首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alpha-secretase-mediated cleavage of the amyloid precursor protein (APP) releases the neuroprotective APP fragment sαAPP and prevents amyloid β peptide (Aβ) generation. Moreover, α-secretase-like cleavage of the Aβ transporter 'receptor for advanced glycation end products' counteracts the import of blood Aβ into the brain. Assuming that Aβ is responsible for the development of Alzheimer's disease (AD), activation of α-secretase should be preventive. α-Secretase-mediated APP cleavage can be activated via several G protein-coupled receptors and receptor tyrosine kinases. Protein kinase C, mitogen-activated protein kinases, phosphatidylinositol 3-kinase, cAMP and calcium are activators of receptor-induced α-secretase cleavage. Selective targeting of receptor subtypes expressed in brain regions affected by AD appears reasonable. Therefore, the PACAP receptor PAC1 and possibly the serotonin 5-HT(6) receptor subtype are promising targets. Activation of APP α-secretase cleavage also occurs upon blockade of cholesterol synthesis by statins or zaragozic acid A. Under physiological statin concentrations, the brain cholesterol content is not influenced. Statins likely inhibit Aβ production in the blood by α-secretase activation which is possibly sufficient to inhibit AD development. A disintegrin and metalloproteinase 10 (ADAM10) acts as α-secretase on APP. By targeting the nuclear retinoic acid receptor β, the expression of ADAM10 and non-amyloidogenic APP processing can be enhanced. Excessive activation of ADAM10 should be avoided because ADAM10 and also ADAM17 are not APP-specific. Both ADAM proteins cleave various substrates, and therefore have been associated with tumorigenesis and tumor progression.  相似文献   

2.
DNA polymerases and substrates undergo conformational changes upon forming protein-ligand complexes. These conformational adjustments can hasten or deter DNA synthesis and influence substrate discrimination. From structural comparison of binary DNA and ternary DNA-dNTP complexes of DNA polymerase β, several side chains have been implicated in facilitating formation of an active ternary complex poised for chemistry. Site-directed mutagenesis of these highly conserved residues (Asp-192, Arg-258, Phe-272, Glu-295, and Tyr-296) and kinetic characterization provides insight into the role these residues play during correct and incorrect insertion as well as their role in conformational activation. The catalytic efficiencies for correct nucleotide insertion for alanine mutants were wild type ∼ R258A > F272A ∼ Y296A > E295A > D192A. Because the efficiencies for incorrect insertion were affected to about the same extent for each mutant, the effects on fidelity were modest (<5-fold). The R258A mutant exhibited an increase in the single-turnover rate of correct nucleotide insertion. This suggests that the wild-type Arg-258 side chain generates a population of non-productive ternary complexes. Structures of binary and ternary substrate complexes of the R258A mutant and a mutant associated with gastric carcinomas, E295K, provide molecular insight into intermediate structural conformations not appreciated previously. Although the R258A mutant crystal structures were similar to wild-type enzyme, the open ternary complex structure of E295K indicates that Arg-258 stabilizes a non-productive conformation of the primer terminus that would decrease catalysis. Significantly, the open E295K ternary complex binds two metal ions indicating that metal binding cannot overcome the modified interactions that have interrupted the closure of the N-subdomain.  相似文献   

3.
Integrins are members of a ubiquitous membrane receptor family which includes 18 different α subunits and 8 β subunits forming more than 20 α/β heterodimers. Integrins play key functions in vascular endothelial cell and tumour cell adhesion, lymphocyte trafficking, tumor growth and viral infection. Current understanding of the molecular basis of integrins as viral receptors has been achieved through many decades of study into the biology of transmembrane glycoproteins and their interactions with several viruses. This review provides a summary of the current knowledge on the molecular bases of interactions between viruses and integrins, which are of potential practical significance. Inhibition of virus-integrin interactions at the points of virus attachment or entry will provide a novel approach for the therapeutic treatment of viral diseases.  相似文献   

4.
Except for viruses that initiate RNA synthesis with a protein primer (e.g., picornaviruses), most RNA viruses initiate RNA synthesis with an NTP, and at least some of their viral pppRNAs remain unblocked during the infection. Consistent with this, most viruses require RIG-I to mount an innate immune response, whereas picornaviruses require mda-5. We have examined a SeV infection whose ability to induce interferon depends on the generation of capped dsRNA (without free 5′ tri-phosphate ends), and found that this infection as well requires RIG-I and not mda-5. We also provide evidence that RIG-I interacts with poly-I/C in vivo, and that heteropolymeric dsRNA and poly-I/C interact directly with RIG-I in vitro, but in different ways; i.e., poly-I/C has the unique ability to stimulate the helicase ATPase of RIG-I variants which lack the C-terminal regulatory domain.  相似文献   

