首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The regulatory roles of temperature, eutrophication and oxygen availability on benthic nitrogen (N) cycling and the stoichiometry of regenerated nitrogen and phosphorus (P) were explored along a Baltic Sea estuary affected by treated sewage discharge. Rates of sediment denitrification, anammox, dissimilatory nitrate reduction to ammonium (DNRA), nutrient exchange, oxygen (O2) uptake and penetration were measured seasonally. Sediments not affected by the nutrient plume released by the sewage treatment plant (STP) showed a strong seasonality in rates of O2 uptake and coupled nitrification–denitrification, with anammox never accounting for more than 20 % of the total dinitrogen (N2) production. N cycling in sediments close to the STP was highly dependent on oxygen availability, which masked temperature-related effects. These sediments switched from low N loss and high ammonium (NH4 +) efflux under hypoxic conditions in the fall, to a major N loss system in the winter when the sediment surface was oxidized. In the fall DNRA outcompeted denitrification as the main nitrate (NO3 ?) reduction pathway, resulting in N recycling and potential spreading of eutrophication. A comparison with historical records of nutrient discharge and denitrification indicated that the total N loss in the estuary has been tightly coupled to the total amount of nutrient discharge from the STP. Changes in dissolved inorganic nitrogen (DIN) released from the STP agreed well with variations in sedimentary N2 removal. This indicates that denitrification and anammox efficiently counterbalance N loading in the estuary across the range of historical and present-day anthropogenic nutrient discharge. Overall low N/P ratios of the regenerated nutrient fluxes impose strong N limitation for the pelagic system and generate a high potential for nuisance cyanobacterial blooms.  相似文献   

2.
Organic carbon degradation experiments were carried out using flow-through reactors with sediments collected from an intertidal freshwater marsh of an eutrophic estuary (The Scheldt, Belgium). Concentrations of nitrate, nitrite, dissolved inorganic carbon (DIC), dissolved organic carbon, methane, dissolved cations (Ca2+, Mg2+, Na+ and K+), total dissolved Fe, phosphate and alkalinity were measured in the outflow solutions from reactors that were supplied with or without the terminal electron acceptor nitrate. Organic carbon mineralization rates were computed from the release rates of DIC after correcting for the contribution of carbonate mineral dissolution. The experiments ran for several months until nitrate reducing activity could no longer be detected. In the reactors supplied with nitrate, 10–13% of the bulk sedimentary organic carbon (SOC) was mineralized by the end of the experiments. In reactors receiving no nitrate, only 3–9% of the initial SOC was mineralized. Organic matter utilization by nitrate reducers could be described as the simultaneous degradation of two carbon pools with different maximum oxidation rates and half-saturation constants. Even when nitrate was supplied in non-limiting concentrations about half of the carbon mineralization in the reactors was due to fermentative processes, rather than being coupled to nitrate respiration. Fermentation may thus be responsible for a large fraction of the DIC efflux from organic-rich, nearshore sediments.  相似文献   

3.
Historical coral skeleton (CS) δ18O and δ15N records were produced from samples recovered from sedimentary deposits, held in natural history museum collections, and cored into modern coral heads. These records were used to assess the influence of global warming and regional eutrophication, respectively, on the decline of coastal coral communities following the development of the Pearl River Delta (PRD) megacity, China. We find that, until 2007, ocean warming was not a major threat to coral communities in the Pearl River estuary; instead, nitrogen (N) inputs dominated impacts. The high but stable CS‐δ15N values (9‰–12‰ vs. air) observed from the mid‐Holocene until 1980 indicate that soil and stream denitrification reduced and modulated the hydrologic inputs of N, blunting the rise in coastal N sources during the early phase of the Pearl River estuary urbanization. However, an unprecedented CS‐δ15N peak was observed from 1987 to 1993 (>13‰ vs. air), concomitant to an increase of NH4+ concentration, consistent with the rapid Pearl River estuary urbanization as the main cause for this eutrophication event. We suggest that widespread discharge of domestic sewage entered directly into the estuary, preventing removal by natural denitrification hotspots. We argue that this event caused the dramatic decline of the Pearl River estuary coral communities reported from 1980 to 2000. Subsequently, the coral record shows that the implementation of improved wastewater management policies succeeded in bringing down both CS‐δ15N and NH4+ concentrations in the early 2000s. This study points to the potential importance of eutrophication over ocean warming in coral decline along urbanized coastlines and in particular in the vicinity of megacities.  相似文献   

