首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots
Authors:Jozef Ková?ik  Bo?ivoj Klejdus
Institution:(1) Department of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, 041 67 Kosice, Slovak Republic;(2) Department of Chemistry and Biochemistry, Mendel University of Agriculture and Forestry Brno, Zemědělská 1, 613 00 Brno, Czech Republic
Abstract:Phenylalanine ammonia-lyase (PAL) activity, 11 phenolic acids and lignin accumulation in Matricaria chamomilla roots exposed to low (3 μM) and high (60 and 120 μM) levels of cadmium (Cd) or copper (Cu) for 7 days were investigated. Five derivatives of cinnamic acid (chlorogenic, p-coumaric, caffeic, ferulic and sinapic acids) and six derivatives of benzoic acid (protocatechuic, vanillic, syringic, p-hydroxybenzoic, salicylic acids and protocatechuic aldehyde) were detected. Accumulation of glycoside-bound phenolics (revealed by acid hydrolysis) was enhanced mainly towards the end of the experiment, being more expressive in Cu-treated roots. Interestingly, chlorogenic acid was extremely elevated by the highest Cu dose (21-fold higher than control) suggesting its involvement in antioxidative protection. All compounds, with the exception of chlorogenic acid, were detected in the cell wall bound fraction, but only benzoic acids were found in the ester-bound fraction (revealed by alkaline hydrolysis). Soluble phenolics were present in substantially higher amounts in Cu-treated roots and more Cu was retained there in comparison to Cd. Cu strongly elevated PAL activity (by 5.4- and 12.1-fold in 60 and 120 μM treatment, respectively) and lignin content (by 71 and 148%, respectively) after one day of treatment, indicating formation of a barrier against metal entrance. Cd had slighter effects, supporting its non-redox active properties. Taken together, different forms of phenolic metabolites play an important role in chamomile tolerance to metal excess and participate in active antioxidative protection.
Keywords:Cadmium  Copper  Lignin  Oxidative stress  Phenolic acids  Phenylalanine ammonia-lyase
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号