suggest that short-term temperature change (from −5 to 8°C) will not do irreversible damage to the PSII and will not affect the photosynthesis of the benthic microalgae.  相似文献   

16.
Ephemeral pools, which can have high animal biomass and low dissolved oxygen, may be prone to nitrite accumulation. As such, it is important to understand how exposure to nitrite might affect development and growth of amphibians that breed in these ephemeral pools. Wood frog (Rana sylvatica) and eastern tiger salamander (Ambystoma tigrinum tigrinum) embryos and tadpoles and young larvae were exposed to elevated concentrations of nitrite derived from sodium nitrite: 0, 0.3, 0.6, 1.2, 2.1, 4.6, and 6.1 mg l−1 NO2–N. Increasing nitrite exposure slowed embryonic and larval development in both the eastern tiger salamander and the wood frog, reduced growth in tiger salamander embryos and larvae, and delayed metamorphosis in the wood frog. At concentrations less than 2 mg l−1 NO2–N nitrite delayed hatching, and at concentrations above 2 mg l−1 time to hatching decreased causing more individuals to hatch at less developed stages. Nitrite also increased asynchrony in tiger salamander hatching. The sublethal effects of nitrite on amphibian development, growth and hatching could have serious repercussions on amphibian fitness in ephemeral environments. Potential increases in mortality on field populations caused by sublethal effects of nitrite are discussed.  相似文献   

17.
Part of the Larsen A Ice Shelf (64°15′S to 74°15′S) collapsed during January 1995. A first oceanographic and biological data set from the newly free waters was obtained during December 1996. Typical shelf waters with temperatures near and below the freezing point were found. A nutrient-rich water mass (max: PO4 3− 1.80 μmol L−1 and NO3 27.64 μmol L−1) was found between 70 and 200 m depth. Chlorophyll-a (Chl-a) values (max 14.24 μg L−1) were high; surface oxygen saturation ranged between 86 and 148%. Diatoms of the genera Nitzschia and Navicula and the prymnesiophyte Phaeocystis sp. were the most abundant taxa found. Mean daily primary production (Pc) estimated from nutrient consumption was 14.80 ± 0.17 mgC m−3 day−1. Pc was significantly correlated with total diatom abundance and Chl-a. Calculated ΔpCO2 (difference of the CO2 partial pressure between surface seawater and the atmosphere) was –30.5 μatm, which could have contributed to a net CO2 flux from the atmosphere to the sea and suggests the area has been a CO2 sink during the studied period. High phytoplankton biomass and production values were found in this freshly open area, suggesting its importance for biological CO2 pumping.  相似文献   

18.
Toxic at low concentrations, phenol is one of the most common organic pollutants in air and water. In this work, phenol biodegradation was studied in extreme conditions (80°C, pH = 3.2) in a 2.7 l bioreactor with the thermoacidophilic archaeon Sulfolobus solfataricus 98/2. The strain was first acclimatized to phenol on a mixture of glucose (2000 mg l−1) and phenol (94 mg l−1) at a constant dissolved oxygen concentration of 1.5 mg l−1. After a short lag-phase, only glucose was consumed. Phenol degradation then began while glucose was still present in the reactor. When glucose was exhausted, phenol was used for respiration and then for biomass build-up. After several batch runs (phenol < 365 mg l−1), specific growth rate (μX) was 0.034 ± 0.001 h−1, specific phenol degradation rate (qP) was 57.5 ± 2 mg g−1 h−1, biomass yield (YX/P) was 52.2 ± 1.1 g mol−1, and oxygen yield factor ( \textY\textX/\textO 2 ) \left( {{\text{Y}}_{{{\text{X}}/{\text{O}}_{ 2} }} } \right) was 9.2 ± 0.2 g mol−1. A carbon recovery close to 100% suggested that phenol was exclusively transformed into biomass (35%) and CO2 (65%). Molar phenol oxidation constant ( \textY\textO 2 /\textP ) \left( {{\text{Y}}_{{{\text{O}}_{ 2} /{\text{P}}}} } \right) was calculated from stoichiometry of phenol oxidation and introducing experimental biomass and CO2 conversion yields on phenol, leading to values varying between 4.78 and 5.22 mol mol−1. Respiratory quotient was about 0.84 mol mol−1, very close to theoretical value (0.87 mol mol−1). Carbon dioxide production, oxygen demand and redox potential, monitored on-line, were good indicators of growth, substrate consumption and exhaustion, and can therefore be usefully employed for industrial phenol bioremediation in extreme environments.  相似文献   

