首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Depletion of the SlpA protein from the bacterial surface greatly reduced the adhesion of Lactobacillus brevis ATCC 8287 to the human intestinal cell lines Caco-2 and Intestine 407, the endothelial cell line EA-hy926, and the urinary bladder cell line T24, as well as immobilized fibronectin. For functional analysis of the SlpA surface protein, different regions of the slpA gene were expressed as internal in-frame fusions in the variable region of the fliC(H7) gene of Escherichia coli. The resulting chimeric flagella carried inserts up to 275 amino acids long from the mature S-layer protein, which is 435 amino acids in size. The expression of the SlpA fragments on the chimeric flagella was assessed by immunoelectron microscopy and Western blotting using anti-SlpA antibodies, and their binding to human cells was assessed by indirect immunofluorescence. Chimeric flagella harboring inserts that represented the N-terminal part of the S-layer protein bound to the epithelial cell lines, whereas the C-terminal part of the S-layer protein did not confer binding on the flagella. The shortest S-layer peptide capable of detectable binding was 81 amino acid residues in size and represented residues 96 through 176 in the unprocessed S-layer protein. The bacteria and the chimeric flagella did not show detectable binding to erythrocytes, whereas the SlpA-expressing ATCC 8287 cells as well as the chimeric SlpA 96-245/FliC flagella bound to immobilized fibronectin. The N-terminal SlpA peptide 96-176 or 96-200 fused to FliC was not recognized in Western blotting or immunoelectron microscopy by a polyclonal serum raised against the S-layer protein; the antiserum, however, reacted in immunofluorescence with the ATCC 8287 cells. In contrast, an antiserum raised against the His-tagged peptide 96-245 of SlpA bound to the hybrid flagella with the N-terminal SlpA inserts but did not react with ATCC 8287 cells. The results identify the S-layer of L. brevis ATCC 8287 as an adhesin with affinity for human epithelial cells and fibronectin and locate the receptor-binding region within a fragment of 81 amino acids in the N-terminal part of the molecule, which in native S-layer seems inaccessible to antibodies.  相似文献   

2.
Evidence shows that probiotic bacteria can undergo substantial structural and morphological changes in response to environmental stresses, including antibiotics. Therefore, this study investigated the effects of penicillin G (0.015, 0.03, and 0.06 mg/l) on the morphology and adhesion of Lactobacillus acidophilus ATCC 4356, including the colony morphotype, biofilm production, hydrophobicity, H?O? formation, S-layer structure, and slpA gene expression. Whereas only smooth colonies grew in the presence of penicillin, rough and smooth colony types were observed in the control group. L. acidophilus ATCC 4356 was found to be hydrophobic under normal conditions, yet its hydrophobicity decreased in the presence of the antibiotic. No biofilm was produced by the bacterium, despite testing a variety of different culture conditions; however, treatment with penicillin G (0.015-0.06 mg/l) significantly decreased its production of H?O? formation and altered the S-layer protein structure and slpA gene expression. The S-protein expression decreased with 0.015 mg/l penicillin G, yet increased with 0.03 and 0.06 mg/l penicillin G. In addition, the slpA gene expression decreased in the presence of 0.015 mg/l of the antibiotic. In conclusion, penicillin G was able to alter the S-layer protein production, slpA gene expression, and certain physicochemical properties of Lactobacillus acidophilus ATCC 4356.  相似文献   

3.
The most-dominant surface-exposed protein in many bacterial species is the S-protein. This protein crystallises into a regular monolayer on the outside surface of the bacteria: the S-layer. Lactobacillus acidophilus harbours two S-protein-encoding genes, slpA and slpB , only one of which ( slpA  ) is expressed. In this study, we show by polymerase chain reaction (PCR) analysis that slpA and slpB are located on a 6 kb chromosomal segment, in opposite orientations. In a small fraction of the bacterial population, this segment is inverted. The inversion leads to interchanging of the expressed and silent S-protein-encoding genes, and places the formerly silent gene behind the S-promoter which is located outside the inverted segment. A 26 bp sequence showing a high degree of similarity with the consensus sequence recognized by the Din family of invertases is present in the region where recombination occurs. Expression of the slpA gene seems to be favoured under laboratory growth conditions because 99.7% of the chromosomes of an L. acidophilus ATCC 4356 broth culture had the slpA gene present at the slp expression site.  相似文献   