4.
长江口及邻近海域富营养化指标原因变量参照状态的确定   总被引:2,自引:0,他引:2  
河口区参照状态的确定是营养盐基准制定的核心步骤.采用参照点或观测点指标频数分布曲线法,利用长江口及邻近海域1992-2010年的调查数据,针对长江口外海区及舟山海区富营养化指标的原因变量,即无机氮和活性磷酸盐,进行参照状态值的确定.经分析,长江口外海区无机氮各季节参照状态可确定如下:春季为0.317mg/L、夏季为0.273 mg/L、秋季为0.211mg/L,活性磷酸盐各季节参照状态:春季为0.014mg/L、夏季为0.009 mg/L、秋季为0.018 mg/L;舟山海区无机氮各季节参照状态确定如下:春季为0.372mg/L、夏季为0.273 mg/L、秋季为0.441 mg/L,活性磷酸盐各季节参照状态:春季为0.020mg/L、夏季为0.018 mg/L、秋季为0.029 mg/L.  相似文献   

5.
The Scheldt river drains a densely populated and industrialized area in northern France, western Belgium and the south-west Netherlands. Mineralization of the high organic load carried by the river leads to oxygen depletion in the water column and high concentrations of dissolved nitrogen and phosphorus compounds. Upon estuarine mixing, dissolved oxygen concentrations are gradually restored due to reaeration and dilution with sea water. The longitudinal redox gradient present in the Scheldt estuary strongly affects the geochemistry of nutrients. Dissolved nutrients in the water column and dissolved nitrogen species in sediment porewaters were determined for a typical summer and winter situation. Water column concentration-salinity plots showed conservative behaviour of dissolved Si during winter. During summer (and spring) dissolved Si may be completely removed from solution due to uptake by diatoms. The geochemistry of phosphorus was governed by inorganic and biological processes. The behaviour of nitrogen was controlled by denitrification in the anoxic fluvial estuary, followed by nitrification in the upper estuary (prior to oxygen regeneration). In addition, nitrogen was taken up during phytoplankton blooms in the lower estuary. Dissolved inorganic nitrogen species in porewaters from the upper 20 cm of sediments were obtained from a subtidal site in the middle of the lower estuary. Dissolved nutrient concentrations were low in the upper 10–15 cm of the sandy and organic poor (<1% POC) sediments mainly as a result of strong sediment mixing. The porewater profiles of ammonium and nitrate were evaluated quantitatively, using a one-dimensional steady-state diagenetic model. This coupled ammonium-nitrate model showed ammonification of organic matter to be restricted to the upper 4 to 7 cm of the sediments. Total nitrification ranged from 3.7–18.1 mmol m?2 d?1, converting all ammonium produced by ammonification. The net balance between nitrification and denitrification depended on the season. Nitrate was released from the sediments during winter but is taken up from the water column during summer. These results are in good agreement with data obtained from the independently calibrated water column model for the Scheldt Estuary (VAN GILSet al., 1993).  相似文献   

6.
Suspension-feeding activities of oysters impart a potentially significant benefit to estuarine ecosystems via reduction of water column nutrients, plankton and seston biomass, and primary productivity which can have a significant impact on human well-being. This study considered nitrogen regulation by eastern oysters Crassostrea virginica in the Mission-Aransas Estuary, Texas, USA, as a function of denitrification, burial, and physical transport from the system via harvest. Oyster reefs were estimated to remove 502.5 kg N km−2 through denitrification of biodeposits and 251.3 kg N km−2 in burial of biodeposits to sediments. Nitrogen is also physically transported out of the estuary via harvest of oysters. Commercial harvest of oysters in the Mission-Aransas Estuary can remove approximately 21,665 kg N per year via physical transport from the system. We developed a transferable method to value the service of nitrogen regulation by oysters, where the potential cost equivalent value of nitrogen regulation is quantified via cost estimates for a constructed biological nutrient removal (BNR) supplement to a wastewater treatment plant. The potential annual engineered cost equivalent of the service of nitrogen regulation and removal provided by reefs in the Mission-Aransas Estuary is $293,993 yr−1. Monetizing ecosystem services can help increase awareness at the stakeholder level of the importance of oysters beyond commercial fishery values alone.  相似文献   

