首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Most green gemmules of Spongilla lacustris survived enclosure in ice at –20 °C for up to 30 days; however, their rate of germination at 20 °C was less rapid than that of control gemmules. The length of time spent at low temperature had little effect on gemmule survival. In contrast, repeated cooling to –20 °C and warming to 4 °C led to a progressive decline in gemmule viability. These results indicate that cold injury occurs primarily during transitions between high and low temperatures.  相似文献   

2.
West  John A.  Zuccarello  Giuseppe C.  Karsten  Ulf 《Hydrobiologia》1996,326(1):277-282
The red alga Stictosiphonia hookeri is epilithic in shaded habitats of the upper intertidal zone from 30 to 55° S. Thalli of this species from Argentina, Chile, South Africa and Australia, usually without reproductive structures when collected, all developed tetrasporangia in culture. Although good vegetative growth occurred in all nine isolates at 20–25 °C, 12:12 light: dark cycle, 10–30 µmol photons m–2 s–1, none reproduced in these conditions except one isolate from Australia. At 15 °C the four South African (34 °S) isolates developed tetrasporangial stichidia, and three completed a Polysiphonia-type life history. Gametophytes were unisexual or bisexual. At 15 °C one isolate from Chile (36 °S) formed tetrasporangia, but sporelings were not viable. At 10 °C isolates from Argentina and Chile (53 °S and 54 °S) formed tetrasporangia; however, only the Chile isolate completed a Polysiphonia-type life history with unisexual gametophytes. The temperature required to induce sporogenesis correlates with the range of water and air temperatures in the natural habitats of each isolate. In irradiances >50 µmol m–2 s–1 the thalli became yellow- brown within two weeks because of phycobiliprotein loss, but this did not impair growth or reproduction. The Argentina and Chile isolates were resistant to freezing in seawater for at least two days, showing no cell damage. The protein cuticle of the outer cell wall is repeatedly shed in culture. This may serve to minimize the attachment of epiphytes in the field.  相似文献   

3.
Peter Newrkla 《Oecologia》1985,67(2):250-254
Summary The ostracod species Cytherissa lacustris was investigated with respect to its temperature and oxygen tolerance limits. In laboratory experiments the tolerance limits were found to be much wider than expected from field data. Hatching of first instars was observed in cultures up to 20° C. The tolerance limit for oxygen concentrations was less than 1 mg O2·l-1 at 10° C and 20 h exposure. The distribution pattern of C. lacustris along a depth profile in lake Attersee showed a maximum density between 10 and 20 m depth coinciding with temperatures between 4 and 15°C throughout the year. The size dependence of respiration rates of well adapted C. lacustris is within the normal range of small metazoans. Its weight specific rates of oxygen uptake indicate an adaptation plateau in the range between 10 and 15°C. Possible reasons and advantages of such an adaptation for C. lacustris are discussed.  相似文献   

4.
Carbon incorporation rates of Simocephalus vetulus were measured to study the effects of the physical state of the animals, size of the animal, varying temperature and light conditions. Physical state of the animal showed little effect on incorporation rates after the first hour. Incorporation rates increased in proportion to the third power of animal size. Experimental animals collected at temperatures of 12, 20 or 25°C fed maximally at 10, 15 and 25°C respectively, when subjected to a feeding temperature range of 5 to 30°C. We have interpreted this as an indication that S. vetulus is able to acclimate and incorporate maximally at various temperatures after prolonged exposure to that temperature. When fed over an irradiation range of 0 to 4.68 × 10–3 cal cm–2 s–1 incorporation rates were indirectly proportional to irradiance. This suggests a response to decreased irradiance in the weedy, littoral habitat of these animals.  相似文献   

