首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding ecological niche evolution over evolutionary timescales is crucial to elucidating the biogeographic history of organisms. Here, we used, for the first time, climate‐based ecological niche models (ENMs) to test hypotheses about ecological divergence and speciation processes between sister species pairs of lemurs (genus Eulemur) in Madagascar. We produced ENMs for eight species, all of which had significant validation support. Among the four sister species pairs, we found nonequivalent niches between sisters, varying degrees of niche overlap in ecological and geographic space, and support for multiple divergence processes. Specifically, three sister‐pair comparisons supported the null model that niches are no more divergent than the available background region. These findings are consistent with an allopatric speciation model, and for two sister pairs (E. collaris–E. cinereiceps and E. rufus–E. rufifrons), a riverine barrier has been previously proposed for driving allopatric speciation. However, for the fourth sister pair E. flavifrons–E. macaco, we found support for significant niche divergence, and consistent with their parapatric distribution on an ecotone and the lack of obvious geographic barriers, these findings most strongly support a parapatric model of speciation. These analyses thus suggest that various speciation processes have led to diversification among closely related Eulemur species.  相似文献   

2.
提高生态位模型转移能力来模拟入侵物种 的潜在分布   总被引:5,自引:0,他引:5  
生态位模型利用物种分布点所关联的环境变量去推算物种的生态需求, 模拟物种的分布。在模拟入侵物种分布时, 经典生态位模型包括模型构建于物种本土分布地, 然后将其转移并投射至另一地理区域, 来模拟入侵物种的潜在分布。然而在模型运用时, 出现了模型的转移能力较低、模拟的结果与物种的实际分布不相符的情况, 由此得出了生态位漂移等不恰当的结论。提高生态位模型的转移能力, 可以准确地模拟入侵物种的潜在分布, 为入侵种的风险评估提供参考。作者以入侵种茶翅蝽(Halyomorpha halys)和互花米草(Spartina alterniflora)为例, 从模型的构建材料(即物种分布点和环境变量)入手, 全面阐述提高模型转移能力的策略。在构建模型之前, 需要充分了解入侵物种的生物学特性、种群平衡状态、本土地理分布范围及物种的生物历史地理等方面的知识。在模型构建环节上, 物种分布点不仅要充分覆盖物种的地理分布和生态空间的范围, 同时要降低物种采样点偏差; 环境变量的选择要充分考虑其对物种分布的限制作用、各环境变量之间的空间相关性, 以及不同地理种群间生态空间是否一致, 同时要降低环境变量的空间维度; 模型构建区域要真实地反映物种的地理分布范围, 并考虑种群的平衡状态。作者认为, 在生态位保守的前提下, 如果模型是构建在一个合理方案的基础上, 生态位模型的转移能力是可以保证的, 在以模型转移能力较低的现象来阐述生态位分化时需要引起注意。  相似文献   

3.
Understanding the mechanisms of species distribution within ecosystems is a fundamental question of ecological research. The current worldwide changes and loss of habitats associated with a decline in species richness render this topic a key element for developing mitigation strategies. Ecological niche theory is a widely accepted concept to describe species distribution along environmental gradients where each taxon occupies its own distinct set of environmental parameters, that is, its niche. Niche occupation has been described in empirical studies for different closely related taxa, like ant, ungulate, or skink species, just to name a few. However, how species assemblages of whole ecosystems across multiple taxa are structured and organized has not been investigated thoroughly, although considering all taxa of a community would be essential when analyzing realized niches. Here, we investigated the organization of niche occupation and species distribution for the whole ground‐associated invertebrate community of small tropical insular ecosystems. By correlating environmental conditions with species occurrences using partial canonical correspondence analysis (pCCA), we demonstrated that the ground‐associated invertebrate community does not spread evenly across the overall niche space, but instead is compartmentalized in four distinct clusters: crustacean and gastropod taxa occurred in one cluster, attributable to the beach habitat, whereas hexapods and spider taxa occurred in three distinct inland clusters, attributable to distinct inland habitats, that is, grassland, open forest, and dense forest. Within the clusters, co‐occurrence pattern analysis suggested only a few negative interactions between the different taxa. By studying ground‐associated insular invertebrate communities, we have shown that species distribution and niche occupation can be, similar to food webs, organized in a compartmentalized way. The compartmentalization of the niche space might thereby be a mechanism to increase ecosystem resilience, as disturbances cascade more slowly throughout the ecosystem.  相似文献   

