首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
玄武湖菹草种群的发生原因及人工收割对水环境的影响   总被引:1,自引:0,他引:1  
利用以沉水植物为主的水生植物进行水体生态修复是目前研究的热点问题, 为研究南京玄武湖2005-2006年的菹草(Potamogeton crispus)种群发生的原因及人工收割对水体的影响, 对玄武湖不同湖区定期监测其透明度、溶解氧、pH、TN、TP等水质指标, 并进行分析, 结果表明: 对湖泊蓝藻水华的应急处理, 使水体透明度提高179.5%, DO含量增高24.1%, TN、TP分别降低54.1%、74.5%, pH由9.1降至8.7, 水质改善是菹草种群萌发并能大规模生长的主要原因。而菹草生长阶段短期内对菹草进行大规模收割使水体DO含量降低42.1%, 透明度下降51.5%(P0.05), 收割虽从水体中携带走部分氮、磷营养盐, 但差异不显著(P0.05), 且收割后TP出现升高现象。故在对草藻型湖泊生态修复过程中, 可先期通过物理或化学手段改善水体透明度、调节pH、降低营养盐, 使其满足水生植物萌发及幼苗生长的需求, 为水生植物后期存活并生长打下基础, 在后期生态管理过程中, 应逐步收割植株, 缓慢从水体携带营养盐, 以达到改善水质, 恢复及重建水生生态系统的目的。    相似文献   

2.
衰亡期沉水植物对水和沉积物磷迁移的影响   总被引:8,自引:0,他引:8  
王立志  王国祥 《生态学报》2013,33(17):5426-5437
通过室内模拟的方式,分别研究了秋季黑藻、苦草和春季菹草的衰亡过程,分析了沉水植物在衰亡期间水、沉积物中磷与环境因子[pH、氧化还原电位(Eh)和溶解氧(DO)]的相互作用.结果表明:沉水植物黑藻和菹草在衰亡期间能显著提高水中总磷(TP)、溶解性总磷(DTP)、颗粒磷(PP)、溶解性活性磷(SRP)和溶解性有机磷(DOP)的含量;苦草在衰亡期对水体各形态磷含量影响不显著,且各形态磷含量的变化相对较小(TP,0.04-0.06 mg/L);环境因子的变化对水中磷含量影响显著,黑藻和菹草水体中TP的含量和环境因子pH、DO和Eh均呈负相关,而苦草组水中各形态磷的含量受环境因子影响不显著.实验期间不同植物组沉积物中总磷(TP)、NaOH提取磷(NaOH-P)、HCl提取磷(HCl-P)、无机磷(IP)和有机磷(OP)的含量均呈上升趋势.沉积物IP的含量主要受NaOH-P的影响,OP对TP的影响要大于IP,沉积物OP与OM(有机质)的含量存在显著正相关.  相似文献   

3.
三峡水库香溪河库湾底泥中总氮、总磷含量的时空分布   总被引:3,自引:0,他引:3  
2004年10月-2006年7月,对三峡水库香溪河库湾底泥中总氮(TN)、总磷(TP)含量的时空分布特征及其影响因素进行了分析.结果表明:香溪河库湾底泥中TN、TP含量均表现为“中间高,两头低”的空间分布规律,其中,TN含量最高值为1.08 mg·g-1,出现在库湾中部区域,最低值为0.89 mg·g-1,出现在河口附近区域;TP含量最高值为1.07 mg·g-1,最低值为0.80 mg·g-1,分别出现在库湾中部和库尾.TN含量按秋季、冬季、春季的顺序依次降低,从春季到夏季则大幅上升,夏季达最高值;TP含量的季节波动较小,以春季最高.研究区底泥中TN、TP含量的年际差异均达显著水平.香溪河库湾底泥中总氮、总磷含量的空间分布主要受水体中悬浮物质沉积率的影响,沉积率较高区域的TN、TP含量较高;TN含量的季节波动主要受上游来水量季节变化的影响,而TP含量 的季节变化主要源于点源污染.  相似文献   