4.
It was previously shown that the surface (S)-layer proteins covering the cell surface of Lactobacillus crispatus K313 were involved in the adherence of this strain to human intestinal cell line HT-29. To further elucidate the structures and functions of S-layers, three putative S-layer protein genes (slpA, slpB, and slpC) of L. crispatus K313 were amplified by PCR, sequenced, and characterized in detail. Quantitative real-time PCR analysis reveals that slpA was silent under the tested conditions; whereas slpB and slpC, the putative amino acid sequences which exhibited minor similarities to the previously reported S-layer proteins in L. crispatus, were actively expressed. slpB, which was predominantly expressed in L. crispatus K313, was further investigated for its functional domains. Genetic truncation of the untranslated leader sequence (UTLS) of slpB results in a reduction in protein production, indicating that the UTLS contributed to the efficient S-layer protein expression. By producing a set of N- and C-terminally truncated recombinant SlpB proteins in Escherichia coli, the cell wall-binding region was mapped to the C terminus, where rSlpB380–501 was sufficient for binding to isolated cell wall fragments. Moreover, the binding ability of the C terminus was variable among the Lactobacillus species (S-layer- and non-S-layer-producing strains), and teichoic acid may be acting as the receptor of SlpB. To determine the adhesion region of SlpB to extracellular matrix proteins, ELISA was performed. Binding to immobilized types I and IV collagen was observed with the His-SlpB1–379 peptides, suggesting that the extracellular matrix protein-binding domain was located in the N terminus.  相似文献   

5.
Analysis of S-layer proteins of Lactobacillus brevis   总被引:2,自引:0,他引:2  
Abstract The presence of S-layer proteins in Lactobacillus brevis was examined by SDS-PAGE analysis. Thirty six out of a total of 41 L. brevis strains possessed S-layer proteins of molecular masses ranging from 38 to 55 kDa. Western blot analysis using antisera raised against whole cells of S-layer protein-carrying strains demonstrated the heterogeneity of L. brevis S-layer proteins. No clear relationship was observed between the presence of S-layer proteins or their immunological characteristics and the physiological activity of L. brevis as a beer spoilage organism.  相似文献   

6.
The bacterial S-layer forms a regular structure, composed of a monolayer of one (glyco)protein, on the surfaces of many prokaryotic species. S-layers are reported to fulfil different functions, such as attachment structures for extracellular enzymes and major virulence determinants for pathogenic species. Lactobacillus acidophilus ATCC 4356, which originates from the human pharynx, possesses such an S-layer. No function has yet been assigned to the S-layer of this species. Besides the structural gene (slpA) for the S-layer protein (S-protein) which constitutes this S-layer, we have identified a silent gene (slpB), which is almost identical to slpA in two regions. From the deduced amino acid sequence, it appears that the mature SB-protein (44,884 Da) is 53% similar to the SA-protein (43,636 Da) in the N-terminal and middle parts of the proteins. The C-terminal parts of the two proteins are identical except for one amino acid residue. The physical properties of the deduced S-proteins are virtually the same. Northern (RNA) blot analysis shows that only the slpA gene is expressed in wild-type cells, in line with the results from sequencing and primer extension analyses, which reveal that only the slpA gene harbors a promoter, which is located immediately upstream of the region where the two genes are identical. The occurrence of in vivo chromosomal recombination between the two S-protein-encoding genes will be described elsewhere.  相似文献   

7.
Lactobacillus brevis ATCC367 was engineered to express pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) genes in order to increase ethanol fermentation from biomass-derived residues. First, a Gram-positive Sarcina ventriculi PDC gene (Svpdc) was introduced into L. brevis ATCC 367 to obtain L. brevis bbc03. The SvPDC was detected by immunoblot using an SvPDC oligo peptide antiserum, but no increased ethanol was detected in L. brevis bbc03. Then, an ADH gene from L. brevis (Bradh) was cloned behind the Svpdc gene that generated a pdc/adh-coupled ethanol cassette pBBC04. The pBBC04 restored anaerobic growth and conferred ethanol production of Escheirichia coli NZN111 (a fermentative defective strain incapable of growing anaerobically). Approximately 58 kDa (SvPDC) and 28 kDa (BrADH) recombinant proteins were observed in L. brevis bbc04. These results indicated that the Gram-positive ethanol production genes can be expressed in L. brevis using a Gram-positive promoter and pTRKH2 shuttle vector. This work provides evidence that expressing Gram-positive ethanol genes in pentose utilizing L. brevis will further aid manipulation of this microbe toward biomass to ethanol production.  相似文献   

