首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 796 毫秒
1.
斑纹薄鳅(Leptobotia zebra)最初是由Wu(1939)描述的一个新种,当时定名为斑纹沙鳅(Botia zebra),后来Chen(1980)根据眼下刺不分叉将其改归为薄鳅属的物种。本研究通过对线粒体DNA细胞色素b基因序列的测定和分析,发现斑纹薄鳅和薄鳅属(除斑纹薄鳅)物种间的平均遗传距离为0.177,和中华沙鳅属物种美丽沙鳅(Sinibotia pulcher)的平均遗传距离仅为0.057。系统发育分析发现斑纹薄鳅并未和薄鳅属的物种聚在一起,而是和中华沙鳅属物种美丽沙鳅聚在一起形成姐妹群。进一步对斑纹薄鳅进行形态学特征检视,发现该物种具有颊部裸露无鳞、颏部具一对纽状突起等中华沙鳅属鱼类的特征,但又具有眼下刺简单不分叉的薄鳅属鱼类的特征。结合分子数据分析的结果,将斑纹薄鳅订正为中华沙鳅属的物种,其命名为斑纹沙鳅(Sinibotia zebra)。另外,对沙鳅科鱼类属的划分标准及形态特征的演化也进行了讨论。  相似文献   

2.
为探究鱼类脑结构及其与生态习性的相关性, 采用HE及Nissl染色法对健康性成熟宽体沙鳅脑组织结构进行观察。结果显示: 宽体沙鳅脑由端脑、间脑、中脑、小脑、延脑五部分组成。嗅叶为典型的“鲤型”嗅叶; 大脑视前核呈索状排列, 未见视前核大、小细胞群; 间脑乳头体及副错位核清晰可见, 血管囊及下叶发达; 中脑视盖由5层构成; 小脑发达, 由3层构成; 延脑分化出面叶和发达的迷叶。这表明, 宽体沙鳅视觉稍有退化, 嗅觉、听觉、触觉、味觉及运动中枢发达, 生活中主要依靠嗅觉、听觉、触觉、味觉觅食及逃避敌害。  相似文献   

3.
广西薄鳅属鱼类一新种(鲤形目,鳅科)   总被引:1,自引:1,他引:0  
2007年10月,在广西桂平黔江采集到鳅科鱼类6尾,经鉴定为薄鳅属Leptobotia1新种,定名为斑点薄鳅Leptobotia punctatus sp.nov.。新种须3对,眼下刺不分叉,颊部有鳞。这些特征与薄鳅属一致。新种颏下无1对纽状突起,眼小,口角须短,背鳍起点位于腹鳍起点后方等特征与同属的桂林薄鳅L.guilinensis和后鳍薄鳅L.posterodorsalis最为相似。但有如下鉴别特征:新种体侧无垂直条纹,脊椎数目多,腹鳍末端不达肛门等特征,与桂林薄鳅相区别;体侧有斑点,外侧鳃耙数多,体较高,尾鳍深分叉,有3~4道黑色条纹等特征,与后鳍薄鳅相区别。新种仅分布于西江水系黔江。  相似文献   

4.
对沙鳅亚科鱼类3属14个代表种的线粒体DNA控制区序列的结构进行了分析。通过与鲤形目鱼类的控制区序列进行比较,将沙鳅亚科鱼类的控制区分为终止序列区、中央保守区和保守序列区三个区域。同时识别了沙鳅亚科中一系列保守序列,并给出了它们的一般形式。以胭脂鱼为外类群,对比条鳅亚科、花鳅亚科、以及平鳍鳅科的代表性种类,采用NJ、MP和ML法构建沙鳅亚科的分子系统树。分子系统发育分析表明,沙鳅亚科为一单系,包括3个属:沙鳅属、副沙鳅属和薄鳅属,各属均构成单系。根据分子系统学、形态学的结果及地理分布推断,沙鳅亚科中沙鳅属可能为最为原始的属,副沙鳅属其次,而薄鳅属最特化。    相似文献   