4.
通过5个相对恒定的TN、TP浓度梯度下伊乐藻(Elodea nuttallii)的生长实验,探讨了伊乐藻对高浓度氮磷营养盐的耐受性,比较了各营养盐浓度下水体的pH值、DO、浮游藻类叶绿素a和附着藻类叶绿素a以及伊乐藻的株高、湿质量、干质量和叶绿素a含量.结果表明:在实验条件下,伊乐藻能耐受TN=10 mg·L~(-1),TP=0.4 mg·L~(-1)的胁迫,且在该营养盐水平下水体中没有出现大量的浮游藻类;而在TN=50 mg·L~(-1)、TP=2 mg·L~(-1)和TN=100 mg·L~(-1)、TP=4 mg·L~(-1)的高营养盐条件下,伊乐藻的生长受到了明显的抑制,同时水体中的浮游藻类明显增多,而附着藻类则明显减少;在高营养盐水平下,一方面水体中的某些营养盐可能对伊乐藻产生了直接伤害,另一方面水体中浮游藻类的增多,所导致的遮光作用也可能限制了其生长;对水体中营养盐的平均水平低于TN=10 mg·L~(-1),TP=0.4 mg·L~(-1)的太湖而言,沉水植被的消亡可能不是由于氮磷营养盐所产生的直接伤害和胁迫.  相似文献   

5.
王立志  董彬  宋红丽  李宝  安娟 《生态科学》2020,39(3):160-171
为利用冷暖种交替控制水体磷污染、抑制水体富营养化,揭示湖泊演化规律和机理。研究设置单季植物组(黑藻组、菹草组)和交替生长组(黑藻组+菹草组)进行实验。交替生长组在黑藻衰亡期种植菹草,监测各组上覆水和底泥中各形态磷含量的变化,计算黑藻衰亡释放磷及菹草生长吸收磷的总量,同时测定环境因子指标。分析沉水植物交替生长(黑藻+菹草)过程对衰亡期沉水植物(黑藻组)释放磷所带来的二次污染的消减作用,并分析环境因子变化与磷含量之间的关系。实验结果表明:黑藻+菹草组显著(P<0.05)降低了上覆水中总磷(TP)、溶解性总磷(DTP)和溶解性活性磷(SRP)的浓度;显著(P<0.05)降低了间隙水中DTP和SRP的浓度。底泥TP含量黑藻组呈上升趋势,黑藻+菹草和菹草组呈下降趋势。在采用菹草生物量期望2倍于衰亡植物黑藻生物量的模拟实验条件下,每实验组沉水植物黑藻衰亡分解所释放的磷为1.51 g,沉水植物菹草生长所富集吸收的磷为1.83 g。因此,菹草具备消减黑藻所释放磷的能力,可作为冷暖种交替控制水体富营养化的备选物种。实验组磷的迁移方向分别为:黑藻组磷迁移最终方向为底泥,黑藻+菹草组和菹草组磷的迁移方向为植物。黑藻+菹草组通过提高环境中DO和ORP,使得水相中磷向沉积物相中迁移,从而使得水相中各形态磷浓度保持在相对较低的水平。  相似文献   

6.
通过室内模拟构建水体营养盐和菹草生物量正交试验, 研究菹草从石芽萌发至菹草植株衰亡腐烂整个生命周期中, 对水体中TN 的生态效应, 并以此为依据建立菹草对富营养化水体生态效应模型。研究表明: 在不同生物量菹草作用下, 富营养化水体中TN 含量是先下降后上升的一个周期式过程; 在相同营养水平条件下, 菹草对TN 的吸收量随菹草生物量的增大而依次递增, 而在相同生物量的前提下, 菹草对TN 的修复力存在一个最佳营养水平范围, 即13.95-20.56 mg·L–1 之间; 菹草对富营养化水体生态效应模型分两部分: 菹草对富营养化水体中TN 与时间关系模型以及菹草生态修复水体TN 限度理论模型, 通过这两个模型的构建可以为生产实践中菹草在生态修复富营养化水体的投放量和菹草的最佳收割时间提供有力依据, 为工程实践提供有效保障。  相似文献   

