首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Levels of lignin and hydroxycinnamic acid wall components in three genera of forage grasses (Lolium,Festuca and Dactylis) have been accurately predicted by Fourier-transform infrared spectroscopy using partial least squares models correlated to analytical measurements. Different models were derived that predicted the concentrations of acid detergent lignin, total hydroxycinnamic acids, total ferulate monomers plus dimers, p-coumarate and ferulate dimers in independent spectral test data from methanol extracted samples of perennial forage grass with accuracies of 92.8%, 86.5%, 86.1%, 59.7% and 84.7% respectively, and analysis of model projection scores showed that the models relied generally on spectral features that are known absorptions of these compounds. Acid detergent lignin was predicted in samples of two species of energy grass, (Phalaris arundinacea and Pancium virgatum) with an accuracy of 84.5%.  相似文献   

2.
Cell wall phenolic compounds were analysed in xylem and bastfibre-rich peels of flax stems by biochemical, histochemicaland ultrastructural approaches. Localization of cell wall phenolicsby the enzyme-gold method using laccase revealed several goldparticle distribution patterns. One of the major types (an evendistribution of single gold particles) was present mainly inxylem, while the other (compact branched groups of ten–40gold particles) was found both in xylem and fibre cells. Thelignin content of the stem parts was estimated by the Klasonprocedure and by the thioglycolic acid assay, and the phenolicproducts recovered after alkaline cupric oxide oxidation ofcell walls were analysed by GC. By combining chemical analysisdata and the frequency of various gold particle types withinthe tissues, different patterns of gold particle distributioncould be ascribed to certain cell wall phenolics; lignin wasstained as evenly distributed single gold particles, while branchedclusters represented hydroxycinnamic acids. The Klason proceduredid not remove all the non-lignin components from flax fibres,known for their highly crystalline cellulose, and considerablyoverestimated the lignin content. The thioglycolic acid assayresults were consistent with GC and microscopic observations.Copyright 2000 Annals of Botany Company Linum usitatissimum L., bast fibres, cell wall, lignin, hydroxycinnamic acids  相似文献   

3.
The composition and concentrations of cell wall polysaccharides and phenolic compounds were analyzed in mature stems of several Miscanthus genotypes, in comparison with switchgrass and reed (Arundo donax), and biomass characteristics were correlated with cell wall saccharification efficiency. The highest cellulose content was found in cell walls of M. sinensis‘Grosse Fontaine’ (55%) and in A. donax (47%) and lowest (about 32%) in M. sinensis‘Adagio’. There was little variation in lignin contents across M. sinensis samples (all about 22–24% of cell wall), however, Miscanthus×giganteus (M × g) cell walls contained about 28% lignin, reed – 23% and switchgrass – 26%. The highest ratios of cellulose/lignin and cellulose/xylan were in M. sinensis‘Grosse Fontaine’ across all samples tested. About the same total content of ester‐bound phenolics was found in different Miscanthus genotypes (23–27 μg/mg cell wall), while reed cell walls contained 17 μg/mg cell wall and switchgrass contained a lower amount of ester‐bound phenolics, about 15 μg/mg cell wall. Coumaric acid was a major phenolic compound ester‐bound to cell walls in plants analyzed and the ratio of coumaric acid/ferulic acid varied from 2.1 to 4.3, with the highest ratio being in M × g samples. Concentration of ether‐bound hydroxycinnamic acids varied greatly (about two‐three‐fold) within Miscanthus genotypes and was also the highest in M × g cell walls, but at a concentration lower than ester‐bound hydroxycinnamic acids. We identified four different forms of diferulic acid esters bound to Miscanthus cell walls and their concentration and proportion varied in genotypes analyzed with the 5‐5‐coupled dimer being the predominant type of diferulate in most samples tested. The contents of lignin and ether‐bound phenolics in the cell wall were the major determinants of the biomass degradation caused by enzymatic hydrolysis.  相似文献   