5.
副沙鳅属的多变量形态分析   总被引:14,自引:5,他引:9  
采用多变量分析方法对副沙鳅属Parabotia的外部形态进行了主成分分析,在27个测量性状的第1、第2主成分散布图上显示,副沙鳅属的外部形态存在着3个具有明显差异的种组:即点面副沙鳅,双斑副沙鳅、武昌副沙鳅和花斑副沙鳅,漓江副沙鳅和小副沙鳅3个种组.主成分负荷值还进一步表明,6种副沙鳅属外部度量性状的差异有多元化的倾向.结合定性特征的观察确定了副沙鳅属6个种的有效性.  相似文献   

6.
通过最近的整理,澜沧江共有沙鳅属鱼类3种,它们是斑鳍沙鳅Botia beaufortiSmith、中华沙鳅B.superciliaris Gnther、黑线沙鳅(新种)B.nigrolineata.黑线沙鳅为新种,鉴别特征是沿背中和体侧有显著的黑色纵条,起自头后止于尾鳍基。首次提出云南沙鳅Botia yunnanensis Chen可能是斑鳍沙鳅的次异名,中华沙鳅是在澜沧江的首次纪录。在附录中记录了突吻沙鳅B.rostrata Gnther,是国内首次纪录,也是萨尔温江和伊洛瓦底江水系的首次纪录。文中每个种均有插图,对新种作了详细的描述,对老种的有关名称作了(林厂里)订或讨论。  相似文献   

7.
副沙鳅属系统发育分析   总被引:5,自引:0,他引:5  
以沙鳅属Botia为外类群,共发现了副沙鳅属Parabotia 35个有系统发育意义的外部与骨骼形态特征,并由此重建副沙鳅属系统发育关系为:漓江副沙鳅 (双斑副沙鳅 (花斑副沙鳅 (武昌副沙鳅 点面副沙鳅)))或漓江副沙鳅 (双斑副沙鳅 (武昌副沙鳅 (点面副沙鳅 花斑副沙鳅))).具有囟门;后翼骨外侧面为不规则的梯形;吻骨侧面观呈一长方形;无下舌软骨;具有3对咽鳃骨;中喙骨弯曲较大,近直角;上吻皮中间有切刻状缺口,左右不连续;以及颐部无纽状突起等构成了副沙鳅属的共同离征.  相似文献   

8.
1981年7月我们在四川乐山市大渡河河口附近(海拔约450米,属岷江水系) 采得沙鳅亚科(Botiinae)薄鳅属(Leptobotia)鱼类标本2尾,经鉴定比较后,认为是一个新种,定名为: 小眼薄鳅Leptobotia microphthalma,新种(图1) 地方名 高梁鱼、竹叶鱼。  相似文献   

9.
斑纹薄鳅(Leptobotia zebra)最初是由Wu(1939)描述的一个新种,当时定名为斑纹沙鳅(Botia zebra),后来Chen(1980)根据眼下刺不分叉将其改归为薄鳅属的物种。本研究通过对线粒体DNA细胞色素b基因序列的测定和分析,发现斑纹薄鳅和薄鳅属(除斑纹薄鳅)物种间的平均遗传距离为0.177,和中华沙鳅属物种美丽沙鳅(Sinibotia pulcher)的平均遗传距离仅为0.057。系统发育分析发现斑纹薄鳅并未和薄鳅属的物种聚在一起,而是和中华沙鳅属物种美丽沙鳅聚在一起形成姐妹群。进一步对斑纹薄鳅进行形态学特征检视,发现该物种具有颊部裸露无鳞、颏部具一对纽状突起等中华沙鳅属鱼类的特征,但又具有眼下刺简单不分叉的薄鳅属鱼类的特征。结合分子数据分析的结果,将斑纹薄鳅订正为中华沙鳅属的物种,其命名为斑纹沙鳅(Sinibotia zebra)。另外,对沙鳅科鱼类属的划分标准及形态特征的演化也进行了讨论。  相似文献   

10.
长薄鳅仔稚鱼发育和生长的研究   总被引:10,自引:0,他引:10  
长薄鳅Leptobotia elongata(Bleeker)隶属鳅科、薄鳅属,分布在长江中上游江段及其支流,是鳅科鱼类中生长最快、个体最大的一种,最大个体达3.0kg。然而近20多年来,人为过度捕捞、生态环境破坏等原因,在长江中游已很难捕到此鱼,长江上游也正面临着生存环境的破坏而资源急速下降。    相似文献   