7.
The robust growth of coastal communities in the southeastern United States is putting unique pressures on estuarine resources. Urbanization of estuarine systems may alter ecosystem function and thus affect the spatial scale and magnitude of nutrient concentrations and primary production temporally and spatially. We examined the spatial and temporal patterns of nutrient and chlorophyll a (Chl a) concentrations in two shallow well-mixed estuaries, (1) a developed estuary, Murrells Inlet (MI), South Carolina, and (2) a relatively pristine estuary, North Inlet (NI), South Carolina. The summer chlorophyll a maximum in MI was characteristically higher than in NI, which may be indicative of eutrophication. Correlations between salinity and inorganic nutrients (N and P) suggest that nutrient import from upland sources may be more pronounced in MI during stochastic precipitation events. Although inorganic nutrient concentrations between the estuaries were similar overall, during a wet period, inorganic N concentration in MI was increased to a greater extent than in NI, while only minimal increases in inorganic P were observed in both estuaries. Chlorophyll a concentrations decreased from the dry to wet period. Geographic Information System (GIS) plots of intensive spatial sampling in MI indicated spatial gradients of nutrient concentrations within this estuary that appeared to be consistent over time. These observations were investigated in more detail using regression analyses to examine the influences of coastal dilution and nutrient sources on relationships between water quality constituents. Results indicate the importance of stochastic rain events in affecting the linkages of estuarine processes to upland runoff in the urbanized estuary, MI.  相似文献   

8.
A. L. Huber 《Hydrobiologia》1986,131(3):193-203
Variations in nitrogen fixation (acetylene reduction) by Nodularia spumigena blooms in the Peel-Harvey estuarine system were examined with respect to spatial (sampling station location, and depth) and temporal (seasonal and diurnal) distribution. The annual contributions of nitrogen fixation by the blooms to the nitrogen budget of the estuary were estimated to range from 309 to 713t. Contributions by nitrogen fixation were similar to the riverine inputs in the Harvey Estuary, but lower in the Peel Inlet.The Harvey Estuary had higher biomass and total fixation rates (to 0.4 nmol C2H2 · ml–1 h–1), but the heterocyst nitrogen fixation rates were greater in the Peel Inlet (to 9 × 10–1 nmol C2H2 · heterocyst–1 · h–1). Nitrogen fixation decreased with depth in response to light, though other factors also appeared to be involved. The rates of fixation decreased concurrently with increasing bloom age, total soluble inorganic nitrogen and salinities. Maximum daily fixation rates occurred in the early morning.  相似文献   

9.
长江口及邻近海域富营养化指标响应变量参照状态的确定   总被引:1,自引:0,他引:1  
对长江口富营养化指标中的响应变量进行了筛选,并在长江口分区的基础上,运用参照点或观测点指标频数分布曲线法,对1992年-2010年的数据进行分析,确定了长江口外海区和舟山海区富营养化指标中响应变量的参照状态.选择叶绿素a和底层溶解氧作为响应指标的必选指标,浮游植物密度和CODMn作为辅助指标.经分析,长江口口外海区叶绿素a、浮游植物密度、CODMn和底层溶解氧的春夏秋3个季节的参照状态分别为0.87mg,/m3,17.44× 103个/L,0.42mg/L,8.36mg/L;1.88mg/m3,25.96×103个/L,0.56mg/L,4.22mg/L;0.84mg/m3,12.10×103个/L,0.46mg/L,6.95mg/L;舟山海区叶绿素a、浮游植物密度、CODMn和溶解氧的春夏秋3个季节的参照状态分别为0.73mg/m3,6.77×103个/L,0.51 mg/L,8.75mg/L;1.00mg/m3,9.72×103个/L,0.37mg/L,5.94mg/L;0.78mg/m3,4.59×103个/L,0.55mg/L,7.40mg/L.本研究确定的参照状态值能较为客观的反映该海域的富营养化参照状态,且不同分区,不同季节间的指标的参照状态亦存在着显著的差异.  相似文献   