4.
The accumulation of soluble and wall-bound phenolics and phenolic polymers in Musa acuminata roots exposed to cell wall-derived elicitor from the pathogen, Fusarium oxysporum, f.sp. cubense, race four, was investigated. The root tissue from the banana cultivar "Goldfinger" was found to respond strongly and rapidly towards the elicitor through the increased synthesis of phenolic compounds. Following elicitation, the conjugated and non-conjugated phenolic metabolites in the induced root tissue were extracted and quantified. Induced phenolic synthesis was rapid and reached near maximum values after 16 h. High-performance liquid chromatography revealed both compositional and quantitative differences between induced phenolics (p-coumaric, ferulic, and sinapic acids) and those constitutively present (p-coumaric- and ferulic acid). In addition, vanillic acid was found in the ester-bound fraction and protocatechuic acid in the cell-wall bound fraction of elicited tissue. The deposition and accumulation kinetics of polymerized phenolic monomers as lignin and lignin-like polymers was quantified over a time period of 0-36 h and found to reach maximum values after 24 h. Ionization difference UV spectra of lignin indicated compositional differences in the newly synthesized lignin fraction and correlated with increased concentrations of ferulic acid and sinapic acids esters. The results show that the increased flux through the phenylpropanoid pathway resulted in the synthesis of cinnamic acid and benzoic acid derivatives that were esterified and incorporated into the cell wall fraction as part of the anti-microbial defenses activated in the root tissue.  相似文献   

5.
Antioxidant Properties of the Major Polyphenolic Compounds in Broccoli   总被引:5,自引:0,他引:5  
We have examined the antioxidant activity of the major phenolic compounds in Broccoli: two flavonol glycosides (quercetin 3-O-sophoroside and kaemp-ferol 3-O-sophoroside) and four hydroxycinnamic acid esters (1,2'-disinapoyl-2-feruloyl gentiobiose, 1-sinapoyl-2-feruloyl gentiobiose, 1,2,2'-trisinapoyl gentiobiose and 1,2-disinapoyl gentiobiose). The Trolox C equivalent antioxidant capacity (TEAC) and inhibition of iron/ascorbate-induced lipid per-oxidation of phosphatidyl choline vesicles were measured. In the aqueous phase TEAC assay, the two flavonol glycosides were less active than their respective aglycones. TEAC values for the hydroxycinnamic acid esters were less than the sum of their constituent hydroxycinnamic acids on a molar basis. Quercetin 3-O-sophoroside was a potent inhibitor of lipid peroxidation, in contrast to kaempferol 3-O-sophoroside. The hydroxycinnamic acid esters were highly effective at preventing lipid damage with the exception of 1,2,2'-trisinapoyl gentiobiose. The six compounds analysed herein demonstrate the antioxidant activity of the major phenolics in broccoli and indicate the effect on antioxidant activity of sugar substitutions in the phenolic B ring.  相似文献   

6.
T B Lam  K Kadoya  K Iiyama 《Phytochemistry》2001,57(6):987-992
A suspension in dichloromethane-water (18:1, v/v) of various fractions containing hydroxycinnamic acid ester-ether bridges between lignin and polysaccharides prepared from cell walls of matured oat (Avena sativa L.) intemodes, and a solution of their acetates in the same solvent, were treated with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). This reagent selectively cleaves benzyl ether and ester linkages of negatively charged aromatic nuclei. The sample treated with DDQ was directly hydrolysed either under mild (1 M NaOH, overnight at 37 degrees C) or severe (4 M NaOH, for 2 h at 170 degrees C) conditions. The hydroxycinnamic acids released in the hydrolysate were methylated with diazomethane and analysed quantitatively using gas chromatography. Significant portions of ether linkages between hydroxycinnamic acids and lignin were cleaved with DDQ, which suggests that most of the hydroxycinnamic acids were ether-linked at the benzyl position, and not the beta-position, of the lignin side chain as previously claimed.  相似文献   