4.
5.
Niche divergence among closely related lineages can be informative on the ecological and evolutionary processes involved in differentiation, particularly in the case of cryptic species complexes. Here we compared phylogenetic relationships and niche similarity between pairs of lineages included in the Podarcis hispanicus complex to examine patterns of niche divergence and its role in the organization of current diversity patterns, as allopatric, parapatric, and sympatric lineages occur in the Western Mediterranean Basin. First, we used ecological niche models to characterize the realized climatic niche of each Podarcis hispanicus complex lineage based on topographic and climatic variables, to identify important variables, and to test for niche conservatism or divergence between pairs of lineages. Variables related to precipitation generally exhibited the highest contribution to niche models, highlighting the importance of rainfall levels in shaping distributions of Podarcis wall lizards. We found that most forms have significant differences in realized climatic niches that do not follow the pattern of mitochondrial divergence. These results lend support to the hypothesis that genetic divergence across Podarcis hispanicus complex most likely occurred in allopatric conditions, mostly with significant niche divergence. Competition after secondary contact is also suggested by the common occurrence of niche overlap between lineages that exhibit strictly parapatric distribution. The almost continuous distribution of Podarcis lizards in the study area appears to be a result of a combination of complementary suitable niches and competition, which seem two important mechanisms limiting geographic distributions and restricting the existence of extensive contact zones.  相似文献   

6.
Species‐level environmental niche modeling has been crucial in efforts to understand how species respond to climate variation and change. However, species often exhibit local adaptation and intraspecific niche differences that may be important to consider in predicting responses to climate. Here, we explore whether phylogeographic lineages of the bank vole originating from different glacial refugia (Carpathian, Western, Eastern, and Southern) show niche differentiation, which would suggest a role for local adaptation in biogeography of this widespread Eurasian small mammal. We first model the environmental requirements for the bank vole using species‐wide occurrences (210 filtered records) and then model each lineage separately to examine niche overlap and test for niche differentiation in geographic and environmental space. We then use the models to estimate past [Last Glacial Maximum (LGM) and mid‐Holocene] habitat suitability to compare with previously hypothesized glacial refugia for this species. Environmental niches are statistically significantly different from each other for all pairs of lineages in geographic and environmental space, and these differences cannot be explained by habitat availability within their respective ranges. Together with the inability of most of the lineages to correctly predict the distributions of other lineages, these results support intraspecific ecological differentiation in the bank vole. Model projections of habitat suitability during the LGM support glacial survival of the bank vole in the Mediterranean region and in central and western Europe. Niche differences between lineages and the resulting spatial segregation of habitat suitability suggest ecological differentiation has played a role in determining the present phylogeographic patterns in the bank vole. Our study illustrates that models pooling lineages within a species may obscure the potential for different responses to climate change among populations.  相似文献   