5.
On the basis of homologous recombination experiments to delete the murine beta-globin locus control region (LCR) in embryonic stem cells, it was recently suggested that the LCR is not required for the activation of the murine beta-globin locus. This conclusion is in direct contradiction to the findings and conclusions that have been obtained with the human beta-globin LCR; thus the murine and human LCR may functionally be different or there may be a different interpretation of the results.  相似文献   

6.
GARP (glycoprotein A repetitions predominant) is a cell surface receptor on regulatory T-lymphocytes, platelets, hepatic stellate cells and certain cancer cells. Its described function is the binding and accommodation of latent TGFβ (transforming growth factor), before the activation and release of the mature cytokine. For regulatory T cells it was shown that a knockdown of GARP or a treatment with blocking antibodies dramatically decreases their immune suppressive capacity. This confirms a fundamental role of GARP in the basic function of regulatory T cells. Prerequisites postulated for physiological GARP function include membrane anchorage of GARP, disulfide bridges between the propeptide of TGFβ and GARP and connection of this propeptide to αvβ6 or αvβ8 integrins of target cells during mechanical TGFβ release. Other studies indicate the existence of soluble GARP complexes and a functionality of soluble GARP alone. In order to clarify the underlying molecular mechanism, we expressed and purified recombinant TGFβ and a soluble variant of GARP. Surprisingly, soluble GARP and TGFβ formed stable non-covalent complexes in addition to disulfide-coupled complexes, depending on the redox conditions of the microenvironment. We also show that soluble GARP alone and the two variants of complexes mediate different levels of TGFβ activity. TGFβ activation is enhanced by the non-covalent GARP-TGFβ complex already at low (nanomolar) concentrations, at which GARP alone does not show any effect. This supports the idea of soluble GARP acting as immune modulator in vivo.  相似文献   

7.
The extracellular senile plaques observed in Alzheimer's disease (AD) patients are mainly composed of amyloid peptides produced from the β-amyloid precursor protein (βAPP) by β- and γ-secretases. A third non-amyloidogenic α-secretase activity performed by the disintegrins ADAM10 and ADAM17 occurs in the middle of the amyloid-β peptide Aβ and liberates the large sAPPα neuroprotective fragment. Since the activation of α-secretase recently emerged as a promising therapeutic approach to treat AD, the identification of natural compounds able to trigger this cleavage is highly required. Here we describe new curcumin-based modified compounds as α-secretase activators. We established that the aminoacid conjugates curcumin-isoleucine, curcumin-phenylalanine and curcumin-valine promote the constitutive α-secretase activity and increase ADAM10 immunoreactivity. Strickingly, experiments carried out under conditions mimicking the PKC/muscarinic receptor-regulated pathway display different patterns of activation by these compounds. Altogether, our data identified new lead natural compounds for the future development of powerful and stable α-secretase activators and established that some of these molecules are able to discriminate between the constitutive and regulated α-secretase pathways.  相似文献   

8.
Zhu X  Mei M  Lee HG  Wang Y  Han J  Perry G  Smith MA 《Neurochemical research》2005,30(6-7):791-796
Amyloid-β is a leading candidate factor in the development of Alzheimer disease (AD), however the mechanisms involved are unclear. As such, there has been considerable interest in evidence showing that the neuronal damage caused by amyloid-β is mediated by oxidative stress. Notably, oxidative stress leads to activation of stress-activated protein kinases, which we and others have shown are also involved in AD pathogenesis. One SAPK in particular, p38, appears to be crucial in AD and therefore, in the current study, we investigated the role of p38 activation in amyloid-β cytotoxicity. Our data showed p38 activation was induced by amyloid-β in a concentration-dependent manner in M17 human neuroblastoma cells. Notably, amyloid-β toxicity was significantly decreased by inhibition of p38 activity by overexpressing dominant negative p38. Consistent with this, in primary cortical neurons amyloid-β also induced p38 activation and amyloid-β toxicity was significantly diminished when p38 was inhibited by its specific inhibitor, SB203580. Taken together, these data suggest that p38 is a key downstream effector of amyloid-β-induced neuronal death and blocking this pathway may be of therapeutic value.  相似文献   