7.
Phenylalanine ammonia-lyase (PAL) activity, 11 phenolic acids and lignin accumulation in Matricaria chamomilla roots exposed to low (3 μM) and high (60 and 120 μM) levels of cadmium (Cd) or copper (Cu) for 7 days were investigated. Five derivatives of cinnamic acid (chlorogenic, p-coumaric, caffeic, ferulic and sinapic acids) and six derivatives of benzoic acid (protocatechuic, vanillic, syringic, p-hydroxybenzoic, salicylic acids and protocatechuic aldehyde) were detected. Accumulation of glycoside-bound phenolics (revealed by acid hydrolysis) was enhanced mainly towards the end of the experiment, being more expressive in Cu-treated roots. Interestingly, chlorogenic acid was extremely elevated by the highest Cu dose (21-fold higher than control) suggesting its involvement in antioxidative protection. All compounds, with the exception of chlorogenic acid, were detected in the cell wall bound fraction, but only benzoic acids were found in the ester-bound fraction (revealed by alkaline hydrolysis). Soluble phenolics were present in substantially higher amounts in Cu-treated roots and more Cu was retained there in comparison to Cd. Cu strongly elevated PAL activity (by 5.4- and 12.1-fold in 60 and 120 μM treatment, respectively) and lignin content (by 71 and 148%, respectively) after one day of treatment, indicating formation of a barrier against metal entrance. Cd had slighter effects, supporting its non-redox active properties. Taken together, different forms of phenolic metabolites play an important role in chamomile tolerance to metal excess and participate in active antioxidative protection.  相似文献   

8.
Aryl metabolite biosynthesis was studied in the white rot fungus Bjerkandera adusta cultivated in a liquid medium supplemented with L-phenylalanine. Aromatic compounds were analyzed by gas chromatography-mass spectrometry following addition of labelled precursors ((14)C- and (13)C-labelled L-phenylalanine), which did not interfere with fungal metabolism. The major aromatic compounds identified were benzyl alcohol, benzaldehyde (bitter almond aroma), and benzoic acid. Hydroxy- and methoxybenzylic compounds (alcohols, aldehydes, and acids) were also found in fungal cultures. Intracellular enzymatic activities (phenylalanine ammonia lyase, aryl-alcohol oxidase, aryl-alcohol dehydrogenase, aryl-aldehyde dehydrogenase, lignin peroxidase) and extracellular enzymatic activities (aryl-alcohol oxidase, lignin peroxidase), as well as aromatic compounds, were detected in B. adusta cultures. Metabolite formation required de novo protein biosynthesis. Our results show that L-phenylalanine was deaminated to trans-cinnamic acid by a phenylalanine ammonia lyase and trans-cinnamic acid was in turn converted to aromatic acids (phenylpyruvic, phenylacetic, mandelic, and benzoylformic acids); benzaldehyde was a metabolic intermediate. These acids were transformed into benzaldehyde, benzyl alcohol, and benzoic acid. Our findings support the hypothesis that all of these compounds are intermediates in the biosynthetic pathway from L-phenylalanine to aryl metabolites. Additionally, trans-cinnamic acid can also be transformed via beta-oxidation to benzoic acid. This was confirmed by the presence of acetophenone as a beta-oxidation degradation intermediate. To our knowledge, this is the first time that a beta-oxidation sequence leading to benzoic acid synthesis has been found in a white rot fungus. A novel metabolic scheme for biosynthesis of aryl metabolites from L-phenylalanine is proposed.  相似文献   

9.
Transgenic tobacco (Nicotiana tabacum L.) plants in which the activity of 4-coumarate:coenzyme A ligase is very low contain a novel lignin in their xylem. Details of changes in hydroxycinnamic acids bound to cell walls and in the structure of the novel lignin were identified by base hydrolysis, alkaline nitrobenzene oxidation, pyrolysis-gas chromatography, and 13C-nuclear magnetic resonance analysis. In the brownish tissue of the transgenic plants, the levels of three hydroxycinnamic acids, p-coumaric, ferulic, and sinapic, which were bound to cell walls, were apparently increased as a result of down-regulation of the expression of the gene for 4-coumarate:coenzyme A ligase. Some of these hydroxycinnamic acids were linked to cell walls via ester and ether linkages. The accumulation of hydroxycinnamic acids also induced an increase in the level of condensed units in the novel lignin of the brownish tissue. Our data indicate that the behavior of some of the incorporated hydroxycinnamic acids resembles lignin monomers in the brownish tissue, and their accumulation results in dramatic changes in the biosynthesis of lignin in transgenic plants.  相似文献   

