首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
We tested if the metabolic theory of ecology (MTE) correctly predicts plankton metabolism in a temperate lake, based on a long-term (about 15 years), high-frequency dataset of body size, abundance and production, using two different techniques: least squares regression and maximum likelihood. For phytoplankton, the general fit was relatively poor (r2=0.53). The assumption of the MTE on temperature dependence of metabolism was not supported, and the assumed value of ¾ of the allometric exponent was barely within 95% confidence limits. For some of the models, the value of b was significantly higher than ¾. When radiation was included as an additional predictor, it improved the model considerably (r2=0.67). Including grazing by zooplankton reduced the model residuals during the summer period, when grazing is a dominant factor. The allometric exponent had virtually no effect for phytoplankton, due to little variability in average individual size. Zooplankton production, on the other hand, was better predicted by MTE, showing stronger effects of temperature and body size, the average of which varied by a factor of more than a hundred. However, the best-fitting value of the allometric exponent for zooplankton was 0.85, and significantly higher than the ¾ predicted by the theory. The ratio of observed production to biomass for the entire plankton community declined linearly with the body size (in log-log) with a slope corresponding to a value of b=0.85. We conclude that the MTE has little predictive power for the metabolism of lacustrine plankton, in particular for phytoplankton, and especially at the scale of variability of this study, and that this could be improved by incorporating radiation into the model.  相似文献   

3.
Understanding and predicting the composition and spatial structure of communities is a central challenge in ecology. An important structural property of animal communities is the distribution of individual home ranges. Home range formation is controlled by resource heterogeneity, the physiology and behaviour of individual animals, and their intra‐ and interspecific interactions. However, a quantitative mechanistic understanding of how home range formation influences community composition is still lacking. To explore the link between home range formation and community composition in heterogeneous landscapes we combine allometric relationships for physiological properties with an algorithm that selects optimal home ranges given locomotion costs, resource depletion and competition in a spatially‐explicit individual‐based modelling framework. From a spatial distribution of resources and an input distribution of animal body mass, our model predicts the size and location of individual home ranges as well as the individual size distribution (ISD) in an animal community. For a broad range of body mass input distributions, including empirical body mass distributions of North American and Australian mammals, our model predictions agree with independent data on the body mass scaling of home range size and individual abundance in terrestrial mammals. Model predictions are also robust against variation in habitat productivity and landscape heterogeneity. The combination of allometric relationships for locomotion costs and resource needs with resource competition in an optimal foraging framework enables us to scale from individual properties to the structure of animal communities in heterogeneous landscapes. The proposed spatially‐explicit modelling concept not only allows for detailed investigation of landscape effects on animal communities, but also provides novel insights into the mechanisms by which resource competition in space shapes animal communities.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
Universal primers for SSU rRNA genes allow profiling of natural communities by simultaneously amplifying templates from Bacteria, Archaea, and Eukaryota in a single PCR reaction. Despite the potential to show relative abundance for all rRNA genes, universal primers are rarely used, due to various concerns including amplicon length variation and its effect on bioinformatic pipelines. We thus developed 16S and 18S rRNA mock communities and a bioinformatic pipeline to validate this approach. Using these mocks, we show that universal primers (515Y/926R) outperformed eukaryote-specific V4 primers in observed versus expected abundance correlations (slope = 0.88 vs. 0.67–0.79), and mock community members with single mismatches to the primer were strongly underestimated (threefold to eightfold). Using field samples, both primers yielded similar 18S beta-diversity patterns (Mantel test, p < 0.001) but differences in relative proportions of many rarer taxa. To test for length biases, we mixed mock communities (16S + 18S) before PCR and found a twofold underestimation of 18S sequences due to sequencing bias. Correcting for the twofold underestimation, we estimate that, in Southern California field samples (1.2–80 μm), there were averages of 35% 18S, 28% chloroplast 16S, and 37% prokaryote 16S rRNA genes. These data demonstrate the potential for universal primers to generate comprehensive microbiome profiles.  相似文献   