5.
Synopsis Growth and survival of Colorado squawfish, Ptychocheilus lucius, larvae under fluctuating 18, 22, and 26° C (5° C diel fluctuations) and constant 18, 22, 26° C, and 30° C temperature conditions and ration size corresponding to 12.5, 28,64,142, 320 brine shrimp nauplii fish–1 day–1 determined from laboratory experiments. Growth was optimal at 31° C and high at temperatures of 26° C to 30° C, at the highest food abundance. Lowest growth was under lowest food rations and highest temperatures. Growth of Colorado squawfish larvae declined substantially at temperatures < 22° C. Neither growth nor survival was significantly different between fluctuating or constant regimes. Survival of Colorado squawfish larvae was highest (95%) at 26.2° C and 235 nauplii fish–1 day–1 and high at temperatures of 20 to 30° C with food abundance > 180 nauplii fish–1 day–1. Survival was lowest when food abundance was low and temperature was high. Highest mortality occurred more than 20 days after experiments began and mortalities occurred sooner in higher than lower temperatures. Colorado squawfish larvae denied food for 5, 10, or 15 d after first feeding could have begun (6 d), had survival greater than 87 % which was equivalent to continuously fed controls. Survival of fish denied food for 17.5 d after feeding could have begun declined from 84% before feeding to 57% after feeding. Point of no return was estimated between 17.5 and 20 d. Colorado squawfish have relatively high starvation resistance. Low, stable flows that simulate natural hydrographs may enhance growth, survival, and recruitment of early life stages of Colorado squawfish by increasing water temperature and food abundance in regulated rivers of the Colorado River basin.  相似文献   

6.
Young sporophytes of short-stipe ecotype ofEcklonia cavafrom a warmer locality (Tei, Kochi Pref., southern Japan) and those of long-stipe ecotype from a cooler locality (Nabeta, Shizuoka Pref., central Japan) were transplanted in 1995 to artificial reefs immersed at the habitat of long-stipe ecotype in Nabeta Bay, Shizuoka Pref., central Japan. The characteristics of photosynthesis and respiration of bladelets of the transplanted sporophytes of the two ecotypes were compared in winter and summer 1997; the results were assessed per unit area, per unit chlorophyllacontent and per unit dry weight. In photosynthesis-light curves at 10–29 °C, light saturation occurred at 200–400 mol photon m–2s–1in sporophytes from both Tei and Nabeta. The maximum photosynthetic rate (P max) at 10–29 °C and the light-saturation index (I k) at 25–29 °C in sporophytes from both localities were generally higher in winter than in summer.P maxat 25–29 °C (per unit area and chlorophylla) were higher in sporophytes from Tei than those from Nabeta in both seasons. The optimum temperature for photosynthesis was 25 °C in winter and 27 °C in summer at high light intensities of 100–400 mol photon m–2s–1. However, at lower light intensities of 12.5–50 mol photon m–2s–1, it was 20 °C in winter and 25–27 °C in summer for sporophytes from both locations. Dark respiration increased with temperature rise in the range of 10–29 °C in sporophytes from both locations in summer and winter. The sporophytes transplanted from Tei (warmer area) showed higher photosynthetic activities than those from Nabeta (cooler area) at warmer temperatures even under the same environmental conditions. This indicates that these physiological ecotypes have arisen from genetic differentiation.  相似文献   