10.
Prego  Ricardo 《Hydrobiologia》2002,(1):161-171
Inorganic and organic nitrogen fluxes in the Ria Vigo have been quantified in order to recognise the contrasting nitrogen budget scenarios and understand the biogeochemical response to eutrophication events. According to the nitrogen biogeochemical pathways of the ria reservoir (photosynthesis, remineralization, denitrification, PON rain rate and sedimentation), three main seasonal behavioural trends are emphasised: (1) low inorganic nitrogen inputs and low organic nitrogen fluxes, (2) high inorganic nitrogen input and output, (3) high inorganic nitrogen input and high organic nitrogen output. The first scenario occurs in late spring and in summer during non-upwelling situations. The consumption of inorganic nitrogen by net photosynthesis is approximately 2 mol N s–1 and the ria is oligotrophic (12 mgC m–2 h–1). The outgoing estuarine residual current transports phytoplanktonic material towards the mouth of the ria whereupon it sediments and is remineralized as it falls to the lower water layers and the incoming residual current. The regenerated nitrogen is reintroduced to the photic ria layer which leads to the greatest reduction in dissolved oxygen concentration (50% of saturation). Recycled nutrients play an important role in primary production during this oligotrophic state of the ria. Thus, approximately half of the inorganic nitrogen utilised by photosynthesis is ammonium. The majority of PON is deposited inside the ria (0.8 mmol N m–2 d–1) and the denitrification rate is 0.3 mmol N2 m–2 d–1. The other two cases occur in winter and spring–summer with upwelling. In winter, estuarine circulation and freshwater contributions control the nitrogen cycle. The ria mainly exports nitrate (up to 14 mol N s–1) and so there is fertilisation but no eutrophication. In spring and summer, the nitrogen cycle is controlled by upwelling circulation. The inorganic nitrogen consumption by net photosynthesis is high, 7–14 mmol N m–2 d–1, and the ria is a natural eutrophic system (70 mgC m–2 h–1). Accordingly, 90% of organic nitrogen is synthesised from nitrate and the upwelling-increased circulation exports 6.5 mol N s–1 of organic nitrogen.  相似文献   

11.
《Aquatic Botany》2004,78(3):197-216
Worldwide, seagrasses provide important habitats in coastal ecosystems, but seagrass meadows are often degraded or destroyed by cultural eutrophication. Presently, there are no available tools for early assessment of nutrient over-enrichment; direct measurements of water column nutrients are ineffective since the nutrients typical of early enrichment are rapidly taken up by plants within the ecosystem. We investigated whether, in a gradient of nutrient availability but prior to actual habitat loss, eelgrass (Zostera marina L.) plant morphology and tissue nutrients might reflect environmental nutrient availability. Eelgrass responses to nitrogen along estuarine gradients were assessed; two of these plant responses were combined to create an early indicator of nutrient over-enrichment. Eelgrass plant morphology and leaf tissue nitrogen (N) were measured along nutrient gradients in three New England estuaries: Great Bay Estuary (NH), Narragansett Bay (RI) and Waquoit Bay (MA). Eelgrass leaf N was significantly higher in up-estuary sampling stations than stations down-estuary, reflecting environmental nitrogen gradients. Leaf N content showed high variance, however, limiting its ability to discriminate the early stages of eutrophication. To find a stronger indicator, plant morphological characteristics such as number of leaves per shoot, blade width, and leaf and sheath length were examined, but they only weakly correlated with leaf tissue N. Area normalized leaf mass (mg dry weight cm−2), however, exhibited a strong and consistently negative relationship with leaf tissue N and a significant response to the estuarine nutrient gradients. We found the ratio of leaf N to leaf mass to be a more sensitive and consistent indicator of early eutrophication than either characteristic alone. We suggest the use of this ratio as a nutrient pollution indicator (NPI).  相似文献   