7.
We examined the hypothesis that ecological niche models (ENMs) more accurately predict species distributions when they incorporate information on population genetic structure, and concomitantly, local adaptation. Local adaptation is common in species that span a range of environmental gradients (e.g., soils and climate). Moreover, common garden studies have demonstrated a covariance between neutral markers and functional traits associated with a species’ ability to adapt to environmental change. We therefore predicted that genetically distinct populations would respond differently to climate change, resulting in predicted distributions with little overlap. To test whether genetic information improves our ability to predict a species’ niche space, we created genetically informed ecological niche models (gENMs) using Populus fremontii (Salicaceae), a widespread tree species in which prior common garden experiments demonstrate strong evidence for local adaptation. Four major findings emerged: (i) gENMs predicted population occurrences with up to 12‐fold greater accuracy than models without genetic information; (ii) tests of niche similarity revealed that three ecotypes, identified on the basis of neutral genetic markers and locally adapted populations, are associated with differences in climate; (iii) our forecasts indicate that ongoing climate change will likely shift these ecotypes further apart in geographic space, resulting in greater niche divergence; (iv) ecotypes that currently exhibit the largest geographic distribution and niche breadth appear to be buffered the most from climate change. As diverse agents of selection shape genetic variability and structure within species, we argue that gENMs will lead to more accurate predictions of species distributions under climate change.  相似文献   

8.
Aim  To provide a test of the conservatism of a species' niche over the last 20,000 years by tracking the distribution of eight pollen taxa relative to climate type as they migrated across eastern North America following the Last Glacial Maximum (LGM).
Location  North America.
Methods  We drew taxon occurrence data from the North American pollen records in the Global Pollen Database, representing eight pollen types – all taxa for which ≥5 distinct geographic occurrences were available in both the present day and at the LGM (21,000 years ago ± 3000 years). These data were incorporated into ecological niche models based on present-day and LGM climatological summaries available from the Palaeoclimate Modelling Intercomparison Project to produce predicted potential geographic distributions for each species at present and at the LGM. The output for each time period was projected onto the 'other' time period, and tested using independent known occurrence information from that period.
Results  The result of our analyses was that all species tested showed general conservatism in ecological characteristics over the climate changes associated with the Pleistocene-to-Recent transition.
Main conclusions  This analysis constitutes a further demonstration of general and pervasive conservatism in ecological niche characteristics over moderate periods of time despite profound changes in climate and environmental conditions. As such, our results reinforce the application of ecological niche modelling techniques to the reconstruction of Pleistocene biodiversity distribution patterns, and to project the future potential distribution range of species in the face of global-scale climatic changes.  相似文献   

9.
  1. Shifts in the fundamental and realised niche of individuals during their ontogeny are ubiquitous in nature, but we know little about what aspects of the niche change and how these changes vary across species within communities. However, this knowledge is essential to predict the dynamics of populations and communities and how they respond to environmental change.
  2. Here I introduce a range of metrics to describe different aspects of shifts in the realised trophic niche of individuals based on stable isotopes. Applying this multi-variate approach to 2,272 individuals from 13 taxonomic and functional distinct species (Amphibia, Hemiptera, Coleoptera, Odonata) sampled in natural pond communities allowed me to: (1) describe and quantify the diversity of trophic niche shift patterns over ontogeny in multi-dimensional space, and (2) identify what aspects of ontogenetic shifts vary across taxa, and functional groups.
  3. Results revealed that species can differ substantially in which aspects of the trophic niche change and how they change over ontogeny. Interestingly, patterns of ontogenetic niche shifts grouped in distinct taxonomic clusters in multi-variate space, including two distinct groups of predators (Hemiptera versus Odonata). Given the differences in traits (especially feeding mode) across groups, this suggests that differences in ontogenetic niche shifts across species could at least partially be explained by variation in traits and functional roles of species.
  4. These results emphasise the importance of a multivariate approach to capture the large diversity of trophic niche shifts patterns possible in natural communities and suggest that differences in ontogenetic niche shifts follow general patterns.
  相似文献   