7.
The CO2 production of individual larvae of Apis mellifera carnica, which were incubated within their cells at a natural air humidity of 60–80%, was determined by an open-flow gas analyzer in relation to larval age and ambient temperature. In larvae incubated at 34 °C the amount of CO2 produced appeared to fall only moderately from 3.89±1.57 µl mg–1 h–1 in 0.5-day-old larvae to 2.98±0.57 µl mg–1 h–1 in 3.5-day-old larvae. The decline was steeper up to an age of 5.5 days (0.95±1.15 µl mg–1 h–1). Our measurements show that the respiration and energy turnover of larvae younger than about 80 h is considerably lower (up to 35%) than expected from extrapolations of data determined in older larvae. The temperature dependency of CO2 production was determined in 3.5-day-old larvae, which were incubated at temperatures varying from 18 to 38 °C in steps of 4 °C. The larvae generated 0.48±0.03 µl mg–1 h–1 CO2 at 18 °C, and 3.97±0.50 µl mg–1 h–1 CO2 at 38 °C. The temperature-dependent respiration rate was fitted to a logistic curve. We found that the inflection point of this curve (32.5 °C) is below the normal brood nest temperature (33–36 °C). The average Q10 was 3.13, which is higher than in freshly emerged resting honeybees but similar to adult bees. This strong temperature dependency enables the bees to speed up brood development by achieving high temperatures. On the other hand, the results suggest that the strong temperature dependency forces the bees to maintain thermal homeostasis of the brood nest to avoid delayed brood development during periods of low temperature.Abbreviations m body mass - R rate of development or respiration - TI inflexion point of a logistic (sigmoid) curve - TL lethal temperature - TO temperature of optimum (maximum) developmentCommunicated by G. Heldmaier  相似文献   

8.
Dormant Amaranthus retroflexus seeds do not germinate in the dark at temperatures below 35°C. Fully dormant seeds germinate only at 35–40°C whereas non-dormant ones germinate within a wider range of temperatures (15 to 40°C). Germination of non-dormant seeds requires at least 10% oxygen, but the sensitivity of seeds to oxygen deprivation increases with increasing depth of dormancy. 10–6 to 10–4 M ethephon, 10–3 M 1-aminocyclopropane 1-carboxylic acid (ACC) and 10–3 M gibberellic acid (GA3) break this dormancy. In the presence of 10–3 M GA3 dormant seeds are able to germinate in the same range of temperatures as non-dormant seeds. The stimulatory effect of GA3 is less dependent on temperature than that of ethephon, while ACC stimulates germination only at relatively high temperatures (25–30°C). The results obtained are discussed in relation to the possible involvement of endogenous ethylene in the regulation of germination of A. retroflexus seeds.Abbreviations ACC 1-aminocyclopropane 1-carboxylic acid - GA3 gibberellic acid - SD standard deviation  相似文献   

9.
To investigate the influence of temperature andholding time on the pyrolyzate yields of Chlorella protothecoides, the microalgal cells weresubjected to pyrolysis at 200, 300, 400, 500 and 600 °Cfor 5, 20, 60 and 120 min, separately. High oil yields above 40% dry weight cells wereobtained both at relatively low temperature (300 °C)with relatively long holding times (20–120min) and relatively high temperatures (400–500 °C)with relatively short holding times (5–20min). The maximum oil yield of 52.0% was achieved at500 °C for 5 min. The gas yield was generallyincreased with the increasing temperature and holdingtime. It could reach 63.3–76.0% at 600 °C.High pyrolytic rates of 72–87% were obtained at allexperiments except at 200 °C for 5–20 min or300 °C for 5 min. Thermogravimetric analysisindicated that the main thermal degradation of thismicroalga occurred at 200–520 °C. The resultsimply that C. protothecoides is a good candidatefor the production of renewable fuels by pyrolysis.  相似文献   

10.
Chirapart  Anong  Ohno  M. 《Hydrobiologia》1993,260(1):541-547
Plants of Gracilaria sp.(chorda type), which grow along the coast of Uranouchi Inlet in Tosa Bay, southern Japan, showed the highest biomass in the summer (26 °C to 31 °C) and spring season (15.1 °C to 24.9 °C). Maximum biomass was 6952 g m–2 in July, but gradually decreased in the autumn (30.5 °C in September to 20 °C in November) and winter (19.5 °C in December to 14.9 °C in February). Variation in yields and gel strength of the agars, were shown to depend on the time in the season. After alkali treatment (5% NaOH, 2 h) at three different temperatures (70, 80, and 90 °C), the agars showed gel strengths essentially that of commercial grade agars, with the best gel obtained at 80 °C. Maximum gel strength (1455 g cm–2 of 1.5% agar gel) occurred in winter when the biomass and agar yield were low. Minimum gel strength was in spring. Gel strength was inversely correlated with agar yield, but was positively correlated with apparent viscosity. Maximum viscosity was 40 cP. in December. Gelling temperatures, pH of 1.5% agar gel, and moisture content in agars showed little variation.  相似文献   