11.
The Botiinae have traditionally represented a subfamily of the Cobitidae. At present, the classification and phylogenetic relationships of the Botiinae are controversial. To address systematic and phylogenetic questions concerning this group, we sequenced the complete cytochrome b gene from 34 samples, of which 24 represented 13 species of the East Asian botiine fishes, while the other 10 were non-botiine loach species. For the 1140 bp sequences determined, 494 sites were variable ones, of which 424 were parsimony informative. With Myxocyprinus asiaticus as an outgroup, molecular phylogenetic trees were constructed using the neighbor-joining, maximum parsimony, maximum likelihood and Bayesian methods. All molecular phylogenetic trees revealed that botiine fishes form a monophyletic group and are distantly related to other loaches, suggesting that the Botiinae should be placed in their own family. Within the Botiinae, there are three genera; Botia, Parabotia, andLeptobotia, each genus forming a monophyletic group, with the genus Botia as the most ancestral split. Our molecular results are in agreement with morphological analyses of botiines, suggesting that Botia is the ancestral genus, while Leptobotia and Parabotia were resolved as more derived sister groups.  相似文献   

12.
Summary In the spiny eel, Macrognathus aculeatus, anterodorsal and (to a lesser degree) anteroventral lateralline nerves project massively to the granular layer of the valvula cerebelli, throughout its rostrocaudal extent. The posterior lateral-line nerve terminates in the corpus cerebelli. Thus, valvula and corpus cerebelli are supplied with mechanosensory input of different peripheral origins. An analysis of the taxonomic distribution of experimentally determined primary lateral-line input to the three parts of the teleostean cerebellum reveals that the eminentia granularis always receives such input, and that the corpus cerebelli is the recipient of primary lateral-line input in many teleosts. The valvula, however, receives primary lateral-line afferents in only two examined species. In M. aculeatus, the massive lateral-line input to the valvula probably originates in mechanoreceptors located in the elongated rostrum of the upper jaw, a characteristic feature of mastacembeloid fishes. This projection to the valvula may therefore represent a unique specialization that arose with the evolution of the peculiar rostrum.  相似文献   

13.
The gross brain morphology, brain proportions, and position of cranial nerves in all four genera (Potamotrygon, Plesiotrygon, Paratrygon, and Heliotrygon) and 11 of the species of the Neotropical stingray family Potamotrygonidae were studied to provide new characters that may have a bearing on internal potamotrygonid systematics. The brain was also studied in four other stingray (Myliobatiformes) genera (Hexatrygon, Taeniura, Dasyatis, and Gymnura) to provide a more inclusive phylogenetic context for the interpretation of features of the brain in potamotrygonids. Our results indicate, based on neuroanatomical characters, that the genera Paratrygon and Heliotrygon are sister groups, as are the genera Potamotrygon and Plesiotrygon, agreeing with previous morphological and molecular phylogenetic studies. Both groups of genera share distinct conditions of the olfactory tracts, telencephalon and its central nuclei, hypophysis and infundibulum, morphology and orientation of the metencephalic corpus cerebelli, orientation of the glossopharyngeal nerve, and overall encephalic proportions. The corpus cerebelli of Paratrygon and Heliotrygon is interpreted as being more similar to the general batoid condition and, given their phylogenetic position highly nested within stingrays, is considered secondarily derived, not plesiomorphically retained. Our observations of the corpus cerebelli of stingrays, including Hexatrygon, corroborate that the general stingray pattern previously advanced by Northcutt is derived among batoids. The morphology of the brain is shown to be a useful source of phylogenetically informative characters at lower hierarchical levels, such as between genera and species, and thus, has significant potential in phylogenetic studies of elasmobranchs. J. Morphol. 277:252–263, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

14.
1. Specific glucose-6-phosphatase and fructose-1,6-diphosphatase activity were found to be biochemically compartmentalized in four parts of the brain in nine nutritionally important fishes. 2. Glucose-6-phosphatase and fructose-1,6-diphosphatase activity were highest in the cerebrum and lowest in the cerebellum. 3. Piscivorous fishes had the highest gluconeogenic enzyme content, followed by catfishes and major carps. 4. After the liver and muscles, the various parts of the brain play an important role in carbohydrate metabolism. 5. A direct relationship between the stage of evolution and elevation of gluconeogenic enzyme levels was observed. 6. It is evident from the results and the discussion that evolution modifies the biochemical organization of fishes in general and of their brain in particular.  相似文献   