7.
目的:水体富营养化给渔业的发展造成严重的负面影响,成为全球瞩目的环境问题之一。方法:本研究利用泥鳅(Misgurnus anguillicaudatus)作为实验生物,选择氨氮(NH4+-N)、总氮(TN)、总磷(TP)和溶解氧(DO)含量作为富营养化水体的影响因素。研究富营养化水体中NH4+-N、TN、TP和DO含量对泥鳅抗氧化酶活性和脂质过氧化水平的影响,旨在阐明富营养化水体对鱼类的氧化损伤作用。结果:随着水体中NH4+-N、TN、TP和DO含量的增加,泥鳅的SOD活性显著降低(P0.05),MDA含量显著增加(P0.05)。与正常的DO水平相比,水中高浓度和低浓度的氧含量都会造成SOD活性的显著下降(P0.05)和MDA含量的显著上升(P0.05)。其中NH4+-N和DO的影响最大。结论:富营养化水体对鱼类的危害与其造成的鱼类氧化损伤有直接关系,实验的开展为富营养化水体的生物监测与评价具有一定指导作用。  相似文献   

8.
在菹草衰亡阶段对5个静水水体中菹草叶片表面附着物进行野外调查,并将其与水体营养盐浓度、沉水植物衰亡程度进行相关性分析。附着物共调查Chl.a含量、干重、有机质含量和藻类数量4个指标,沉水植物衰亡程度用单位面积叶片Chl.a含量表示,水体营养盐含量测量了TP、TN和N/P 3个指标。结果显示:附着物生物量与水体营养盐状况存在一定的正相关;各个点的附着物生物量与菹草衰亡状况存在一定相关性但相关性趋势与水体污染程度有关。在污染程度较高的水体中附着物生物量与菹草衰亡程度呈正相关,在污染程度较低的水体中附着物生物量与菹草衰亡程度呈负相关。结论为富营养化湖泊中营养盐含量的增加会导致附着物生物量的增加,但附着物只在污染程度较高的水体中促进植物衰亡。  相似文献   

9.
陈景荣  王立志 《生态科学》2016,35(1):136-142
原位监测云蒙湖前置库系统浅水生态净化区进出水总磷(TP)、溶解性活性磷(SRP)、总氮(TN)、硝态氮(NO3 – -N)、氨氮(NH4+-N)及主要环境因子pH、溶解氧(DO)和氧化还原电位(Eh)及生物量的动态变化, 并分析了生物量及环境因子和各形态氮磷净化率之间的关系。结果表明: 浅水生态净化区对水中氮磷的净化效率存在夏高冬低的季节性变化规律。总氮和总磷夏季净化率平均在28.11%-43.42%, 31.00%-48.00%之间, 冬季净化率平均在19.02%-26.36%,21.52%-28.57%之间。植物生长将氮磷富集于体内是对水体净化的一个主要原因, 夏季植物旺盛生长冬季植物衰亡是浅水生态净化区净化效率季节性变化的主要影响因素。水生植物对环境因子pH 、DO 和Eh 的改变量与各形态氮磷的净化率呈不同程度的相关, 表明浅水生态净化区水生植物通过对环境因子DO、pH 和Eh 的提高来增加底泥对水中氮磷的吸附效率。  相似文献   

10.
蒲河水质空间异质性特征及其对流域土地利用方式的响应   总被引:2,自引:0,他引:2  
河流水质空间变化特征是流域生态系统健康评价的关键指标,是地形、地貌、气候、水文等自然环境因素及综合反映人类活动强度的土地利用方式对流域生态环境的复合作用,研究河流水质空间异质性特征及其对流域土地利用方式的响应关系对流域生态管理具有十分重要的指导意义,然而水质空间异质性特征及其对土地利用方式的响应机制研究仍不清楚。本文以辽河流域支流蒲河子流域为研究对象,利用GIS技术和地统计学方法,分析蒲河流域水质指标TN、TP、NH4+-N、CODcr、pH、DO和TDS空间变异特征,探讨流域不同土地利用方式对水质空间变化的影响。结果表明:蒲河流域水质指标NH4+-N、DO和TDS受结构性因素影响显著,表现出较强空间变异性;TP、CODcr和pH的空间异质性较弱,主要由随机性因素引起;TN受到结构性因素和随机性因素共同作用,表现出较弱空间变异特征;TN和NH4+-N含量与林地所占比例呈显著负相关,与耕地和建设用地所占比例呈显著正相关;pH和DO与水域面积和未利用地所占比例呈负相关;表明蒲河流域TN和NH4+-N空间异质性的主导因素为林地、耕地和建设用地等土地利用类型,pH和DO空间异质性的主导因素为水域和未利用地土地利用类型,该研究可为流域水环境管理提供数据支持。  相似文献   