11.
In vitro cultures of Nephrolepis exaltata and Cordyline fruticosa were stored at 5°, 9° or 13°C, at a low irradiance (3–5 mol m–2 s–1) or in darkness. Prior to storage the cultures were subjected to 18°, 21°, 24° or 27°C and 15, 30 or 45 mol m–2 s–1 in a factorial combination.The optimal storage conditions for Nephrolepis were 9°C in complete darkness. These cultures were still transferable to a peat/perlite mixture at the end of the experimental period of 36 months.The optimal storage conditions for Cordyline were 13°C and a low light level (±3–5 mol m-2 s-1). When the pre-storage conditions were normal growth room conditions (24°C and 30 mol m-2 s-1), in vitro cultures could be stored for 18 months. With the most favourable pre-storage treatment (18°C and 15 mol m-2 s-1) some cultures still had green shoots after 36 months of storage, but did not survive transfer to peat/perlite.Pre-conditioning before storage was most favourable for Nephrolepis, and not that important, but still favourable, for Cordyline. There was an interaction between pre-storage temperature and pre-storage irradiance. For both species a high irradiance level was less favourable than a low irradiance level when combined with high growth room temperatures.Abbreviations BA 6-benzyladenine - IAA indole-3-acetic acid - NOA 2-naphthoxyacetic acid  相似文献   

12.
Hygrophilic soil animals, like enchytraeids, overwintering in frozen soil are unlikely to base their cold tolerance on supercooling of body fluids. It seems more likely that they will either freeze due to inoculative freezing, or dehydrate and adjust their body fluid melting point to ambient temperature as has been shown for earthworm cocoons and Collembola. In the present study we tested this hypothesis by exposing field-collected adult Fridericia ratzeli from Disko, West Greenland, to freezing temperatures under various moisture regimes. When cooled at –1 °C min–1 under dry conditions F. ratzeli had a mean temperature of crystallisation (Tc) of –5.8 °C. However, when exposed to temperatures above standard Tc for 22 h, at –4 °C, most individuals (90%, n= 30) remained unfrozen. Slow cooling from –1 °C to –6 °C in vials where the air was in equilibrium with the vapour pressure of ice resulted in freezing in about 65% of the individuals. These individuals maintained a normal body water content of 2.7–3.0 mg mg–1 dry weight and had body fluid melting points of about –0.5 °C with little or no change due to freezing. About 35% of the individuals dehydrated drastically to below 1.1 mg mg–1 dry weight at –6 °C, and consequently had lowered their body fluid melting point to ca. –6 °C at this time. Survival was high in both frozen and dehydrated animals at –6 °C, about 60%. Approximately 25% of the animals (both frozen and dehydrated individuals) had elevated glucose concentrations, but the mean glucose concentration was not increased to any great extent in any group due to cold exposure. The desiccating potential of ice was simulated using aqueous NaCl solutions at 0 °C. Water loss and survival in this experiment were in good agreement with results from freezing experiments. The influence of soil moisture on survival and tendency to dehydrate was also evaluated. However, soil moisture ranging between 0.74 g g–1 and 1.15 g g–1 dry soil did not result in any significant differences in survival or frequency of dehydrated animals even though the apparent wetness and structure of the soil was clearly different in these moisture contents.Abbreviations DW dry weight - FW fresh weight - MP melting point - RH relative humidity - Tc crystallisation temperatures - WC water contentCommunicated by I.D. Hume  相似文献   