8.
A strain of Streptomyces lividans 66 deleted for a major tripeptidyl aminopeptidase (Tap) was used as a host to screen an S. lividans genomic library for clones overexpressing activity against the chromogenic substrate Ala-Pro-Ala-beta-naphthylamide. In addition to reisolation of the tap gene, clones representing another locus, slpD, were uncovered. slpD was analyzed by deletion subcloning to localize its functional sequence. Nucleotide sequence determination revealed an open reading frame encoding a 55-kDa protein exhibiting significant amino acid sequence homology to Tap, particularly around the putative active-site serine residue. No secreted protein was observed for strains harboring the slpD clone, but inspection of the predicted protein sequence revealed a putative lipoprotein signal peptide (signal peptidase II type), suggesting a mycelial location for the SlpD proteinase. In an attempt to isolate an endoprotease known to be active against some heterologous proteins, a second clone was isolated by using a longer substrate (t-butyloxycarbonyl [Boc]-APARSPA-beta-naphthylamide) containing a chemical blocking group at the amino terminus to prevent aminopeptidase cleavage. This locus, slpE, appeared to also encode a 55-kDa mycelium-associated (lipoprotein) proteinase, whose predicted protein sequences showed significant amino acid homology to Tap and SlpD, particularly around the putative active-site serine residues. Chromosomal integration and deletion analysis in both the wild-type and Tap-deficient backgrounds appeared to indicate that SlpD was essential for viability and SlpE was required for growth on minimal media.  相似文献   

9.
Surface display of foreign epitopes on the Lactobacillus brevis S-layer   总被引:1,自引:0,他引:1  
So far, the inability to establish viable Lactobacillus surface layer (S-layer) null mutants has hampered the biotechnological applications of Lactobacillus S-layers. In this study, we demonstrate the utilization of Lactobacillus brevis S-layer subunits (SlpA) for the surface display of foreign antigenic epitopes. With an inducible expression system, L. brevis strains producing chimeric S-layers were obtained after testing of four insertion sites in the slpA gene for poliovirus epitope VP1, that comprises 10 amino acids. The epitope insertion site allowing the best surface expression was used for the construction of an integration vector carrying the gene region encoding the c-Myc epitopes from the human c-myc proto-oncogene, which is composed of 11 amino acids. A gene replacement system was optimized for L. brevis and used for the replacement of the wild-type slpA gene with the slpA-c-myc construct. A uniform S-layer, displaying on its surface the desired antigen in all of the S-layer protein subunits, was obtained. The success of the gene replacement and expression of the uniform SlpA-c-Myc recombinant S-layer was confirmed by PCR, Southern blotting MALDI-TOF mass spectrometry, whole-cell enzyme-linked immunosorbent assay, and immunofluorescence microscopy. Furthermore, the integrity of the recombinant S-layer was studied by electron microscopy, which indicated that the S-layer lattice structure was not affected by the presence of c-Myc epitopes. To our knowledge, this is the first successful expression of foreign epitopes in every S-layer subunit of a Lactobacillus S-layer while still maintaining the S-layer lattice structure.  相似文献   

10.
Lactobacillus buchneri belongs to the group of heterofermentative lactic acid bacteria and is a common member of the silage microbiome. Here we report the completely annotated genomic sequence of L. buchneri CD034, a strain isolated from stable grass silage. The whole genome of L. buchneri CD034 was sequenced on the Roche Genome Sequencer FLX platform. It was found to consist of four replicons, a circular chromosome, and three plasmids. The circular chromosome was predicted to encode 2319 proteins and contains a genomic island and two prophages which significantly differ in G+C-content from the remaining chromosome. It possesses all genes for enzymes of a complete phosphoketolase pathway, whereas two enzymes necessary for glycolysis are lacking. This confirms the classification of L. buchneri CD034 as an obligate heterofermentative lactic acid bacterium. A set of genes considered to be involved in the lactate degradation pathway and genes putatively involved in the breakdown of plant cell wall polymers were identified. Moreover, several genes encoding putative S-layer proteins and two CRISPR systems, belonging to the subclasses I-E and II-A, are located on the chromosome. The largest plasmid pCD034-3 was predicted to encode 57 genes, including a putative polysaccharide synthesis gene cluster, whereas the functions of the two smaller plasmids, pCD034-1 and pCD034-2, remain cryptic. Phylogenetic analysis based on sequence comparison of the conserved marker gene rpoA reveals that L. buchneri CD034 is more closely related to Lactobacillus hilgardii strains than to Lactobacillus brevis and Lactobacillus plantarum strains. Comparison of the L. buchneri CD034 core genome to other fully sequenced and closely related members of the genus Lactobacillus disclosed a high degree of conservation between L. buchneri CD034 and the recently sequenced L. buchneri strain NRRL B-30929 and a more distant relationship to L. buchneri ATCC 11577 and L. brevis ssp. gravesensis ATCC 27305, which cluster together with L. hilgardii type strain ATCC 8290. L. buchneri CD034 genome information will certainly provide the basis for further postgenome studies with the objective to optimize application of the strain in silage production.  相似文献   