11.
R. M. Little  T. M. Crowe 《Ostrich》2013,84(2-3):98-109
Little, R.M. & Crowe, T.M. 1992. Vocal behaviour of Greywing Francolin Francolinus africanus can be used to estimate population density. Ostrich 63:98-109.

Four common calls of the Greywing Francolin Francolinus africanus are described acoustically, and their functions discussed. Data from 166 crepuscular call count surveys (2 472 counts) and 540 diurnal call counts were analysed to investigate the temporal and meteorological effects on calling activity, and to assess the use of call counts as an index of between year and between area variation in population density. Calling remained at high levels from August to April during the breeding season. Calling was most frequent at sunrise and sunset. Calling frequency and the number of calling coveys were significantly higher at sunrise than at sunset. Calling was concentrated in the 30 minute periods straddling sunrise and sunset, and peaked during the 15-minute periods before sunrise and before sunset. Calling activity was negatively correlated with wind speed and positively correlated with relative humidity. Calling was spuriously negatively correlated with seasonal variation in Greywing population density and strongly positively correlated with between year and between area variations in population density. We therefore suggest that call counts collected during March-April could be used to index annual change in the population density in a particular area from year to year, as well as within-season variation among areas.  相似文献   

12.
Much of the lake shore in Lake Victoria is covered by extensive wetlands, often dominated by dense papyrus stands that extend out over the lake waters. These wetlands, their extension and management play a role in the physical, chemical and biological conditions of the inshore waters. Continuous transects along 180 km of shoreline together with spatial grids of sampling sites in eight bays were performed in the Ugandan inshore waters in order to analyze the relationships between the wetland characteristics and water quality. Measurements of extension of the wetland ecotones, water temperature (T), pH, Secchi disk depth (SD), dissolved oxygen (DO), total nitrogen (TN), total phosphorous (TP), dissolved inorganic nitrogen (DIN), soluble reactive phosphorus (SRP) and chlorophyll-a (CHL) were made in each sampling area. Data of T, pH and DO collected during the transects showed that the water characteristics of the bays differ from the open shoreline. Moreover, the magnitude of these physical–chemical differences is strongly conditioned by the dimension of the bordering wetlands. Bays with extensive wetlands ecotones were characterized by cooler, more acidic and poorly oxygenated waters. TN : TP ratios and especially DIN : SRP ratios decreased with the wetland presence along the coastline, showing a higher probability of N limitation in the inshore waters where large wetlands are present. Results point to denitrification processes in the wetland ecotones as the cause of this trend. The distribution of CHL was found to be highest in the presence of two significant point loading sources: a river (in Katonga Bay) and a major population centre (Kampala, in Murchison Bay). The reduction of external P loading is shown as an important step in the management of the eutrophication process of Lake Victoria inshore waters.  相似文献   

13.
Knowledge on diurnal locomotor activity pattern in wild nocturnal medium-sized mammals, such as the European hare (Lepus europaeus) is scarce. In this study, we tracked nine European hares during the vegetation period using GPS-transmitters. In particular, we focused on the question how the timing of sunset and sunrise influences the activity peaks in this species. The horal distances between two consecutive hare positions were used as a measure of locomotor activity. European hares showed two distinct peaks in their daily activity. If sunset or sunrise were earlier, the maximum activity peaks of individual European hares occurred after sunset or sunrise, whereas activity peaks were shifted before sunset or sunrise when sunset or sunrise were later. During summer, when the nights are probably too short to allow the hares to cover their energetic requirements, the study animals regularly showed activity peaks in full daylight. In conclusion, our results imply that, although daylight regime normally regulates the diurnal locomotor activity pattern in mammals, other additional factors may play a role in modifying this regulation in European hares during summer.  相似文献   