12.
Fish track wastewater pollution to estuaries   总被引:1,自引:0,他引:1  
Excess nitrogen is a forceful agent of ecological change in coastal waters, and wastewater is a prominent source of nitrogen. In catchments where multiple sources of nitrogen pollution co-exist, biological indicators are needed to gauge the degree to which wastewater-N can propagate through the receiving food webs. The purpose of this study was to test whether estuarine fish are suitable as indicators of sewage-N pollution. Fish were analysed from three estuaries within a 100-km strip on the Australian East Coast. The estuaries differ substantially in wastewater loading: (1) the Maroochy Estuary receives a large fraction of the local shire’s treated sewage, (2) the Mooloolah Estuary has no licensed treated wastewater outfalls but marinas/harbours and stormwater may contribute nitrogen, and (3) the Noosa Estuary which neither receives licensed discharges nor has suspected wastewater loads. Sampling for fish included both high rainfall (‘wet’ season) and low rainfall (‘dry’ season) periods. Muscle-δ15N was the variable predicted to respond to treated wastewater loading, reflecting the relative enrichment in 15N resulting from the treatment process and distinguishing it from alternative N sources such as fertiliser and natural nitrogen inputs (both 15N-depleted). Of the 19 fish species occurring in all three estuaries, those from the Maroochy Estuary had significantly elevated δ15N values (up to 9.9‰), and inter-estuarine differences in fish-δ15N were consistent across seasons. Furthermore, not only did all fish from the estuary receiving treated wastewater carry a very distinctive sewage-N tissue signal, but enriched muscle-δ15N was also evident in all species sampled from the one estuary in which sewage contamination was previously only suspected (i.e. the Mooloolah Estuary: 0.2–4.8‰ enrichment over fish from reference system). Thus, fish-δ15N is a suitable indicator of wastewater-N not only in systems that receive large loads, but also for the detection of more subtle nitrogen inputs. Arguably, fish may be preferred indicators of sewage-N contamination because they: (1) integrate nitrogen inputs over long time periods, (2) have an element of ‘ecological relevance’ because fish muscle-δ15N reflect movement of sewage-N through the food chain, and (3) pollution assessments can usually be based on evidence from multiple species.  相似文献   

13.
Uncles  R.J.  Fraser  A.I.  Butterfield  D.  Johnes  P.  Harrod  T.R. 《Hydrobiologia》2002,(1):239-250
Some of the techniques used to model nitrogen (N) and phosphorus (P) discharges from a terrestrial catchment to an estuary are discussed and applied to the River Tamar and Tamar Estuary system in Southwest England, U.K. Data are presented for dissolved inorganic nutrient concentrations in the Tamar Estuary and compared with those from the contrasting, low turbidity and rapidly flushed Tweed Estuary in Northeast England. In the Tamar catchment, simulations showed that effluent nitrate loads for typical freshwater flows contributed less than 1% of the total N load. The effect of effluent inputs on ammonium loads was more significant (10%). Cattle, sheep and permanent grassland dominated the N catchment export, with diffuse-source N export greatly dominating that due to point sources. Cattle, sheep, permanent grassland and cereal crops generated the greatest rates of diffuse-source P export. This reflected the higher rates of P fertiliser applications to arable land and the susceptibility of bare, arable land to P export in wetter winter months. N and P export to the Tamar Estuary from human sewage was insignificant. Non-conservative behaviour of phosphate was particularly marked in the Tamar Estuary. Silicate concentrations were slightly less than conservative levels, whereas nitrate was essentially conservative. The coastal sea acted as a sink for these terrestrially derived nutrients. A pronounced sag in dissolved oxygen that was associated with strong nitrite and ammonium peaks occurred in the turbidity maximum region of the Tamar Estuary. Nutrient behaviour within the Tweed was very different. The low turbidity and rapid flushing ensured that nutrients there were essentially conservative, so that flushing of nutrients to the coastal zone from the river occurred with little estuarine modification.  相似文献   

14.
This study highlights the effect that estuarine polluted waters may have on adjacent coastal waters and the need of an integrated management of the coastal area. Pollution of land-to-sea water plumes varies spatially and temporally, being difficult, costly and time consuming to determine. However, the reduction in water quality of both estuarine and coastal environments and the consequent degradation of its biological communities is at issue. Chlorophyll-a analysis from water and stable nitrogen isotopic analysis (δ15N) from opportunistic macroalgae Ulva species were respectively used as proxies to detect phytoplankton proliferation and nitrogen related nutrient fluxes in the water. These analytical techniques were combined with the use of three-dimensional hydrodynamic models, and revealed to constitute reliable early warning instruments, able to identify coastal areas at risk, and supporting an integrated management of coastal and river basin areas. The approach detected synchronized δ15N signal variations along time between estuarine sites (Mondego estuary, Portugal) and nearby adjacent coastal shore sites (NE Atlantic coast). The higher values recorded by macroalgal tissues’ δ15N signals, which occurred simultaneously to higher chlorophyll-a values, were linked to the anthropogenic contamination of the water, probably related with the Mondego valley land use patterns throughout the year (reflecting the opening of sluices that drain agriculture fields). Modeling scenarios point to a Mondego’s influence that is able to reach its adjacent coastal shores in about 7 km from its river mouth. The methodology used here is replicable elsewhere and allowed to track nutrients from the source, inside the estuary, until the final area of impact, where primary producers may use those for growth, and to define vulnerable areas on adjacent coastal zones.  相似文献   

