首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
MEF2C mediates the activation induced cell death (AICD) of macrophages   总被引:2,自引:0,他引:2  
Fu W  Wei J  Gu J 《Cell research》2006,16(6):559-565
  相似文献   

2.
The B cell antigen receptor (BCR) is the sensor on the B cell surface that surveys foreign molecules (antigen) in our bodies and activates B cells to generate antibody responses upon encountering cognate antigen. The binding of antigen to the BCR induces signaling cascades in the cytoplasm, which provides the first signal for B cell activation. Subsequently, BCRs internalize and target bound antigen to endosomes, where antigen is processed into T cell recognizable forms. T helper cells generate the second activation signal upon binding to antigen presented by B cells. The optimal activation of B cells requires both signals, thereby depending on the coordination of BCR signaling and antigen transport functions. Antigen binding to the BCR also induces rapid remodeling of the cortical actin network of B cells. While being initiated and controlled by BCR signaling, recent studies reveal that this actin remodeling is critical for both the signaling and antigen processing functions of the BCR, indicating a role for actin in coordinating these two pathways. Here we will review previous and recent studies on actin reorganization during BCR activation and BCR- mediated antigen processing, and discuss how actin remodeling translates BCR signaling into rapid antigen uptake and processing while providing positive and negative feedback to BCR signaling.  相似文献   

3.
The susceptibility of primary B cells to Fas (APO-1, CD95)-mediated apoptosis is regulated by signals derived from additional surface receptors. CD40 engagement produces upregulation of Fas expression and induces marked sensitivity to Fas-induced cell death, whereas B cell antigen receptor (BCR) engagement inhibits Fas killing and thereby produces Fas-resistance, even in otherwise susceptible, CD40-stimulated targets. BCR signaling for inducible Fas-resistance develops over a period of 12 hours and depends on  相似文献   

4.
Du J  Cai SH  Shi Z  Nagase F 《Cell research》2004,14(2):148-154
H-Ras is well known as one of the essential components of Ras/Raf/MEK/ERK cascade, which is a critical prosurvival signaling mechanism in most eukaryotic cells. Ras targets Raf/MEK/ERK cascade by integrating and transmitting extracellular signals from growth factor receptors to Raf, leading to the propagation of signals to modulate a serious of cellular survival events. Apoptosis signal-regulating kinasel (ASK1) serves as a general mediator of cell death because it is responsive to a variety of death signals. In this study, we found that H-Ras interacted with ASK1 to cause the inhibition of both ASK1 activity and ASKl-induced apoptosis in vivo, which was reversed only partially by addition of RafS621 A, an antagonist of Raf, whereas MEK inhibitor, PD98059, and PI3K inhibitor, LY294002, did not disturb the inhibitory effect of H-Ras on ASK-1-induced apoptosis. Furthermore, by means of immunoprecipitate and kinase assays, we demonstrated that the interaction between H-Ras and ASK1 as well as the inhibition of ASKI activity were dependent on the binding activity of H-Ras. These results suggest that a novel mechanism may be involved in H-Rasmediated cell survival in addition to the well established MEK/ERK and PI3K/Akt kinase-dependent enhancement of cell survival.  相似文献   

5.
DNA damage can, but does not always, induce cell death. While several pathways linking DNA damage signals to mitochondria-dependent and -independent death machineries have been elucidated, the connectivity of these pathways is subject to regulation by multiple other factors that are not well understood. We have proposed two conceptual models to explain the delayed and variable cell death response to DNA damage: integrative surveillance versus autonomous pathways. In this review, we discuss how these two models may explain the in vivo regulation of cell death induced by ionizing radiation (IR) in the developing central nervous system, where the death response is regulated by radiation dose, cell cycle status and neuronal development.  相似文献   

6.
Nanog and transcriptional networks in embryonic stem cell pluripotency   总被引:31,自引:0,他引:31  
Pan G  Thomson JA 《Cell research》2007,17(1):42-49
  相似文献   