13.
The life table and biological characteristics of the predatory bug Macrolophus pygmaeus Rambur (Hemiptera: Miridae) were studied when the bugs were fed with Myzus persicae (Sulzer) (Homoptera: Aphididae) feeding on eggplant and with Trialeurodes vaporariorum Westwood (Homoptera: Aleyrodidae) feeding on tomato plants. The tests were done at five temperatures between 15 and 30 °C, using a L16:D8 photoperiod and 65 ± 5% r.h. Most eggs (range 85 to 90%) hatched at 15 and 20 °C. Incubation period was shortest at 27.5 °C (8.45 and 8.38 days on eggplant and tomato, respectively). Preoviposition was also shortest at 27.5 °C (5.10 and 4.75 days on eggplant and tomato, respectively) whereas fecundity was highest at 20 °C (213.90 and 228.25 eggs on eggplant and tomato, respectively). Maximum longevity of females was at 15 °C (122.40 and 129.35 days on eggplant and tomato, respectively). Mean generation time was longest at 15 °C on both host plants (122.75 and 124.64 days, respectively). The intrinsic rate of increase of M. pygmaeus was highest at 27.5 °C with similar values on eggplant (0.0981 day–1) and tomato (0.1040 day–1). Doubling time was shortest at 27.5 °C (7.06 and 6.67 days on eggplant and tomato, respectively) and, also, finite rate of increase was highest at 27.5 °C (1.1031 and 1.1096 on eggplant and tomato, respectively). The results show that the predator M. pygmaeus develops well on the aphid M. persicae or on the whitefly T. vaporariorum, both of which are important pests of vegetable crops. This predator is also well adapted to the temperatures that occur both in greenhouses and in the open field in the Mediterranean region. Compared to other natural enemies of whiteflies, such as Encarsia formosa Gahan (Hymenoptera: Aphelinidae), Macrolophus pygmaeus can increase at relatively low temperatures.  相似文献   

14.
Ammonia-nitrogen excretion in Daphnia pulex   总被引:3,自引:2,他引:1  
Ammonia-nitrogen excretion rates were measured in natural summer and cultured populations of Daphnia pulex from Silver Lake, Clay County, Minnesota, USA during 1973. The mean rate of ammonia-nitrogen excretion for the summer populations was 0.20 µg N animal–1 day–1 or 5.11 µg N mg–1 dry body weight day–1 (N = 80) measured at 15°, 20°, and 25°C. These rates appear to be temperature and weight dependent, but they are probably affected by factors other than temperature and dry body weight. Ammonia-nitrogen excretion rates of Daphnia pulex cultured on Chlamydomonas reinhardi yielded the following relationship with temperature: Log10E = (0.061) T 1.773, where E is µg N animal–1 day–1 and T is temperature °C. The ammonia-nitrogen excretion on a mg–1 dry body weight day–1 basis was related to temperature according to the following similar expression Log10E = (0.043) T + 0.153, where E is µg N mg–1 dry body weight day–1, and T is temperature °C. The length-weight relationship of Daphnia pulex for the summer populations (N = 1583) was log10W = (0.526) Log10L + 1.357, where W is weight in µg and L is length in mm.  相似文献   

15.
The photosynthetic behaviour of Dunaliella parva Lerche from the athalassic lagoon of Fuente de Piedra (Málaga, Southern Spain) was studied experimentally at three NaCl concentrations (1, 2 and 3 M), five temperatures (15, 23, 31, 38 and 42°C) and nine different irradiances between 82 and 891 mol m–2 s–1. Results are analyzed to define the best growing conditions for the algae. D. parva shows the highest photosynthetic rates at a NaCl molarity of 2 M, under a moderate light intensity (600 mol m–2 s–1) at 31°C. Above this light intensity a clear photoinhibition of the photosynthesis was found at 2 M and 3 M of NaCl. D. parva is a halotolerant and a thermoresistant species as evidenced by its net photosynthesis rate and positive values of oxygen evolution at 42°C.Two methods for modelling photosynthesis vs. irradiance curves are discussed. The first is a single model, based on third-order polynomial equations, and the second is double model, based on hyperbolical Michaelis-Menten type functions and negative exponential to define photoinhibition.  相似文献   