15.
The brain organization of butterflyfishes   总被引:2,自引:0,他引:2  
Synopsis The encephalization indices of angelfishes (Pomacanthidae) and butterflyfishes (Chaetodontidae) are typical of advanced perciform fishes: both families lie in the upper part of the polygon of teleost indices. The chaetodontids seem to be a little more encephalized than pomacanthids. The general morphology of the brains in both families is very similar: small olfactory bulbs, large optic tectum and a cerebellum which covers the brain structures in front of it like a cap. This morphology is shared by another family of the coral reef biotope, the Acanthuridae. The histological architecture is also typical of advanced teleosts, with a cortex-like pallium, a laminated nucleus geniculatus (= pretectalis superficialis), a complex valvula cerebelli and a corpus glomerulosum with a clear neuropile centre. The quantitative analysis of the main subdivisions of the brain, either from relative volumes or from indices, shows small olfactory bulbs (microsmy) but important telencephalic and diencephalic centres, large tectal centres (vision) and large cerebellum (precise locomotion). Many of these peculiarities are shared by other fishes inhabiting coral reefs. The differences between the two families seem to be primarily correlated with food habits: the angelfishes, which are sponge-feeders and may have an overweight due to the ballast of the sponge-skeleton in their digestive tract, and which do not need either such good vision or such precise locomotion to pick up their prey, could be a little less encephalized than the butterflyfishes.  相似文献   

16.
选择线粒体COⅠ基因作为分子标记,进行沙鳅亚科鱼类(Botiinae)DNA条形码及其分子系统发育研究。研究获得了沙鳅亚科7属19种共131个个体的COⅠ基因序列,利用MEGA5.0软件分析了沙鳅亚科鱼类COⅠ基因的序列特征,计算了种内及种间遗传距离。沙鳅亚科鱼类的分子系统发育关系的重建分别采用NJ法和Bayesian法。研究发现,沙鳅亚科COⅠ基因的碱基组成为: A 24.4%、T 29.5%、G 18.0%、C 28.1%。沙鳅亚科鱼类种内平均遗传距离为0.0020.000,种间平均遗传距离为0.1480.008。DNA条形码研究结果显示,所分析的19种沙鳅鱼类各自分别聚成单系分支,表明COⅠ基因在本研究中具有100%的物种鉴别率。同时,系统发育分析支持各属的单系性,并且结果显示沙鳅亚科鱼类聚为两个分支,其中一支由薄鳅属和副沙鳅属构成,另一分支则包括: (沙鳅属、色鳅属)和 中华沙鳅属、(缨须鳅属、安彦鳅属)。因此,COⅠ基因可以作为有效的分子标记对沙鳅亚科进行DNA条形码研究以及分子系统发育研究。    相似文献   

17.
Two key morphological traits, horizontal gape and eye diameter, were measured in a large representative group of coral reef fishes. These morphological traits were used concurrently to assess their utility in exploring abilities of coral reef fishes at an assemblage level. A total of 1,218 specimens from 181 species found on the Great Barrier Reef were examined. Cryptobenthic fishes were included to provide a broader representation of reef fish groups. In the analyses, a clear morphological distinction was found between nocturnal and diurnal fishes. Nocturnal fishes had larger relative horizontal gapes and relative eye diameters by factors of 1.6 and 1.5, respectively. A bivariate plot separated into quadrants was used to assess the implications of morphological variation. The morphological measures reflected distinct ecological traits in each quadrant. Whilst nocturnal fishes had large relative gapes and eye diameters, diurnal predators and detritivores had the same wide gapes, but small relative eye diameters. Highly selective, visual feeders such as the Chaetodontidae and Pseudochromidae had large eyes and small gapes, whilst non-selective feeders with low visual dependence such as the grazing herbivores (Acanthuridae, Siganidae, etc.) had both small eye diameters and gape sizes. The analysis proved to be robust enough to apply to a wide assemblage, but with enough subtlety to distinguish morphological differences within individual families. The methods used in this study may have broad applications to other fish assemblages, both fossil and extant. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
版纳鱼螈脑的解剖学与组织学   总被引:1,自引:0,他引:1  
应用光镜对蚓螈目(Gymnophiona)物种版纳鱼螈(Ichthyophis bannanicus)脑的解剖和组织结构进行观察。结果表明,版纳鱼螈脑可分为端脑、间脑、中脑和延脑4个部分,端脑由嗅球、副嗅球和大脑半球构成。嗅球发达,有两对嗅神经;大脑半球呈长椭圆形,为脑的主要部分;间脑腹面向后以漏斗连有扁平勺状的垂体;中脑椭圆形;没有小脑;延髓有较大弯曲。本文同时就上述结构特征与其他两栖动物相比较,探讨了在神经系统演化中版纳鱼螈脑的结构的原始性。  相似文献   