7.
Autophagy is a major cellular pathway used to degrade long-lived proteins or organelles that may be damaged due to increased reactive oxygen species(ROS) generated by cellular stress. Autophagy typically enhances cell survival, but it may also act to promote cell death under certain conditions. The mechanism underlying this paradox, however, remains unclear. We showed that Tetrahymena cells exerted increased membranebound vacuoles characteristic of autophagy followed by autophagic cell death(referred to as cell death with autophagy) after exposure to hydrogen peroxide. Inhibition of autophagy by chloroquine or 3-methyladenine significantly augmented autophagic cell death induced by hydrogen peroxide. Blockage of the mitochondrial electron transport chain or starvation triggered activation of autophagy followed by cell death by inducing the production of ROS due to the loss of mitochondrial membrane potential. This indicated a regulatory role of mitochondrial ROS in programming autophagy and autophagic cell death in Tetrahymena. Importantly, suppression of autophagy enhanced autophagic cell death in Tetrahymena in response to elevated ROS production from starvation, and this was reversed by antioxidants. Therefore, our results suggest that autophagy was activated upon oxidative stress to prevent the initiation of autophagic cell death in Tetrahymena until the accumulation of ROS passed the point of no return, leading to delayed cell death in Tetrahymena.  相似文献   

8.
Genetic regulation of programmed cell death in Drosophila   总被引:1,自引:0,他引:1  
Lee CY  Baehrecke EH 《Cell research》2000,10(3):193-204
Programmed cell death plays an important role in maintaining homeostasis during animal development,and has been conserved in animals as different as nematoes and humans. Recent studies of Drosophila have provided valuadle information toward our understanding of genetic regulation of death.Different signals trigger the novel death regulators rpr,hid,and grim,that utilize the evolutionarily conserved iap and ark genes to modulate caspase function.Subsequent removal of dying cells also appears to be accomplished by conserved mechanisms.The similarity between Drosophila and human in cell death signaling pathways illustrate the promise of fruit flies as a model system to elucidatek the mechanisms underlying regulation of programmed cell death.  相似文献   

9.
The proinflammatory cytokine tumor necrosis factor-α (TNF-α) regulates immune responses, inflammation and programmed cell death. The ultimate fate of a cell exposed to TNF-αis determined by signal integration between its downstream effectors, including caspases, IKB kianse (IKK) and c-Jun N-terminal protein kinase (JNK). However, the molecular mechanisms are incompletely understood. We investigated this issue using genetic and biochemical approaches. We identified IKK β, a catalytic subunit of the IKK complex that is required for NF-KB activation and cell survival in response to TNF-α, was proteolyzed by casp-3-related caspases. This proteolysis eliminated IKK activity and promoted TNF-α, killing. Point  相似文献   

10.
Cytokines are involved in directing the activation of natural killer (NK) cells. NK cells are involved in the recognition of cells that have been altered; thus they do not recognize specific insults to the host, but when activated, are capable of destroying infected cells directly, as well as promoting the recruitment and response of the other components of the immune system by the release of cytokines and chemokines. It is these properties that have made NK cells a critical part of innate immunity and adaptive immunity, and they play a principal role linking innate and adaptive immunity by the recruitment of an adaptive immune response to an innate immune reaction.  相似文献   

11.
Regulation of activation-induced cell death of mature T-lymphocyte populations   总被引:11,自引:0,他引:11  
Resting mature T lymphocytes are activated when triggered via their antigen-specific T-cell receptor (TCR) to elicit an appropriate immune response. In contrast, preactivated T cells may undergo activation-induced cell death (AICD) in response to the same signals. along with cell death induced by growth factor deprivation, AICD followed by the elimination of useless or potentially harmful cells preserves homeostasis, leads to the termination of cellular immune responses and ensures peripheral tolerance. T-cell apoptosis and AICD are controlled by survival cytokines such as interleukin-2 (IL-2) and by death factors such as tumor necrosis factor (TNF) and CD95 ligand (CD95L). In AICD-sensitive T cells, stimulation upregulates expression of one or several death factors, which in turn engage specific death receptors on the same or a neighboring cell. Death receptors are activated by oligomerization to rapidly assemble a number of adapter proteins and enzymes to result in an irreversible activation of proteases and nucleases that culminates in cell death by apoptosis. Increased knowledge of the molecular mechanisms that regulate AICD of lymphocytes opens new immunotherapeutic perspectives for the treatment of certain autoimmune diseases, and has implications in other areas such as transplantation medicine and AIDS research.  相似文献   