15.
To ameliorate local and coastal eutrophication, management agencies are increasingly turning to wetland restoration. A large portion of restoration is occurring in areas that were drained for agriculture. To recover wetland function these areas must be reflooded and disturbances to soils, including high nutrient content due to past fertilizer use, loss of organic matter and soil compaction, must be reversed. Here, we quantified nitrogen (N) and phosphorus (P) retention and transformation in a unique large-scale (440 ha) restored wetland in the North Carolina coastal plain, the Timberlake Restoration Project (TLRP). For 2 years following restoration, we quantified water and nutrient budgets for this former agricultural field. We anticipated that TLRP would export high concentrations of inorganic P immediately following reflooding, while retaining or transforming inorganic N. In the first 2 years after a return to the precipitation and wind-driven hydrology, TLRP retained or transformed 97% of NO3–N, 32% of TDN, 25% of NH4–N, and 53% of soluble reactive phosphorus (SRP) delivered from inflows and precipitation, while exporting 20% more dissolved organic nitrogen (DON), and 13% more total P (inorganic, organic, and particulate P) than inputs. Areal mass retention rates of N and P at TLRP were low compared to other restored wetlands; however, the site efficiently retained pulses of fertilizer NO3–N derived from an upstream farm. This capacity for retaining N pulses indicates that the potential nutrient removal capacity of TLRP is much higher than measured annual rates. Our results illustrate the importance of considering both organic and inorganic forms of N and P when assessing the benefits of wetland restoration. We suggest that for wetland restoration to be an efficient tool in the amelioration of coastal eutrophication a better understanding of the coupled movement of the various forms of N and P is necessary.  相似文献   

16.
David G. Frey 《Hydrobiologia》1995,311(1-3):43-55
From September 1990 through December 1991 nitrous oxide flux measurements were made at 9 intertidal mud flat sites in the Scheldt Estuary. Nitrous oxide release rates were highly variable both between sites and over time at any one site. Annual nitrous oxide fluxes vary from about 10 mmol N m–2 at the tidal fresh-water end-member site to almost zero at the most saline stations. Along the estuarine gradient, annual nitrous oxide fluxes are significantly correlated with sedimentary organic carbon and nitrogen concentrations, ammonium fluxes and annual nitrogen turn-over rates, that are estimated using mass-balance considerations. Nitrous oxide fluxes seem to respond linearly to an increasing nitrogen load, with one out of each 17 000 atoms nitrogen entering estuaries being emitted as nitrous oxide.  相似文献   

17.
Carbon and nitrogen cycling in intertidal mud flat sediments in the Scheldt Estuary was studied using measurements of carbon dioxide, methane and nitrous oxide emission rates and pore-water profiles of CO2, ammonium and nitrate. A comparison between chamber measured carbon dioxide fluxes and those based on CO2 pore-water gradients using Fick's First law indicates that apparent diffusion coefficients are 2 to 28 times higher than bulk sediment diffusion coefficients based on molecular diffusion. Seasonal changes in gaseous carbon fluxes or CO2 pore water concentrations cannot be used directly, or in a simple way, to determine seasonal rates of mineralization, because of marked seasonal changes in pore-water storage and exchange parameters.The annual amount of carbon delivered to the sediment is 42 mol m–2, of which about 42% becomes buried, the remaining being emitted as methane (7%) or carbon dioxide (50%). Each year about 2.6 mol N m–2 of particulate nitrogen reaches the sediment; 1.1 mol m–2 is buried and 1.6 mol m–2 is mineralized to ammonium. Only 0.42 mol m–2 yr–1 of the ammonium produced escapes from the sediments, the remaining being first nitrified (1.2 mol m–2 yr–1) and then denitrified (1.7 mol m–2 yr–1). Simple calculations indicate that intertidal sediments may account for about 14% and 30% of the total estuarine retention of nitrogen and carbon, respectively.  相似文献   