16.
Influence of salinity and temperature on the germination of Kochia scoparia   总被引:1,自引:0,他引:1  
Kochia scoparia is one of the most common annual halophytes foundin the Great Basin. Seeds were collected from a population growing in asalt playa at Faust, Utah and were germinated at 5 temperature regimes(12 h night/12 h day, 5–15 °C, 10–20 °C, 15–25 °C,20–30 °C and 25–35 °C) and 6 salinities (0, 200, 400,600, 800 and 1000 mM NaCl) to determine optimal conditions forgermination and recovery of germination from saline conditions after beingtransferred to distilled water. Maximum germination occurred in distilledwater, and an increase in NaCl concentration progressively inhibited seedgermination. Few seeds germinated at 1000 mM NaCl. A temperatureregime of 25 °C night and 35 °C day yielded maximumgermination. Cooler temperature 5–15 °C significantly inhibited seedgermination. Rate of germination decreased with increase in salinity.Germination rate was highest at 25–35 °C and lowest at5–15 °C. Seeds were transferred from salt solutions to distilled waterafter 20 days and those from high salinities recovered quickly at warmertemperature regimes. Final recovery germination percentages in high salttreatments were high, indicating that exposure to high concentration ofNaCl did not inhibit germination permanently.  相似文献   

17.
The intrinsic rate of natural increase(rm) is useful to estimate the populationgrowth potential of insects and mites, whichmay help predict the outcome of pest-naturalenemy interactions. This study was conductedto determine how 12 constant temperatureregimes between 10–38 °C (± 0.5 °C) may differentially affect therm of the McDaniel spider mite, Tetranychus mcdanieli McGregor (Acarina: Tetranychidea), a common pest of raspberry, andits coccinellid predator, Stethoruspunctillum Weise (Coleoptera: Coccinellidae). Tetranychus mcdanieli survived tomaturity in the 14–36 °C range, comparedto the 14–32 °C range for S.punctillum. Survival above 24 °Cremained high for the spider mite, butdecreased markedly for the coccinellid. Tetranychus mcdanieli's range forreproduction was similar to its survival range,but S. punctillum failed to reproduce at14 °C and reproduced only poorlyat 16 °C. Offspring production peakedat 24 °C for both T. mcdanieli(average 152 eggs per female), and S.punctillum (280 eggs per female). At alltemperatures suitable for reproduction, femalelongevity of the coccinellid was greater thanthe spider mite, which was characterized byearlier/faster reproduction than thecoccinellid. As temperature increased, therm followed a typical asymmetricaldome-shape pattern, with maximum values of0.196 d–1 and 0.385 d–1at 30 °C and 34 °C, for S.punctillum and T. mcdanieli,respectively. For each species, therm-temperature relation was successfullymodelled using a curvilinear regressionequation previously shown to predictdevelopment rate. In both species, thedevelopment rate response to temperature has amajor influence on the temperature-rmrelationship. In the 16–32 °C rangesuitable for population growth of both species,the rm of T. mcdanieliwas 1.9 (30 °C) to 8 (16 °C) times greaterthan S. punctillum. These growthpotential ratios are consistently in favor ofthe prey, suggesting a limitation of thecoccinellid with respect to its capacity totrack T. mcdanieli populations. However,under short season conditions, the inferiorreproductive dynamics of S. punctillum'svs. spider mite prey should not have aprevailing influence in determining impact, andmay be compensated by high voracity incombination with a strong aggregativeresponse.  相似文献   

18.
A thermotolerant methylotrophicBacillus sp. (KISRI TM1A, NCIMB 40040), isolated from the Kuwaiti environment and belonging to the group II spore-forming, bacilli, could not be correlated with any knownBacillus sp. It may, therefore, be a new species. It grew at temperatures from 37° to 58°C from pH 6.5 to 9.0 and on methanol up to 40 g l–1. It grew well in a chemostat. Its biomass yield coefficient was improved by about 30% by optimization of medium and growth conditions, reaching a maximum of 0.44g g–1 at 45°C pH 6.8 to 7.0, dilution rate 0.25 h–1 with methanol at 10 g l–1. Average crude protein and amino acid content were 84% and 60%, respectively, and maximum productivity attained under laboratory conditions was 5.06 g l–1h–1. It was concluded that this strain has good potential for use in single-cell protein production.  相似文献   