12.
The CD5 coreceptor is expressed on all T cells and on the B1a B cell subset. It is associated with TCR and BCR, and modulates intracellular signals initiated by both Ag receptor complexes. Human CD5 contributes to regulation of the antitumor immune response and susceptibility of specific CTL to activation-induced cell death (AICD) triggered by the tumor. In this study, we compared the T cell response to the B16F10 melanoma engrafted into CD5-deficient and wild-type C57BL/6 mice. Compared with wild-type mice, CD5 knockout animals displayed delayed tumor growth, associated with tumor infiltration by T cell populations exhibiting a more activated phenotype and enhanced antitumor effector functions. However, control of tumor progression in CD5(-/-) mice was transient due to increased AICD of CD8(+) tumor-infiltrating T lymphocytes. Remarkably, in vivo protection of T cells from TCR-mediated apoptosis by an adenovirus engineered to produce soluble Fas resulted in a dramatic reduction in tumor growth. Our data suggest that recruitment of tumor-specific T cells in the tumor microenvironment occurs at early stages of cancer development and that tumor-mediated AICD of tumor-infiltrating T lymphocytes is most likely involved in tumor escape from the immune system.  相似文献   

13.
Activation-induced cell death (AICD) of mature T cells plays an important role in the control of immune homeostasis and peripheral tolerance. TNFRs and Fas have been implicated in the induction of AICD. However, these molecules were shown to be dispensable, at least in some experimental systems, for downsizing of Ag-induced T cell expansions and development of tolerance in vivo. The conditions of T cell activation leading to T cell deletion in a death receptor-independent manner are not well characterized. Here we show that human CTLs die through a death receptor-independent apoptotic program upon triggering with a partially agonistic peptide ligand. This apoptotic process exhibits some features of T cell death due to lymphokine deprivation and is blocked by exogenous IL-2. Our data demonstrate that engagement of TCR by MHC-peptide complexes can trigger diverse apoptotic programs of AICD and that the choice between these programs is determined by the agonistic potency of MHC-peptide ligand.  相似文献   

14.
Sepsis induces extensive apoptosis in T and B cells suggesting that the loss of immune effector cells could be one explanation for the profound immunosuppression observed in this disorder. Unfortunately, the mechanisms responsible for lymphocyte apoptosis in sepsis remain unknown. In T cells, apoptosis can occur through activation-induced cell death (AICD) in which engagement of the Ag receptors by cognate Ag or polyclonal activators such as bacteria-derived superantigens induces activation, proliferation, and apoptosis. We examined whether proliferation and AICD are necessary for apoptotic cell death in sepsis using normal and TCR transgenic mice. Results show that although sepsis resulted in activation of a small percentage of T cells, no proliferation was detected during the first 48 h following onset, a time when extensive apoptosis is observed. We also observed that T cells do not enter the cell cycle, and stimulation via the TCR in TCR transgenic animals does not enhance or decrease cell death in sepsis. Interestingly, T cells recovered from septic mice retained their ability to proliferate and synthesize cytokines albeit at reduced levels. With the exception of IL-10, which was increased in lymphocytes from mice with sepsis, sepsis caused a decrease in the production of both proinflammatory and anti-inflammatory cytokines. We conclude that lymphocyte apoptosis in sepsis does not require proliferation, TCR engagement, or AICD. Thus the immunosuppression observed in sepsis cannot be the result of T cell deletion via the TCR.  相似文献   

15.
Ag engagement of BCR in mature B cells can deliver specific signals, which decide cell survival or cell death. Circulating membrane IgE+ (mIgE+) cells are found in extremely low numbers. We hypothesized that engagement of an epsilonBCR in a mature isotype-switched B cell could induce apoptosis. We studied the role of the extracellular membrane-proximal domain (EMPD) of human mIgE upon BCR engagement with anti-Id Abs. Using mutants lacking the EMPD, we show that this domain is involved in controlling Ca2+ mobilization in immunoreceptors of both gamma and epsilon isotypes, as well as apoptosis in signaling originated only from the epsilonBCR. We mapped to the epsilonCH4 ectodomain the region responsible for apoptosis in EMPD-deleted receptors. Ca2+ mobilization was not related to apoptotic signaling. This apoptotic pathway was caspase independent, involved ERK1/2 phosphorylation and was partially rescued by CD40 costimulation. We therefore conclude that the EMPD of human mIgE is a key control element of apoptotic signaling delivered through engagement of epsilonBCR within the context of a mature B cell.  相似文献   