10.
Genes encoding seven enzymes of the monolignol pathway were independently downregulated in alfalfa (Medicago sativa) using antisense and/or RNA interference. In each case, total flux into lignin was reduced, with the largest effects arising from the downregulation of earlier enzymes in the pathway. The downregulation of l-phenylalanine ammonia-lyase, 4-coumarate 3-hydroxylase, hydroxycinnamoyl CoA quinate/shikimate hydroxycinnamoyl transferase, ferulate 5-hydroxylase or caffeic acid 3-O-methyltransferase resulted in compositional changes in lignin and wall-bound hydroxycinnamic acids consistent with the current models of the monolignol pathway. However, downregulating caffeoyl CoA 3-O-methyltransferase neither reduced syringyl (S) lignin units nor wall-bound ferulate, inconsistent with a role for this enzyme in 3-O-methylation ofS monolignol precursors and hydroxycinnamic acids. Paradoxically, lignin composition differed in plants downregulated in either cinnamate 4-hydroxylase or phenylalanine ammonia-lyase. No changes in the levels of acylated flavonoids were observed in the various transgenic lines. The current model for monolignol and ferulate biosynthesis appears to be an over-simplification, at least in alfalfa, and additional enzymes may be needed for the 3-O-methylation reactions of S lignin and ferulate biosynthesis.  相似文献   

11.
Rewriting the lignin roadmap   总被引:24,自引:0,他引:24  
Considerable interest in lignin biosynthesis has been fueled by the many roles that lignin plays in development and in resistance to biotic and abiotic stress, as well as its importance to industry and agriculture. Although the pathway leading to the lignin polymer has been studied for decades, new insights into the enzymes of the pathway have required a complete re-evaluation of how we think lignin precursors are synthesized. Although free hydroxycinnamic acids have long been thought to be key intermediates, it has become apparent that many of the hydroxylation and methylation steps in the pathway occur instead at the level of hydroxycinnamic acid esters, and their corresponding aldehydes and alcohols.  相似文献   

12.
Lignocarbohydrate Solubilization from Straw by Actinomycetes   总被引:1,自引:1,他引:0       下载免费PDF全文
Actinomycetes grown on wheat straw solubilized a lignocarbohydrate fraction which could be recovered by acid precipitation. Further characterization of this product (APPL) during growth of Streptomyces sp. strain EC1 revealed an increase in carboxylic acid and phenolic hydroxyl content, suggesting progressive modification. This was also observed in dioxane-extracted lignin fractions of degraded straw, and some similarity was further suggested by comparative infrared spectroscopy. However, the molecular weight profile of APPL was relatively constant during growth of Streptomyces sp. strain EC1 on straw, while analysis of the dioxane-extracted lignin fractions appeared to show fragmentation followed by repolymerization. Lignocarbohydrate solubilization could be monitored in all cultures by routine assay of APPL-associated protein, which accounted for up to 20% of the extracellular culture protein in some cases. Interestingly, this protein fraction was found to include active hydrolytic and oxidative enzymes involved in the degradation of lignocellulose, and specific enzyme activities were often increased in the acid-insoluble fractions of culture supernatants. This was particularly important for peroxidase and veratryl oxidase activities, which could be readily detected in the acid-precipitable lignocarbohydrate complex but were virtually undetectable in untreated culture supernatants.  相似文献   

13.
Yamaji K  Ishimoto H  Usui N  Mori S 《Mycorrhiza》2005,15(1):17-23
Ectomycorrhizal fungi can produce antifungal compounds in vitro as well as in symbiosis with the host plant that can reduce root diseases. The objective of this study was to isolate antifungal compounds from culture filtrate of Paxillus sp. 60/92, which can form mycorrhizas with Picea glehnii seedlings. Culture filtrate of Paxillus sp. 60/92 showed antifungal activity against Pythium vexans at pH 3–4 but not at pH 5–10, although sterile MMN-b liquid medium (pH 3–10) did not show antifungal activity. Upon separation of antifungal compounds in the culture filtrate, antifungal activity was detected in the organic acid and water-soluble phenolics fractions adjusted to pH 3. Although antifungal activity of individual fractions was lower than that of the culture filtrate, a mixture of these fractions showed antifungal activity similar to that of the culture filtrate. Furthermore, antifungal activity of oxalic acid, which is known to be produced by Paxillus involutus, was increased by mixing with the water-soluble phenolic fraction. Our findings indicate that Paxillus sp. 60/92 produces organic acids and water-soluble phenolics that together show antifungal activity at pH 3–4 against P. vexans.  相似文献   