19.
The neutrally buoyant Antarctic fishes of the sister taxa Dissostichus (D. eleginoides and D. mawsoni) and Pleuragramma antarcticum diverged early in the notothenioid radiation and filled different niches in the pelagic realm of the developing Southern Ocean. To assess the influence of phylogenetic and ecological factors in shaping neural morphology in these taxa, we studied the anatomy and histology of the brains and retinae, and determined the proportional weights of brain regions. With the brain of the non‐Antarctic sister taxon Eleginops maclovinus as plesiomorphic, statistically significant departures in the brains of the two Antarctic taxa include reduction of the corpus cerebelli and expansion of the mesencephalon and medulla. Compared to Eleginops, both species also have a relatively smaller telencephalon, although this is significant only in Dissostichus. There are a number of apomorphic features in the brain of Pleuragramma including reduced olfactory nerves and bulbs, an extremely small corpus cerebelli and an expanded mesencephalon. Although there is not a significant difference in the relative weights of the medulla in the two taxa, the prominence of the eminentia granularis and bulging cap‐like appearance of the crista cerebellaris are distinctive in Pleuragramma. Brain histology of Dissostichus and Pleuragramma reflects typical perciform patterns and the two species of Dissostichus are histologically identical. Lateral compression in Pleuragramma and notable lobation in Dissostichus also contribute to differences between the taxa. Compression in Pleuragramma is attributable to convergence on an anchovy/herring body shape and to the relatively large brain in this small fish. The less prominent pattern of lobation of the telencephalon, inferior lobes and corpus cerebelli in Pleuragramma probably reflects underlying histology, specifically a reduction in cellularity of the neuropil in the nuclei and lobes. The retinal histology of Dissostichus and Pleuragramma encompasses the extremes seen in Antarctic notothenioids. Dissostichus has a thin scotopic retina with few cones and a high degree of summation. The retina of Pleuragramma is thick and cellular with many small single cones and rods and resembles that of Eleginops. Pedomorphy has not influenced brain morphology in these species but Pleuragramma has superficial neuromasts that are pedomorphic. Although Dissostichus and Pleuragramma are sympatric in the water column, their brains and retinae are highly divergent and reflect the influences of both phylogeny and ecological partitioning of the pelagic realm. Compared to Eleginops, the relatively smaller corpus cerebelli but relatively larger medulla probably indicates, respectively, reduced activity levels of notothenioids in subzero temperatures and expansion of the mechanosensory lateral line system as a supplement to vision under conditions of reduced light. Compared to Dissostichus, Pleuragramma has reduced olfactory bulbs and corpus cerebelli and an expanded mesencephalon. The reduction of the corpus to a small round knob is consistent with physiological parameters and video observations suggesting that, although pelagic, it is relatively inactive. Because mesencephalic weights also include the valvula cerebelli, the relatively large value for Pleuragramma may be attributable to its role in integration and sensorimotor coordination of information from the highly cellular duplex retina and to integration of signals from thewell‐developed octavolateralis system. The brain of Dissostichus displays considerable persistent morphology in its overall resemblance to that of Eleginops, especially the large olfactory bulbs and the relatively large caudally projecting corpus, and Dissostichus exhibits olfactory tracking ability and migratory behavior in common with Eleginops. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号