10.
The relative importance of ecological vs. nonecological factors for the origin and maintenance of species is an open question in evolutionary biology. Young lineages – such as the distinct genetic groups that make up the ranges of many northern species – represent an opportunity to study the importance of ecological divergence during the early stages of diversification. Yet, few studies have examined the extent of niche divergence between lineages in previously glaciated regions and the role of ecology in maintaining the contact zones between them. In this study, we used tests of niche overlap in combination with ecological niche models to explore the extent of niche divergence between lineages of the long‐toed salamander (Ambystoma macrodactylum Baird) species complex and to determine whether contact zones correspond to (divergent) niche limits. We found limited evidence for niche divergence between the different long‐toed salamander lineages, substantial overlap in the predicted distribution of suitable climatic space for all lineages and range limits that are independent of niche limits. These results raise questions as to the importance of ecological divergence to the development of this widespread species complex and highlight the potential for non‐ecological factors to play a more important role in the maintenance of northern taxa.  相似文献   

11.
【目的】生态位模型被广泛应用于入侵生物学和保护生物学研究,现有建模工具中,MaxEnt是最流行和运用最广泛的生态位模型。然而最近研究表明,基于MaxEnt模型的默认参数构建模型时,模型倾向于过度拟合,并非一定为最佳模型,尤其是在处理一些分布点较少的物种。【方法】以茶翅蝽为例,通过设置不同的特征参数、调控倍频以及背景拟不存在点数分别构建茶翅蝽的本土模型,然后将其转入入侵地来验证和比较模型,通过检测模型预测的物种对环境因子的响应曲线、潜在分布在生态空间中的生态位映射以及潜在分布的空间差异性,探讨3种参数设置对MaxEnt模型模拟物种分布和生态位的影响。【结果】在茶翅蝽的案例分析中,特征参数的设置对MaxEnt模型所模拟的潜在分布和生态位的影响最大,调控倍频的影响次之,背景拟不存在点数的影响最小。与其他特征相比,基于特征H和T的模型其响应曲线较为曲折;随着调控倍频的增加,响应曲线变得圆滑。【结论】在构建MaxEnt模型时,需要从生态空间中考虑物种的生态需求,分析模型参数对预测物种分布和生态位可能造成的影响。  相似文献   

12.
The Anopheles albitarsis group of mosquitoes comprises eight recognized species and one mitochondrial lineage. Our knowledge of malaria vectorial importance and the distribution and evolution of these taxa is incomplete. We constructed ecological niche models (ENMs) for these taxa and used hypothesized phylogenetic relationships and ENMs to investigate environmental and ecological divergence associated with speciation events. Two major clades were identified, one north (Clade 1) and one south (Clade 2) of the Amazon River that likely is or was a barrier to mosquito movement. Clade 1 species occur more often in higher average temperature locations than Clade 2 species, and taxon splits within Clade 1 corresponded with a greater divergence of variables related to precipitation than was the case within Clade 2. Comparison of the ecological profiles of sympatric species and sister species support the idea that phylogenetic proximity is related to ecological similarity. Anopheles albitarsis I, An. janconnae, and An. marajoara ENMs had the highest percentage of their predicted suitable habitat overlapping distribution models of Plasmodium falciparum and P. vivax, and warrant additional studies of the transmission potential of these species. Phylogenetic proximity may be related to malaria vectorial importance within the Albitarsis Group.  相似文献   

13.
  • The response of seeds from 23 wild plant species to a range of seed enhancing treatments was studied. We tested the hypothesis that sensitivity of the 23 species to these compounds is related to their ecological niche. The three ecological niches considered were open land, open‐pioneer and woodland. Hence, the germination of a species is likely adapted to different light conditions and other environmental signals related to the niche.
  • As representatives of environmental signals, the effects of smoke‐related compounds (karrikinolide, KAR1), nitrate and plant growth regulator (gibberellic acid, GA3) on germination were studied. Seeds were exposed to these additives in the imbibition medium; all described as germination cues. We also investigated the effect of light regimes and additives on germination parameters, which included final germination, germination rate and uniformity of germination. Seeds were placed to germinate under three light conditions: constant red light, constant darkness and 12 h white light photoperiod.
  • We observed inhibition by KAR under light in some species, which may have ecological implications. The results showed that no single treatment increased the germination of all the tested species, rather a wide variation of responsiveness of the different species to the three compounds was found. Additionally, no interaction was found between responsiveness to compounds and ecological niche. However, species in the same ecological niche and dormancy class showed a similar responsiveness to light.
  • Species that share a similar environment have similar light requirements for germination, while differences exist among species in their responsiveness to other germination cues.
  相似文献   