13.
Environmental microbial community analysis typically involves amplification by PCR, despite well-documented biases. We have developed two methods of PCR-independent microbial community analysis using the high-density microarray PhyloChip: direct hybridization of 16S rRNA (dirRNA) or rRNA converted to double-stranded cDNA (dscDNA). We compared dirRNA and dscDNA communities to PCR-amplified DNA communities using a mock community of eight taxa, as well as experiments derived from three environmental sample types: chromium-contaminated aquifer groundwater, tropical forest soil, and secondary sewage in seawater. Community profiles by both direct hybridization methods showed differences that were expected based on accompanying data but that were missing in PCR-amplified communities. Taxon richness decreased in RNA compared to that in DNA communities, suggesting a subset of 20% in soil and 60% in groundwater that is active; secondary sewage showed no difference between active and inactive populations. Direct hybridization of dscDNA and RNA is thus a viable alternative to PCR-amplified microbial community analysis, providing identification of the active populations within microbial communities that attenuate pollutants, drive global biogeochemical cycles, or proliferate disease states.  相似文献   

14.
15.
16.
Allometry for sexual size dimorphism (SSD) is common in animals, but how different evolutionary processes interact to determine allometry remains unclear. Among related species SSD (male : female) typically increases with average body size, resulting in slopes of less than 1 when female size is regressed on male size: an allometric relationship formalized as 'Rensch's rule' . Empirical studies show that taxa with male-biased SSD are more likely to satisfy Rensch's rule and that a taxon's mean SSD is negatively correlated with allometric slope, implicating sexual selection on male size as an important mechanism promoting allometry for SSD. I use body length (and life-history) data from 628 (259) populations of seven species of anadromous Pacific salmon and trout (Oncorhynchus spp.) to show that in this genus life-history variation appears to regulate patterns of allometry both within and between species. Although all seven species have intraspecific allometric slopes of less than 1, contrary to expectation slope is unrelated to species' mean SSD, but is instead negatively correlated with two life-history variables: the species' mean marine age and variation in marine age. Second, because differences in marine age among species render SSD and body size uncorrelated, the interspecific slope is isometric. Together, these results provide an example of how evolutionary divergence in life history among related species can affect patterns of allometry for SSD across taxonomic scales.  相似文献   

17.
Per Arneberg  Johan Andersen 《Oikos》2003,101(2):367-375
Abundance data from pitfall traps are widely used to estimate the relationship between beetle body size and abundance. Such data probably overestimate densities of large bodied species and may overestimate slopes of size‐abundance relationships. Here, we test this idea by comparing size‐abundance patterns found using data from pitfall trapping with those found with data from a quantitative method of estimating abundance, quadrat sampling. We use data from a total of 47 communities. As expected, slopes of size‐abundance relationships are significantly more positive when estimated using data from pitfall traps compared to when using quadrat sampling data. This was seen when looking across different communities, within communities sampled by both methods and when focusing on the set of species found by both methods within a community. These results were also generally found regardless of method of analysis, which were done using regression with species values as independent data points and using the independent contrast method, and with slopes estimated using ordinary least square regression or the structural relation. Most important, slopes of size‐abundance relationships based on data from pitfall traps were on average significantly more positive than ?0.75 on log–log scales, and thus inconsistent with the energetic equivalence rule. Slopes based on quadrat sampling, on the other hand, were on average not significantly different from ?0.75. The rejection of the energetic equivalence rule based on data from pitfall traps here is therefore a sampling artefact. Similar problems may apply to abundance data from virtually all insect trapping methods, and should make us consider re‐examining many of the size‐abundance patterns documented so far. As a large proportion of all animal species are insects, and traps are widely used to estimate abundance, this is a potentially important problem for our general understanding of the relationship between species body size and abundance.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号