19.
The algal, protozoan and metazoan communities within different drift-ice types (newly formed, pancake and rafted ice) and in under-ice water were studied in the Gulf of Bothnia in March 2006. In ice, diatoms together with unidentified flagellates dominated the algal biomass (226 ± 154 μg ww l−1) and rotifers the metazoan and protozoan biomass (32 ± 25 μg ww l−1). The under-ice water communities were dominated by flagellates and ciliates, which resulted in lower biomasses (97 ± 25 and 21 ± 14 μg ww l−1, respectively). The under-ice water and newly formed ice separated from all other samples to their own cluster in hierarchical cluster analysis. The most important discriminating factors, according to discriminant analysis, were chlorophyll-a, phosphate and silicate. The under-ice water/newly formed ice cluster was characterized by high nutrient and low chlorophyll-a values, while the opposite held true for the ice cluster. Increasing trends in chlorophyll-a concentration and biomass were observed with increasing ice thickness. Within the thick ice columns (>40 cm), the highest chlorophyll-a concentrations (6.6–22.2 μg l−1) were in the bottom layers indicating photoacclimation of the sympagic community. The ice algal biomass showed additional peaks in the centric diatom-dominated surface layers coinciding with the highest photosynthetic efficiencies [0.019–0.032 μg C (μg Chl-a −1 h−1) (μE m−2 s−1)−1] and maximum photosynthetic capacities [0.43-1.29 μg C (μg Chl-a −1 h−1)]. Rafting and snow-ice formation, determined from thin sections and stable oxygen isotopic composition, strongly influenced the physical, chemical and biological properties of the ice. Snow-ice formation provided the surface layers with nutrients and possibly habitable space, which seemed to have favored centric diatoms in our study.  相似文献   

20.
The potential of the dried yeast, wild-type Schizosaccharomyces pombe, to remove Ni(II) ion was investigated in batch mode under varying experimental conditions including pH, temperature, initial metal ion concentration and biosorbent dose. Optimum pH for biosorption was determined as 5.0. The highest equilibrium uptake of Ni(II) on S. pombe, q e, was obtained at 25 °C as 33.8 mg g−1. It decreased with increasing temperature within a range of 25–50 °C denoting an exothermic behaviour. Increasing initial Ni(II) concentration up to 400 mg L−1 also elevated equilibrium uptake. No more adsorption took place beyond 400 mg L−1. Equilibrium data fitted better to Langmuir model rather than Freundlich model. Sips, Redlich–Peterson, and Kahn isotherm equations modelled the investigated system with a performance not better than Langmuir. Kinetic model evaluations showed that Ni(II) biosorption process followed the pseudo-second order rate model while rate constants decreased with increasing temperature. Gibbs free energy changes (ΔG°) of the system at 25, 30, 35 and 50 °C were found as −1.47E + 4, −1.49E + 4, −1.51E + 4, and −1.58E + 4 J mol−1, respectively. Enthalpy change (ΔH°) was determined as −2.57E + 3 J mol−1 which also supports the observed exothermic behaviour of the biosorption process. Entropy change (ΔS°) had a positive value (40.75 J mol−1 K−1) indicating an increase in randomness during biosorption process. Consequently, S. pombe was found to be a potential low-cost agent for Ni(II) in slightly acidic aqueous medium. In parallel, it has been assumed to act as a separating agent for Ni(II) recovery from its aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号