14.
Lake Monger (Perth, Western Australia) is a highly eutrophic lake, characterised by very low species richness of macrophytes with the dominance of Potamogeton crispus. Mesocosm experiments were performed using water and plants collected from the lake to determine the effects of vegetation decay on the phosphorus (P) concentrations in the overlying waters. After 2 weeks of experimental incubation of mesocosms with and without re-oxygenation, P concentrations in the water column were significantly higher, showing a quite similar effect of P. crispus on the phosphorus release in different mesocosms. The results of our study provide clear evidence that the P concentrations in overlying waters mainly depend upon the plant P content and developmental stage. Although many sources contribute to the nutrient load of Lake Monger, macrophyte harvesting, prior to its senescence, might constitute a significant in-lake measure for reducing the internal P load.  相似文献   

15.
(1) The relative importance of sediments and water as nutrient sources for submerged macrophytes in running waters is poorly understood. Here we present water and sediment nutrient characteristics within macrophyte patches in Bavarian rivers. (2) No significant differences between early (June/July) and late summer (August/September) sediment nutrient characteristics could be detected within macrophyte patches. Therefore, a single sediment sample per macrophyte patch was considered to be sufficient for characterising nutrient concentrations during the main growing season in running waters. (3) Sediment TP (total phosphorus) is not a useful parameter for predicting trophic status in running waters. Sediment porewater SRP (soluble reactive phosphorus) concentration is not correlated to water body SRP or TP concentration; nor is it correlated with sediment TP content. Potamogeton coloratus, a oligotrophic species, is associated with low overlying and porewater SRP concentrations but high sediment TP content. Eutrophic species, such as Potamogeton pectinatus, are associated with low sediment TP. (4) It is hypothesized that Chara hispida primarily takes up sediment ammonia for nitrogen nutrition. (5) Nutrient characteristics of the water body and the sediment of eight macrophyte species in Bavarian rivers are described.  相似文献   

16.
The decomposition rate of Potamogeton crispus and its rates of phosphorus (P) release and sedimentation were quantified during natural senescence in a microcosm experiment. The decay of P. crispus was characterized by an exponential model with a mean mass loss coefficient (k) of 0.05 day?1. During the first 10 days, the rapid decomposition phase, k was 0.068 day?1. The rates of P release and total P sedimentation, as well as the dissolved total P, soluble reactive phosphorus, dissolved organic phosphorus, and particulate phosphorus, were quantified throughout the 30-day study period. The nitrogen (N) and P contents of P. crispus increased whereas the carbon (C) content and the C:N, C:P, and N:P ratios decreased near the end of the decomposition phase. In addition, the pH, dissolved oxygen, and redox potential decreased during the rapid release of P. The results indicated that the rate of mass loss was slower from dried plants than from senescent plants. The rapid decomposition rate, which was associated with a high rate of P release, suggests that much of the accumulated P will eventually be returned to the aquatic ecosystem. These data illuminate the mechanisms of decomposition and suggest a strategy of reducing eutrophication by harvesting P. crispus prior to its senescence.  相似文献   

17.
富营养化水体的水生植物净化试验研究   总被引:104,自引:3,他引:101  
利用水生植物净化和底泥遮蔽的方法对养鱼池的富营养化水体进行控制研究.结果表明,金鱼藻等6种水生植物对水中总氮、总磷和硝态氮有较好的去除效果,而以狐尾藻和微齿眼子菜两种效果最好,1个月后对总氮的去除率分别为83.84%和77.54%,对硝态氮的去除率分别为95.85%和90.65%,磷的去除率都达到了91.7%.但对氨氮的去除效果稍差,1个月时去除效果只有14%~70%.底泥进行塑料遮蔽处理后在前期(15~20d)能控制底泥中营养盐的释放,但不能保持长久;并在后期表现出“补偿效应”.试验结果还表明。水生植物能有效提高水体透明度和水体观感,但对改善COD和DO的效果不明显.  相似文献   