14.
15.
Ligninase-I (Mr 42,000-43,000; carbohydrate, 21%) and peroxidase-M2 (Mr 45,000-47,000; carbohydrate, 17%), two representative, hydrogen peroxide-dependent extracellular enzymes produced by ligninolytic cultures of the white-rot fungus Phanerochaete chrysosporium BKM-F-1767, were purified and their properties compared. Spectroscopic studies showed that both native enzymes are heme proteins containing protoporphyrin IX. EPR spectroscopy indicated that iron ions are coordinated with the enzymes' prosthetic groups as high-spin ferriheme complexes. We confirmed reports of others that the ligninase-hydrogen peroxide complex (activated enzyme) reverts to its native state on addition of dithionite or one of the enzyme's substrates (e.g., veratryl alcohol); however, we found that the peroxidase-M2-hydrogen peroxide complex required Mn2+ ions to accomplish a similar cycle. The peroxidase oxidized Mn2+ to a higher oxidation state, and the oxidized Mn acted as a diffusible catalyst able to oxidize numerous organic substrates. Unlike ligninase-I which is found free extracellularly, peroxidase-M2 appears to be associated closely with the fungal mycelium. In its peroxidatic reactions, ligninase-I oxidizes a variety of nonphenolic and phenolic lignin model compounds. In the presence of Mn2+, peroxidase-M2 oxidizes numerous phenolic compounds, especially syringyl (3,5-dimethoxy-4-hydroxyphenyl) and vinyl side-chain substituted substrates. Also, the peroxidase-Mn2+ system (without hydrogen peroxide) expresses oxidase activity against NADPH, GSH, dithiothreitol, and dihydroxymaleic acid, forming hydrogen peroxide at the expense of oxygen. Both enzymes were believed to play roles in lignin degradation, and these are discussed.  相似文献   

16.
This study used the fungus, Phanerochaete chrysosporium, to pretreat cotton stalks with two methods, shallow stationary and agitated cultivation, at three supplemental salt concentrations. Pretreatment efficiencies were compared by evaluating lignin degradation, solid recovery and carbohydrate availability over a 14-day period. Shallow stationary cultivation with no salts gave 20.7% lignin degradation along with 76.3% solid recovery and 29.0% carbohydrate availability. The highest lignin degradation of 33.9% at a corresponding solid recovery and carbohydrate availability of 67.8% and 18.4%, respectively, was obtained through agitated cultivation with Modified NREL salts. Cultivation beyond 10 days did not significantly increase lignin degradation during 14 days of pretreatment. Manganese addition during shallow stationary and agitated cultivation resulted in higher solid recoveries of over 80% but lower lignin degradation. Although agitated cultivation resulted in better delignification, results indicate that pretreatment under submerged shallow stationary conditions provides a better balance between lignin degradation and carbohydrate availability.  相似文献   

17.
Two types of structurally distinct O-methyltransferases mediate the methylation of hydroxylated monomeric lignin precursors in angiosperms. Caffeate 3-O-methyltransferase (COMT; EC 2.1.1.68) methylates the free acids and caffeoyl CoA 3-O-methyltransferase (CCoAOMT; EC 2.1.1.104) methylates coenzyme A esters. Recently, we reported a novel hydroxycinnamic acid/hydroxycinnamoyl CoA ester O-methyltransferase (AEOMT) from loblolly pine differentiating xylem that was capable of methylating both acid and ester precursors with similar efficiency. In order to determine the possible existence and role of CCoAOMT in lignin biosynthesis in gymnosperms, a 1.3 kb CCoAOMT cDNA was isolated from loblolly pine that showed 79–82% amino acid sequence identity with many angiosperm CCoAOMTs. The recombinant CCoAOMT expressed in Escherichia coli exhibited a significant methylating activity with hydroxycinnamoyl CoA esters whereas activity with hydroxycinnamic acids was insignificant. Moreover, 3.2 times higher catalytic efficiency for methylating caffeoyl CoA over 5-hydroxyferuloyl CoA was observed which could serve as a driving force towards synthesis of guaiacyl lignin. The secondary xylem-specific expression of CCoAOMT was demonstrated using RNA blot analysis, western blot analysis, and O-methyltransferase enzyme assays. In addition, Southern blot analysis indicated that CCoAOMT may exist as a single-copy gene in loblolly pine genome. The transgenic tobacco plants carrying loblolly pine CCoAOMT promoter-GUS fusion localized the site of GUS activity at the secondary xylem tissues. These data suggest that CCoAOMT, in addition to AEOMT, plays an important role in the methylation pathway associated with lignin biosynthesis in loblolly pine.  相似文献   