14.
Aim To investigate relative niche stability in species responses to various types of environmental pressure (biotic and abiotic) on geological time‐scales using the fossil record. Location The case study focuses on Late Ordovician articulate brachiopods of the Cincinnati Arch in eastern North America. Methods Species niches were modelled for a suite of fossil brachiopod species based on five environmental variables inferred from sedimentary parameters using GARP and Maxent . Niche stability was assessed by comparison of (1) the degree of overlap of species distribution models developed for a time‐slice and those generated by projecting niche models of the previous time‐slice onto environmental layers of a second time‐slice using GARP and Maxent , (2) Schoener’s D statistic, and (3) the similarity of the contribution of each environmental parameter within Maxent niche models between adjacent time‐slices. Results Late Ordovician brachiopod species conserved their niches with high fidelity during intervals of gradual environmental change but responded to inter‐basinal species invasions through niche evolution. Both native and invasive species exhibited similar levels of niche evolution in the invasion and post‐invasion intervals. Niche evolution was related mostly to decreased variance within the former ecological niche parameters rather than to shifts to new ecospace. Main conclusions Although the species examined exhibited morphological stasis during the study interval, high levels of niche conservatism were observed only during intervals of gradual environmental change. Rapid environmental change, notably inter‐basinal species invasions, resulted in high levels of niche evolution among the focal taxa. Both native and invasive species responded with similar levels of niche evolution during the invasion interval and subsequent environmental reorganization. The assumption of complete niche conservatism frequently employed in ecological niche modelling (ENM) analyses to forecast or hindcast species geographical distributions is more likely to be accurate for climate change studies than for invasive species analyses over geological time‐scales.  相似文献   

15.
Environmental niche models, which are generated by combining species occurrence data with environmental GIS data layers, are increasingly used to answer fundamental questions about niche evolution, speciation, and the accumulation of ecological diversity within clades. The question of whether environmental niches are conserved over evolutionary time scales has attracted considerable attention, but often produced conflicting conclusions. This conflict, however, may result from differences in how niche similarity is measured and the specific null hypothesis being tested. We develop new methods for quantifying niche overlap that rely on a traditional ecological measure and a metric from mathematical statistics. We reexamine a classic study of niche conservatism between sister species in several groups of Mexican animals, and, for the first time, address alternative definitions of "niche conservatism" within a single framework using consistent methods. As expected, we find that environmental niches of sister species are more similar than expected under three distinct null hypotheses, but that they are rarely identical. We demonstrate how our measures can be used in phylogenetic comparative analyses by reexamining niche divergence in an adaptive radiation of Cuban anoles. Our results show that environmental niche overlap is closely tied to geographic overlap, but not to phylogenetic distances, suggesting that niche conservatism has not constrained local communities in this group to consist of closely related species. We suggest various randomization tests that may prove useful in other areas of ecology and evolutionary biology.  相似文献   

16.

Premise

Researchers often use ecological niche models to predict where species might establish and persist under future or novel climate conditions. However, these predictive methods assume species have stable niches across time and space. Furthermore, ignoring the time of occurrence data can obscure important information about species reproduction and ultimately fitness. Here, we assess compare ecological niche models generated from full-year averages to seasonal models.

Methods

In this study, we generate full-year and monthly ecological niche models for Capsella bursa-pastoris in Europe and North America to see if we can detect changes in the seasonal niche of the species after long-distance dispersal.

Results

We find full-year ecological niche models have low transferability across continents and there are continental differences in the climate conditions that influence the distribution of C. bursa-pastoris. Monthly models have greater predictive accuracy than full-year models in cooler seasons, but no monthly models can predict North American summer occurrences very well.