18.
An incubation experiment was performed on Potamogeton crispus (P. crispus) using sediment collected from Lake Tangxunhu in the center of China, in order to determine the effects of plant growth on Fe, Si, Cu, Zn, Mn, Mg, P, and Ca concentrations in the sediments and overlying waters. After 3 months of incubation, Ca, Mg, and Si concentrations in the water column were significantly lower, and P and Cu concentrations were significantly higher than in unplanted controls. The effect of P. crispus growth on sediment pore waters and water-extractable elements varied. Concentrations of Ca, Mg, Si, Fe, Cu, and Zn were significantly higher, and P was significantly lower, than in pore waters of the control. Water-extracted concentrations of Fe, Mg, and Si in the sediments were lower, and P was higher, than in the control. Presence of P. crispus generally enhanced concentration gradients of elements between pore waters and overlying waters but not for P. The growth of P. crispus was associated with an increase in water pH and formation of root plaques, resulting in complex effects on the sediment nutritional status. Handling editor: S. M. Thomaz  相似文献   

19.
The properties of plaques were different on the root surface of Potamogeton crispus planted in sediments from two different shallow lakes. Lake Tangxunhu sediment, with low pH, contained low organic matter, whereas Lake Yuehu sediment, with high pH, had high calcium deposits mixed with high organic matter. The contents of mineral elements in sediment of Lake Tangxunhu was lower than that of Lake Yuehu, except for iron (Fe) content, but the contents of mineral elements extracted by sodium dithionite–sodium citrate–sodium bicarbonate (DCB) from root plaques were higher in Lake Tangxunhu than those in Lake Yuehu, except for Fe. These element distributions on P. crispus root plaques were characterized by scanning electron microscope combined with energy-dispersive X-ray spectrometer and were consistent with the contents of mineral elements in sediment. The root plaque of P. crispus planted in Lake Tangxunhu sediment mainly contained silicon (Si) and Fe, and the content of Si was greater than Fe, which may be contributed to the formation of poly-silicic-ferric in the natural conditions. However, the root plaque of P. crispus planted in the sediment with higher calcium content of Lake Yuehu was rich in Fe, Si, phosphorus (P), and calcium (Ca). Due to oxygen secretion by plant roots, the root plaque has more Fe3(PO4)2 and a certain amount of Ca3(PO4)2. The ratio of magnesium (Mn) to Fe extracted by DCB from root plaque in Lake Tangxunhu sediment was 0.031 and 0.010 in Lake Yuehu sediment. In Lake Tangxunhu sediment, lower content of organic matter results in weak reducibility. Enhanced oxidation ability by oxygen secretion of P. crispus root could oxidize low-valent Fe and Mn into iron–manganese oxide, which leads to formation of iron–manganese plaque on the root surface. However, this case is different in Lake Yuehu sediment, where Fe and Mn can be reduced in high organic sediment and low-valent Mn can precipitate in the sediment in which pH is >8. Thus, low-valent Fe in Lake Yuehu sediment moves to the root surface of P. crispus, where it oxidizes into Fe oxide, i.e., Fe plaque.  相似文献   

20.
Diurnal Phototropism in Solar Tracking Leaves of Lavatera cretica   总被引:1,自引:0,他引:1  
On a clear day, leaf laminas of Lavatera cretica tracked the solar position throughout the day. The laminar azimuth did not diverge from the solar azimuth by more than 12° from sunrise to sunset. Tracking of the solar elevation started 1 to 2 hours after sunrise and ceased 1 to 2 hours before sunset. On an overcast day, the laminas reoriented horizontally. After sunset, following a clear day, the laminas performed a nocturnal reorientation, with three well defined phases. During the initial phase the laminas relaxed their strained sunset-facing orientation to one perpendicular to their petioles. This equilibrium configuration was maintained throughout the following phase, which was apparently concerned with time-measuring. During the final phase, the laminas reoriented, before sunrise, to a position facing the direction of the anticipated sunrise. This directional information is phototropic and was retained for 3 to 4 diurnal cycles, probably in the pulvinus itself, which is the site of the response. Laminas of plants transferred from sunlight either to darkness, or to a simulated natural photoperiod under overhead illumination, were facing the originally anticipated direction of sunrise at the time of each of the three to four subsequent sunrises (after which they reverted to the dark orientation in darkness, or to the horizontal one with overhead illumination). Cotyledonary laminas required directional information for the nocturnal reorientation during 3 or 4 cycles of simulated sunrise to sunset transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号