18.
As part of the response to pathogen infection, potato plants accumulate soluble and cell wall-bound phenolics such as hydroxycinnamic acid tyramine amides. Since incorporation of these compounds into the cell wall leads to a fortified barrier against pathogens, raising the amounts of hydroxycinnamic acid tyramine amides might positively affect the resistance response. To this end, we set out to increase the amount of tyramine, one of the substrates of the hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl)-transferase reaction, by placing a cDNA encoding a pathogen-induced tyrosine decarboxylase from parsley under the control of the 35S promoter and introducing the construct into potato plants via Agrobacterium tumefaciens-mediated transformation. While no alterations were observed in the pattern and quantity of cell wall-bound phenolic compounds in transgenic plants, the soluble fraction contained several new compounds. The major one was isolated and identified as tyrosol glucoside by liquid chromatography-electrospray ionization-high resolution mass spectrometry and NMR analyses. Our results indicate that expression of a tyrosine decarboxylase in potato does not channel tyramine into the hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl)-transferase reaction but rather unexpectedly, into a different pathway leading to the formation of a potential storage compound.  相似文献   

19.
Abilities of isolate AF-W1 of Fusarium solani to degrade the side chain and the ring structure of synthetic dehydrogenative polymerizates, aromatic acids, or lignin in sound wood were investigated under several conditions of growth substrate or basal medium and pH. Significant transformations of lignins occurred in 50 days in both unextracted and extracted sound wood substrates with 3% malt as the growth substrate and the pH buffered initially at 4.0 with 2,2-dimethylsuccinate. Degradation of lignin in such woods also occurred under unbuffered pH conditions when a basal medium of either 3% malt or powdered cellulose in deionized water was present. Decomposition of the lignin in these woods did not occur in cultures where d-glucose was present as a growth substrate. F. solani significantly transformed, as measured as evolved CO(2), both synthetic side chain (beta, gamma)-C- and U-ring-C-labeled lignins in 30 days under liquid culture conditions of only distilled deionized water and no pH adjustment. Degradation of dehydrogenative polymerizates by F. solani was reduced drastically when D(2) was the liquid medium. AF-W1 also cleaved the alpha-C from p-hydroxybenzoic acid and evolved CO(2) from the substrate, [3-C]cinnamic acid. Thus, the fungus cleaved side chain carbon from substrate that originally lacked hydroxyl substitution on the aromatic nucleus. Surprisingly, small amounts of C cleaved from aromatic acids by F. solani were incorporated into cell mass. Initial buffering of the culture medium to pH 4.0 or 5.0 with 0.1 M 2,2-dimethylsuccinate significantly increased F. solani degradation of all lignins or aromatic acids. Results indicated that AF-W1 used lignin as a sole carbon source.  相似文献   

20.
The oxidoreductive enzyme laccase (E.C.1.10.3.2.) isolated from a culture medium of white-rot fungus Trametes versicolor transformed lignin preparations solubilized in a dioxane-H2O (7:3) mixture. The obvious net result of lignin transformation was an increase in molecular mass. A superoxide radical was found in the reaction mixture during lignin incubation with laccase. It appeared that a change in the reaction medium or in the lignin molecule instigated by laccase could lead to polymerization after the lignin molecules had crossed a dialysis membrane and were separated from the enzyme. Two possible mechanisms are suggested, either diffusion of an activated oxygen species or diffusion of primed lignin molecules. Laccase was able to co-polymerize lignin with low-molecular-mass compounds of different origins, particularly with aromatics containing either carboxyl or isocyanate groups, as well as acrylamide — an aliphatic monomer containing a vinyl group. Correspondence to: O. Milstein  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号