Conclusions

The relative predictive ability of European monthly models compared to North American monthly models suggests a change in the seasonal timing between the native range to the non-native range. These results highlight the utility of ecological niche models at finer temporal scales in predicting species distributions and unmasking subtle patterns of evolution.  相似文献   

17.
It has been proposed that high morphological similarity between closely related species of small-eared shrews resulted from a recent divergence and intermittent population connectivity, presumably due to Pleistocene climatic fluctuations and associated changes in forest habitat distribution. Here we examined the morphological variation of two sister species of small-eared shrews inhabiting cloud forests from Mexico, Cryptotis obscurus and C. mexicanus. We then used ecological niche modelling to provide compelling evidence for current environmental barriers for population connectivity, and for detecting divergent ecological niches between candidate species. Our results indicated that the species boundaries in this clade should be subject to change. High morphological similarity suggested that populations of C. obscurus and C. mexicanus located west of the Isthmus of Tehuantepec, a major geographic barrier for montane species, are conspecific. Niche divergence between these two putative species was not supported indicating niche conservatism across the evolutionary history of these small-eared shrews. In addition, several barriers seem to play a main role for current lineage divergence between populations within this clade. The population located east of the Isthmus, previously referred to C. mexicanus, might prove to represent a new species based on morphological distinction and current geographic isolation. We have highlighted that estimating species’ potential distributions provides insights to evaluating the effect of geographic barriers on lineage divergence and making stronger inferences when delimiting species.  相似文献   

18.
昆承湖优势种鱼类时空-营养生态位   总被引:1,自引:0,他引:1  
陈亚东  任泷  徐跑  凡迎春  徐东坡 《生态学报》2023,43(4):1655-1663
为了解昆承湖优势种鱼类资源利用情况,首先利用生态位方法计算了时间、空间及营养三个资源维度的生态位宽度及重叠值,然后根据时空-营养生态位宽度值将优势种鱼类划分为广位种、中位种和窄位种,最后讨论了生态位宽度及重叠的可能原因。结果显示:刀鲚Coilia nasus、蒙古鲌Chanodichthys mongolicus、似鱎Toxabramis swinhonis、似鳊Pseudobrama simoni、鳙Hypophthalmichthys nobilis、鲢Hypophthalmichthys molitrix、花鱼骨Hemibarbus maculatus、似刺鳊鮈Paracanthobrama guichenoti、大鳍鱊Acheilognathus macropterus和鲫Carassius auratus为优势种。在时间维度:鲢的生态位宽度最大,似鳊的最小;生态位重叠具有显著意义的有24对,占总的53.33%。在空间维度,似刺鳊鮈最大,鲢最小;生态位重叠具有显著意义的有36对,占总的80%。在营养维度,最大的为鲫,最小的为花鱼骨;生态位重叠具有显著意义的有8对,占17.78%...  相似文献   

19.
Closely related species (e.g., sister taxa) often occupy very different ecological niches and can exhibit large differences in geographic distributions despite their shared evolutionary history. Budding speciation is one process that may partially explain how differences in niche and distribution characteristics may rapidly evolve. Budding speciation is the process through which new species form as initially small colonizing populations that acquire reproductive isolation. This mode of species formation predicts that, at the time of speciation, sister species should have highly asymmetrical distributions. We tested this hypothesis in North American monkeyflowers, a diverse clade with a robust phylogeny, using data on geographical ranges, climate, and plant community attributes. We found that recently diverged sister pairs have highly asymmetrical ranges and niche breadths, relative to older sister pairs. Additionally, we found that sister species occupy distinct environmental niche positions, and that 80% of sister species have completely or partially overlapping distributions (i.e., are broadly sympatric). Together, these results suggest that budding speciation has occurred frequently in Mimulus, that it has likely taken place both inside the range and on the range periphery, and that observed divergences in habitat and resource use could be associated with speciation in small populations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号