11.
S-layer proteins of lactobacilli may be utilized for developing a surface display system in these bacteria. In this study, S-layer proteins of Lactobacillus brevis ATCC 367 were identified for the first time. Using the peptide fingerprint method, it was shown that the main protein of the S-layer of this strain, SlpE, having a mass of 52 kDa is the product of translation of the consecutive open reading frames LVIS_2086 and LVIS_2085. Repeated sequencing of a genome region of L. brevis ATCC 367, containing LVIS_2086 and LVIS_2085 loci, has showed that the LVIS_2086 sequence contains the TGG tryptophan codon instead of the TAG stop codon. Thus, LVIS_2085 and LVIS_2086 form a single slpE gene, the nucleotide sequence we deposited in the Genbank database under No. KY273133. The translation product of the slpE gene consists of 465 amino acids and has a calculated mass of 51.6 kDa, which corresponds to the experimentally obtained value. An S-layer protein with a mass of 56 kDa, identified as a form of the SlpE, is probably formed during the posttranslational modification. The concomitant 48 kDa S-protein was proven to be product of the LVIS- 2083 gene. The N-terminal domains of LVIS_2083 and SlpE have 70.7 and 96.5%, respectively, identity to the anchoring N-terminal domain of SlpA from L. brevis ATCC 8287, which is responsible for attachment to the cell wall. In this work, fusion proteins consisting of N-terminal domains of Lvis_2083 and SlpA proteins and the eGFP marker protein were obtained. The ability of fusion proteins SlpA_eGFP and Lvis_2083_eGFP, as well as the recombinant Lvis_2083 protein, to be specifically sorbed on the cell wall of L. brevis ATCC 8287, ATCC 367, and L. acidophilus ATCC 4356 strains has been demonstrated. It was shown that in the chimeric Lvis_2083_eGFP construction the N-terminal domain Lvis_2083 is responsible for an attachment to the cell wall and provides display of the functionally active eGFP protein on its surface. Thus, the N-terminal domain Lvis_2083 can be used as a basis of the protein display system on the cell surface of L. brevis strains in vitro.  相似文献   

12.
The surface layer protein encoding genes from five mosquito-pathogenic Bacillus sphaericus isolates were amplified and sequenced. Negative staining of the S-layer protein extracted from the cell wall of wild-type B. sphaericus C3-41 was prepared. It showed a flat-sheet crystal lattice structure. Two genes encoding the entire and N-terminally truncated S-layer protein (slpC and DeltaslpC respectively), were ligated into plasmid pET28a and expressed in Escherichia coli. SDS-PAGE revealed that about 130 KD and 110 KD proteins could be expressed in the cytoplasm of recombinant E. coli BL21(pET28a/slpC) and E. coli BL21(pET28a/DeltaslpC) respectively. Furthermore, an intracellular sheet-like or fingerprint-shape structure was investigated in two recombinant strains, which expressed SlpC and DeltaSlpC protein respectively, by ultrathin microscopy study, but bioassay results suggested that the S-layer protein of wild B. sphaericus C3-41 and recombinant E. coli BL21 (pET28a/slpC) have no direct toxicity against mosquito larvae. These results should provide information for further understanding of the function of S-layer protein of pathogenic B. sphaericus.  相似文献   