18.
Modeling nitrogen cycling in a coastal fresh water sediment   总被引:1,自引:0,他引:1  
Increased nitrogen (N) loading to coastal marine and freshwater systems is occurring worldwide as a result of human activities. Diagenetic processes in sediments can change the N availability in these systems, by supporting removal through denitrification and burial of organic N (Norg) or by enhancing N recycling. In this study, we use a reactive transport model (RTM) to examine N transformations in a coastal fresh water sediment and quantify N removal rates. We also assess the response of the sediment N cycle to environmental changes that may result from increased salinity which is planned to occur at the site as a result of an estuarine restoration project. Field results show that much of the Norg deposited on the sediment is currently remineralized to ammonium. A rapid removal of nitrate is observed in the sediment pore water, with the resulting nitrate reduction rate estimated to be 130 μmol N cm−2 yr−1. A model sensitivity study was conducted altering the distribution of nitrate reduction between dissimilatory nitrate reduction to ammonium (DNRA) and denitrification. These results show a 40% decline in sediment N removal as NO 3 reduction shifts from denitrification to DNRA. This decreased N removal leads to a shift in sediment-water exchange flux of dissolved inorganic nitrogen (DIN) from near zero with denitrification to 133 μmol N cm−2 yr−1 if DNRA is the dominant pathway. The response to salinization includes a short-term release of adsorbed ammonium. Additional changes expected to result from the estuarine restoration include: lower NO 3 concentrations and greater SO 4 2− concentrations in the bottom water, decreased nitrification rates, and increased sediment mixing. The effect of these changes on net DIN flux and N removal vary based on the distribution of DNRA versus denitrification, illustrating the need for a better understanding of factors controlling this competition.  相似文献   

19.
Inorganic Carbon of Sediments in the Yangtze River Estuary and Jiaozhou Bay   总被引:3,自引:0,他引:3  
JGOFS results showed that the ocean is a major sink for the increasing atmospheric carbon dioxide resulting from human activity. However, the role of the coastal seas in the global carbon cycling is poorly understood. In the present work, the inorganic carbon (IC) in the Yangtze River Estuary and Jiaozhou Bay are studied as examples of offshore sediments. Sequential extraction was used to divide inorganic carbon in the sediments into five forms, NaCl form, NH3 H2O form, NaOH form, NH2OH HCl form and HCl form. Studied of their content and influencing factors were also showed that NaCl form < NH3 H2O form<NaOH form < NH2OH HCl form<HCl form, and that their influencing factors of pH, Eh, Es, water content, organic carbon, organic nitrogen, inorganic nitrogen, organic phosphorus and inorganic phosphorus on inorganic carbon can be divided into two groups, and that every factor has different influence on different form or on the same form in different environment. Different IC form may transform into each other in the early diagenetic process of sediment, but NaCl form, NH3 H2O form, NaOH form and NH2OH HCl form may convert to HCl form ultimately. So every IC form has different contribution to carbon cycling. This study showed that the contribution of various form of IC to the carbon cycle is in the order of NaOH form>NH2OH HCl form>NH3 H2O form>NaCl form>HCl form, and that the contribution of HCl form contributes little to carbon cycling, HCl form may be one of end-result of atmospheric CO2. So Yangtze River estuary sediment may absorb at least about 40.96×1011 g atmospheric CO2 every year, which indicated that offshore sediment play an important role in absorbing atmospheric CO2.  相似文献   

20.
Tidal freshwater wetlands are sensitive to sea level rise and increased salinity, although little information is known about the impact of salinification on nutrient biogeochemistry in tidal freshwater forested wetlands. We quantified soil nitrogen (N) and phosphorus (P) mineralization using seasonal in situ incubations of modified resin cores along spatial gradients of chronic salinification (from continuously freshwater tidal forest to salt impacted tidal forest to oligohaline marsh) and in hummocks and hollows of the continuously freshwater tidal forest along the blackwater Waccamaw River and alluvial Savannah River. Salinification increased rates of net N and P mineralization fluxes and turnover in tidal freshwater forested wetland soils, most likely through tree stress and senescence (for N) and conversion to oligohaline marsh (for P). Stimulation of N and P mineralization by chronic salinification was apparently unrelated to inputs of sulfate (for N and P) or direct effects of increased soil conductivity (for N). In addition, the tidal wetland soils of the alluvial river mineralized more P relative to N than the blackwater river. Finally, hummocks had much greater nitrification fluxes than hollows at the continuously freshwater tidal forested wetland sites. These findings add to knowledge of the responses of tidal freshwater ecosystems to sea level rise and salinification that is necessary to predict the consequences of state changes in coastal ecosystem structure and function due to global change, including potential impacts on estuarine eutrophication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号