9.
10.
11.
Activation—induced cell death in B lymphocytes   总被引:10,自引:2,他引:8  
Upon encountering the antigen(Ag),the immune system can either develop a specific immune response of enter a specific state of unresponsiveness,tolerance.The response of B cells to their specific Ag can be activation and proliferation,leading to the immune response,or anergy and activation-induced cell death(AICD),leading to tolerance.AICD in B lymphocytes is a highly regulated event initiated by crosslinking of the B cell receptor (BCR).BCR engagement initiates several signaling events such as activation of PLCγ,Ras,and PI3K,which generally speaking,lead to survival.However,in the absence of survival signals(CD40 or IL-4R engagement),BCR crosslinking can also promote apoptotic signal transduction pathways such as activation of effector caspases,expression of pro-apoptotic genes,and inhibition of pro-survival genes.The complex interplay between survival and death signals determines the B cell fate and, consequently,the immune response.  相似文献   

12.
  1. Download : Download high-res image (247KB)
  2. Download : Download full-size image
  相似文献   

13.
The lipase activity of most phospholipases C (PLCs) is basally repressed by a highly degenerate and mostly disordered X/Y linker inserted within the catalytic domain. Release of this auto-inhibition is driven by electrostatic repulsion between the plasma membrane and the electronegative X/Y linker. In contrast, PLC-γ isozymes (PLC-γ1 and -γ2) are structurally distinct from other PLCs because multiple domains are present in their X/Y linker. Moreover, although many tyrosine kinases directly phosphorylate PLC-γ isozymes to enhance their lipase activity, the underlying molecular mechanism of this activation remains unclear. Here we define the mechanism for the unique regulation of PLC-γ isozymes by their X/Y linker. Specifically, we identify the C-terminal SH2 domain within the X/Y linker as the critical determinant for auto-inhibition. Tyrosine phosphorylation of the X/Y linker mediates high affinity intramolecular interaction with the C-terminal SH2 domain that is coupled to a large conformational rearrangement and release of auto-inhibition. Consequently, PLC-γ isozymes link phosphorylation to phospholipase activation by elaborating upon primordial regulatory mechanisms found in other PLCs.  相似文献   

14.
In most tissues mitochondria consume more than 90% of cellular oxygen. Although the greatest part of it undergoes tetravalent reduction thereby conserving free energy changes in the form of ATP. a great deal of evidence exists in the literature that also univalently reduced dioxygen is released during respiration. Redox-cycling ubiquinone was considered most frequently to be involved in this univalent e- transfer to oxygen out of sequence however, other components of the respiratory chain could not be excluded. Our investigations on this problem questioned the role of redox-cycling ubiquinone in mitochondrial O-2 formation while H2O2 is supposed to accept e- from this source. The paper provides experimental evidence that H2O2 in fact may operate as an oxidant of ubisemiquinone while dioxygen requires protons for such a reaction which are not available in the phospholipid bilayer where ubiquinone undergoes one e-redox-cycling  相似文献   

15.
Dear Editor, Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) islocated at an important branch point in the carbohydratemetabolism of plants. The enzyme is a homotetramer andcatalyzes the addition of bicarbonate to phosphoenolpyru-vate (PEP) to form oxaloacetate and phosphate. PEPC isregulated by metabolites and phosphorylation. AIIostericfeedback inhibition is mainly regulated by L-malate andL-aspartate which bind to a site separated from the activecenter (Kai et al., 1999; Paulus et al., 2013). Structure analy-sis of PEPC from Escherichia coli (Kai et al., 1999; Matsumuraet al., 2002), Zea rnays (Matsumura et al., 2002), Flaveria trin-ervia, and F. pringlei (Paulus et al., 2013) revealed that thesubstrate PEP and the feedback inhibitors bind to separatesites within each monomer.  相似文献   