16.
C3dg adducts of Ag can coligate complement receptor type 2 (CR2; CD21) and the B cell Ag receptor. This interaction significantly amplifies BCR-mediated signals in Ag-naive wild-type mice, lowering the threshold for B cell activation and the generation of humoral immune responses as much as 1000-fold. In this study we demonstrate that CR2-mediated complementation of BCR signals can also overcome B cell anergy. Unlike Ag alone, BCR/CR2 costimulation (Ars-CCG/C3dg complexes) of anergic Ars/A1 B cells led to Ca(2+) mobilization in vitro and the production of autoantibodies in vivo. Interestingly, the in vivo immune response of anergic cells occurs without the formation of germinal centers. These results suggest that the Ag unresponsiveness of anergic B cells can be overcome by cross-reactive (self-mimicking) Ags that have been complement-opsonized. This mechanism may place individuals exposed to complement-fixing bacteria at risk for autoimmunity.  相似文献   

17.
18.
Signaling through the Ag receptor is required for peripheral B lymphocyte maturation and maintenance. Defects in components of the B cell receptor (BCR) signalosome result in developmental blocks at the transition from immature (heat-stable Ag (HSA)(high)) to mature (HSA(low)) B cells. Recent studies have subdivided the immature, or transitional, splenic B cells into two subsets, transitional 1 (T1) and transitional 2 (T2) cells. T1 and T2 cells express distinct surface markers and are located in distinct anatomic locations. In this report, we evaluated the BCR signaling capacity of T1 and T2 B cell subsets. In response to BCR engagement, T2 cells rapidly entered cell cycle and resisted cell death. In contrast, T1 cells did not proliferate and instead died after BCR stimulation. Correlating with these results, T2 cells robustly induced expression of the cell cycle regulator cyclin D2 and the antiapoptotic factors A1/Bfl-1 and Bcl-x(L) and exhibited activation of Akt. In contrast, T1 cells failed to up-regulate these markers. BCR stimulation of T2 cells also led to down-regulation of CD21 and CD24 (HSA) expression, resulting in a mature B cell phenotype. In addition, T2 cells from Bruton's tyrosine kinase-deficient Xid mice failed to generate these proliferative and survival responses, suggesting a requirement for the BCR signalosome specifically at the T2 stage. Taken together, these data clearly demonstrate that T2 immature B cells comprise a discrete developmental subset that mediates BCR-dependent proliferative, prosurvival, and differentiation signals. Their distinct BCR-dependent responses suggest unique roles for T1 vs T2 cells in peripheral B cell selection.  相似文献   

19.
BCR editing in the bone marrow contributes to B cell tolerance by orchestrating secondary Ig rearrangements in self-reactive B cells. We have recently shown that loss of the BCR or a pharmacologic blockade of BCR proximal signaling pathways results in a global "back-differentiation" response in which immature B cells down-regulate genes important for the mature B cell program and up-regulate genes characteristic of earlier stages of B cell development. These observations led us to test the hypothesis that self-Ag-induced down-regulation of the BCR, and not self-Ag-induced positive signals, lead to Rag induction and hence receptor editing. Supporting this hypothesis, we found that immature B cells from xid (x-linked immunodeficiency) mice induce re-expression of a Rag2-GFP bacterial artificial chromosome reporter as well as wild-type immature B cells following Ag incubation. Incubation of immature B cells with self-Ag leads to a striking reversal in differentiation to the pro-/pre-B stage of development, consistent with the idea that back-differentiation results in the reinduction of genes required for L chain rearrangement and receptor editing. Importantly, Rag induction, the back-differentiation response to Ag, and editing in immature and pre-B cells are inhibited by a combination of phorbol ester and calcium ionophore, agents that bypass proximal signaling pathways and mimic BCR signaling. Thus, mimicking positive BCR signals actually inhibits receptor editing. These findings support a model whereby Ag-induced receptor editing is inhibited by BCR basal signaling on developing B cells; BCR down-regulation removes this basal signal, thereby initiating receptor editing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号