19.
Slowly cooled cells of an extreme thermophilic eubacterium Calderobacterium hydrogenophilum possess ribosomes with weakly associated subunits. These ribosomal subunits are capable of association to 70S ribosomes either at higher Mg2+ concentrations (30–40 mM) or at 4–10 mM Mg2+ and in the presence of polyamines. The contribution of 30S and 50S subunits to the hydrodynamic stability of ribosomes was examined by forming hybrid 30S–50S couples from C. hydrogenophilum and Escherichia coli. At lower Mg2+ (4–10 mM) heterogeneous subunits containing 30S E. coli and 50S C. hydrogenophilum and homogeneous subunits of the thermophilic bacterium associated only in the presence of polyamines. Ribosomal subunits associated at 30 mM Mg2+ lose thermal stability and activity concerning poly(AUG)-dependent binding of f[3H]Met-tRNA to the P-site on 70S ribosomes or translation of poly(UG). Poly(AUG), deacylated-tRNA or initiator-tRNA have no valuable effect on association of 30S and 50S subunits. Protein synthesis initiation factor IF3 of C. hydrogenophilum prevents association of ribosomal subunits to 70S ribosomes at physiological temperature (70°C). The factor also stimulates dissociation of 70S ribosomes of E. coli at 37°C. The codon-specific binding of f[3H]Met-tRNA to homogeneous 70S ribosomes of C. hydrogenophilum at 70°C is dependent on the presence of initiation factors and concentrations of tri-pentaamines. However, excess of polyamines inhibited the reaction. Our results indicate that tri-pentaamines enhance conformational stability of 70S initiation complex at elevated temperatures.  相似文献   

20.
Park  Heum Gi  Lee  Kyun Woo  Cho  Sung Hwoan  Kim  Hyung Sun  Jung  Min-Min  Kim  Hyeung-Sin 《Hydrobiologia》2001,(1):369-374
The freshwater rotifer, Brachionus calyciflorus is one of the live food organisms used for the mass production of larval fish. In this study possibility of obtaining high density cultures of the freshwater rotifer B. calyciflorus were investigated. The two culture systems used differed in their air and dissolved oxygen supplies using three temperatures in each case: 24, 28 and 32 °C. Rotifers were batch-cultured using 5 l-vessels and fed with the freshwater Chlorella. The growth rate of rotifers significantly increased with an increase in temperature. The maximum density of the rotifers with air-supply at 24 °C, 6500 ind. ml–1, was significantly lower than those cultured at 28 and 32 °C, i.e. 8600 and 8100 ind. ml–1, respectively. Dissolved oxygen levels decreased with time and ranged from 0.8 to 1.4 mg l–1 when the density of freshwater rotifer was the highest at each temperature. The highest density (19200 ind. ml–1) of freshwater rotifer was obtained in cultures with a supply of oxygen at 28 °C. Densities of 13500 and 17200 ind. ml–1 were found at 24 and 32 °C, respectively. Levels of NH3-N increased with time and a dramatic increase of NH3-N was observed at high temperatures. Levels of NH3-N at 24, 28 and 32 °C were 13.2, 18.5 and 24.5 mg l–1, respectively. These levels coincided with the highest rotifer density at each of the three temperatures. When rotifers were cultured with an oxygen-supply and pH was adjusted to 7, the maximum density of rotifer reached 33500 ind. ml–1 at 32 °C . These results suggested that high density culture of freshwater rotifer, B. calyciflorus could be achieved under optimal conditions with DO value of exceeding 5 mg l–1 and NH3-N values of lower than 12.0 mg l–1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号