16.
17.
18.
19.
20.
Proper, graded communication between different cell types is essential for normal development and function. In the nervous system, heart, and for some cancer cells, part of this communication requires signaling by soluble and membrane-bound factors produced by the NRG1 gene. We have previously shown that glial-derived neurotrophic factors activate a rapid, localized release of soluble neuregulin from neuronal axons that can, in turn promote proper axoglial development (Esper, R. M., and Loeb, J. A. (2004) J. Neurosci. 24, 6218–6227). Here we elucidate the mechanism of this localized, regulated release by implicating the delta isoform of protein kinase C (PKC). Blocking the PKC delta isoform with either rottlerin, a selective antagonist, or small interference RNA blocks the regulated release of neuregulin from both transfected cells and primary neuronal cultures. PKC activation also leads to the rapid phosphorylation of the pro-NRG1 cytoplasmic tail on serine residues adjacent to the membrane-spanning segment, that, when mutated markedly reduce the rate of NRG1 activity release. These findings implicate this specific PKC isoform as an important factor for the cleavage and neurotrophin-regulated release of soluble NRG1 forms that have important effects in nervous system development and disease.The neuregulins (NRGs)2 are a family of growth and differentiation factors with a broad range of functions during development and in the adult. NRGs are necessary for glial and cardiac development and participate in a wide range of biologic processes ranging from proper formation of peripheral nerves and the neuromuscular junction to tumor growth (29). The NRGs have also been implicated as both potential mediators and therapeutic targets for a number of human diseases including cancer, schizophrenia, and multiple sclerosis (1012). NRGs function as mediators of cell-to-cell communication through a multitude of alternatively spliced isoforms arising from at least four distinct genes that bind to and activate members of the epidermal growth factor receptor family HER-2/3/4 (ErbB-2/3/4) (1319).Although all known isoforms of the NRG1 gene have an epidermal growth factor-like domain sufficient to bind to and activate its receptors (20), products of this gene are divided into three classes based on structurally and functionally different N-terminal regions (21) The type I and II forms have a unique N-terminal, heparin-binding Ig-like domain (2226). This Ig-like domain potentiates the biological activities of soluble NRG1 forms and leads to their highly selective tissue distributions through its affinity for specific cell-surface heparan sulfates (12, 20, 27, 28). These forms are first expressed as transmembrane precursors (pro-NRG1) that undergo proteolytic cleavage to release their soluble ectodomains. The type III NRG1 forms, on the other hand, are not typically released from cells, because their N-terminal domain consists of a cysteine-rich domain that can serve as a membrane tether making this form ideal for juxtacrine signaling. This form has been strongly implicated to be important peripheral nerve myelination (2931).While many of the biological functions of type I/II NRG1 forms are less clear, their ability to be released from axons in the peripheral and central nervous systems in a regulated manner provides the potential for long range cell-cell communication not possible from membrane-bound forms. Studies examining the regulation of type I NRG1 release from neuronal axons have implicated protein kinase C (PKC) as a mediator of NRG1 release from pro-NRG1 in transfected cell lines (32). Subsequent studies in intact neurons found that PKC activation was sufficient to release NRG1 from sensory and motor neuron axons and that NRG1 could also be released by Schwann cell-derived neurotrophic factors, such as BDNF and GDNF (1). Recently, the β-secretase protease BACE1 has been suggested to cleave these NRG1 forms so that when it is knocked out in mice, deficits similar to those seen in NRG1 knockouts are seen (33, 34). These findings suggest that reciprocal communication between NRG1s and neurotrophins could be an important mechanisms for local axoglial communication that is critical for normal peripheral nerve development. Consistently, PKC has been implicated as a key mediator for the electrically mediated release of NRG1 from cultured cerebellar granule cells and pontine nucleus neurons (35).The PKC family consists of 10 serine/threonine kinases isoforms (α, βI, βII, γ, δ, ϵ, ζ, θ, λ, and η) each with a unique cellular distribution, target specificity, mechanism of activation, and function (36). One of these functions promotes the cleavage and release of soluble signaling proteins that are initially synthesized as membrane-spanning precursors. In addition to NRG1, other proteins released upon PKC activation include epidermal growth factor, transforming growth factor-α, amyloid precursor protein, l-selectin, and interleukins (1, 3743). We hypothesize that neurotrophic factors induce the cleavage and release of NRG1 from pro-NRG1 through PKC activation. This hypothesis seems reasonable, because neurotrophin binding to the Trk family of neurotrophin receptor tyrosine kinases, but not the low affinity neurotrophin receptor p75 (44), activates phospholipase Cγ-mediated conversion of membrane-bound phosphatidylinositol bisphosphate to inositol triphosphate and diacylglycerol, which in turn, can activate PKC (4548). Although this can be achieved using phorbol 12-myristate 13-acetate (PMA), a diacylglycerol analog sufficient to activate most PKC isozymes (48), the exact PKC isoform and mechanism by which this occurs is not known. Here, we demonstrate NRG1 is released from cells through direct activation of the PKCδ isoform using siRNA and PKC isoform-specific inhibitors in transfected Chinese hamster ovary (CHO) cells, PC12, and primary neuronal cultures. We further demonstrate that PKC activation induces rapid phosphorylation of the cytoplasmic tail of pro-NRG1 on specific serine residues that are required for efficient NRG1 activity release. These findings provide mechanistic insights into how highly localized, reciprocal signaling occurs along neuronal axons, which has important implications for normal development and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号