13.
Abstract The antigenic properties of the surface layer (S-layer) proteins of various Campylobacter rectus strains including 24 clinical isolates and the type strain ATCC 33238 were examined. S-layer proteins were extracted from whole cells by acid treatment according to the method of McCoy et al. (Infect. Immun. 11, 517–525, 1975). The acid extracts from 23 of the isolates and ATCC 33238 contained two major proteins with molecular masses of 130 kDa and 150 kDa, both of which were identified as subunits of the S-layer after comparison with the protein profiles of acid-treated (S-layer-deficient) cells. An S-layer protein from one isolate (CI-808) demonstrated a different molecular mass (160 kDa). Both the 150-kDa proteins of ATCC 33238 and isolate CI-306 and the 160-kDa protein of CI-808 were purified by ion-exchange chromatography in the presence of urea. In Ouchterlony immunodiffusion experiments with these purified proteins and rabbit antiserum raised to each purified protein, both common and strain-specific antigenic determinants were identified in the C. rectus S-layer proteins.  相似文献   

14.
The specific properties of S-layer proteins from three different Bacillus stearothermophilus strains revealing oblique, square, or hexagonal lattice symmetry were preserved during growth in continuous culture on complex medium only under oxygen-limited conditions in which glucose was used as the sole carbon source. When oxygen limitation was relieved, amino acids became metabolized, cell density increased, and different S-layer proteins from wild-type strains became rapidly replaced by a new common type of S-layer protein with an apparent subunit molecular weight of 97,000 which assembled into an identical oblique (p2) lattice type. During switching from wild-type strains to variants, patches of the S-layer lattices characteristics for wild-type strains, granular regions, and areas with oblique lattice symmetry could be observed on the surface of individual cells from all organisms. The granular regions apparently consisted of mixtures of the S-layer proteins from the wild-type strains and the newly synthesized p2 S-layer proteins from the variants. S-layer proteins from wild-type strains possessed identical N-terminal regions but led to quite different cleavage products upon peptide mapping, indicating that they are encoded by different genes. Chemical analysis including N-terminal sequencing and peptide mapping showed that the oblique S-layer lattices synthesized under increased oxygen supply were composed of identical protein species.  相似文献   

15.
16.
The oxygen-dependent in vivo inactivation of gramicidin S synthetase was investigated in Bacillus brevis ATCC 9999. Inhibitors of energy metabolism and of protein synthesis added to aerated cell suspensions did not provide any protection against inactivation, thus indicating that the process does not depend on energy-yielding metabolism nor on de novo protein synthesis. Organic thiols added to anaerobic long-term incubations retarded synthetase inactivation for several hours, whereas in short-term incubations of previously air-exposed cells they resulted in partial restoration of activity. The in vivo inactivation of the enzyme was found to be accompanied by a parallel drop in intracellular thiols. These results implicate enzyme SH oxidation as a mechanism of in vivo inactivation. Retardation of inactivation was achieved upon addition of utilizable carbon sources (glycerol, fructose, inositol) to aerated cell suspensions in buffer, the degree of stabilization being proportional to the ease of uptake and to the concentration of C source. This effect involves actual consumption of the exogenous C source and is accompanied by lower dissolved oxygen levels in the cell suspension. Pulsed additions of C source could retard inactivation but could not restore partly or fully lost activity. The C-source effect was blocked by the uncoupler dinitrophenol, while dissolved oxygen levels in the suspension remained low. C-source-supplemented cell suspensions incubated under air had a decreased intracellular redox state, as revealed by intracellular SH concentration.  相似文献   

17.
The stability of liposomes coated with S-layer proteins from Lactobacillus brevis and Lactobacillus kefir was analyzed as a previous stage to the development of a vaccine vehicle for oral administration. The interactions of the different S-layer proteins with positively charged liposomes prepared with soybean lecithin or dipalmitoylphosphatidylcholine were studied by means of the variation of the Z potential at different protein-lipid ratios, showing that both proteins were able to attach in a greater extent to the surface of soybean lecithin liposomes. The capacity of these particles to retain carboxyfluorescein or calcein by exposure to bile salts, pancreatic extract, pH change and after a thermal shock showed that both S-layer proteins increased the stability of the liposomes in the same magnitude. The non-glycosylated protein from L. brevis protects more efficiently the liposomes at pH 7 than those from L. kefir even without treatment with glutaraldehyde.  相似文献   

18.
Lactobacillus brevis is a promising lactic acid bacterium for use as a probiotic dietary adjunct and a vaccine vector. The N-terminal region of the S-layer protein (SlpA) of L. brevis ATCC 8287 was recently shown to mediate adhesion to various human cell lines in vitro. In this study, a surface display cassette was constructed on the basis of this SlpA receptor-binding domain, a proteinase spacer, and an autolysin anchor. The cassette was expressed under control of the nisA promoter in Lactococcus lactis NZ9000. Western blot assay of lactococcal cell wall extracts with anti-SlpA antibodies confirmed that the SlpA adhesion domain of the fusion protein was expressed and located within the cell wall layer. Whole-cell enzyme-linked immunosorbent assay and immunofluorescence microscopy verified that the SlpA adhesion-mediating region was accessible on the lactococcal cell surface. In vitro adhesion assays with the human intestinal epithelial cell line Intestine 407 indicated that the recombinant lactococcal cells had gained an ability to adhere to Intestine 407 cells significantly greater than that of wild-type L. lactis NZ9000. Serum inhibition assay further confirmed that adhesion of recombinant lactococci to Intestine 407 cells was indeed mediated by the N terminus-encoding part of the slpA gene. The ability of the receptor-binding region of SlpA to adhere to fibronectin was also confirmed with this lactococcal surface display system. These results show that, with the aid of the receptor-binding region of the L. brevis SlpA protein, the ability to adhere to gut epithelial cells can indeed be transferred to another, nonadhesive, lactic acid bacterium.  相似文献   

19.
Campylobacter fetus cells can produce multiple S-layer proteins ranging from 97 to 149 kDa, with a single form predominating in cultured cells. We have cloned, sequenced, and expressed in Escherichia coli a sapA homolog, sapA2, which encodes a full-length 1,109-amino-acid (112-kDa) S-layer protein. Comparison with the two previously cloned sapA homologs has demonstrated two regions of identity, approximately 70 bp before the open reading frame (ORF) and proceeding 550 bp into the ORF and immediately downstream of the ORF. The entire genome contains eight copies of each of these conserved regions. Southern analyses has demonstrated that sapA2 existed as a complete copy within the genome in all strains examined, although Northern (RNA) analysis has demonstrated that sapA2 was not expressed in the C. fetus strain from which it was cloned. Further Southern analyses revealed increasing sapA diversity as probes increasingly 3' within the ORF were used. Pulsed-field gel electrophoresis and then Southern blotting with the conserved N-terminal region of the sapA homologs as a probe showed that these genes were tightly clustered on the chromosome. Deletion mutagenesis revealed that the S-layer protein bound serospecifically to the C. fetus lipopolysaccharide via its conserved N-terminal region. These data indicated that the S-layer proteins shared functional activity in the conserved N terminus but diverged in a semiconservative manner for the remainder of the molecule. Variation in S-layer protein expression may involve rearrangement of complete gene copies from a single large locus containing multiple sapA homologs.  相似文献   

20.
AIMS: To investigate the functional role of surface layer proteins (S-layer) in probiotic strain Lactobacillus acidophilus M92, especially its influence on adhesiveness to mouse ileal epithelial cells. METHODS AND RESULTS: Sodium dodecyl sulphate polyacrylamide gel electrophoresis of cell surface proteins revealed the presence of potential surface layer (S-layer) proteins, ca at 45 kDa in L. acidophilus M92. Southern blot with pBK1 plasmid, containing slpA gene, gave a positive signal, suggesting that L. acidophilus M92 has a slpA gene coding for the S-layer proteins. S-layer proteins of this strain are present during all phases of growth. The S-layer proteins appeared when cells treated with 5 mol l(-1) LiCl were allowed to grow again. Removal of the S-layer proteins reduced adhesion of L. acidophilus M92 to mouse ileal epithelial cells. Furthermore, the viability of cells without S-layer were reduced in simulated gastric juice at low pH range (2, 2.5, 3) and simulated pancreatic juice with bile salts (1.5 and 3 g l(-1)). S-layer proteins of L. acidophilus M92 were resistant to pepsin and pancreatin, in contrast, the treatment with proteinase K led to a significant proteolysis of the S-layer proteins. CONCLUSIONS: These results demonstrated functional role of S-layer; it is responsible for adhesiveness of Lactobacillus acidophilus M92 to mouse ileal epithelial cells and has a protective role for this strain. SIGNIFICANCE AND IMPACT OF THE STUDY: S-layer proteins have an important role in the establishment of probiotic strain Lactobacillus acidophilus M92 in the gastrointestinal tract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号