首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The mechanisms that reduce the viability of plant somatic embryos following cryopreservation are not known. The objective of the present study was to evaluate the sensitivity of cocoa (Theobroma cacao L.) somatic embryos at different stages of an encapsulation–dehydration protocol using stress-related volatile hydrocarbons as markers of injury and recovery. The plant stress hormone ethylene and volatile hydrocarbons derived from hydroxyl radicals (methane) and lipid peroxidation (ethane) were determined using gas chromatography headspace analysis. Ethylene and methane were the only volatiles detected, with both being produced after each step of the cryogenic protocol. Ethylene production was significantly reduced following exposure to liquid nitrogen, but then increased in parallel with embryo recovery. In contrast, the production of methane was cyclic during recovery, with the first cycle occurring earlier for embryos recovered from liquid nitrogen and desiccation than those recovered from earlier steps in the protocol. These results suggest that loss of somatic embryo viability during cryopreservation may be related to the oxidative status of the tissue, and its capacity to produce ethylene. This study has demonstrated that headspace volatile analysis provides a robust non-destructive analytical approach for assessing the survival and recovery of plant somatic embryos following cryopreservation.  相似文献   

2.
In breast cancer, various clinical parameters are assessed to define clinical stage and thus obtain a more accurate prognosis. However, banks of tumor tissues are an important source of material for studies of risk of recurrence and of features governing clinical outcome in breast cancer. Although the heterogeneous characteristics of individual tumors, subtle phenotypes and stem cells can only be identified in viable cells, tissue banks often give low priority to the preservation of living cells because it is labor-intensive and expensive. The present study was designed to evaluate the feasibility of introducing, within the routine procedures of tissue preservation, a cryopreservation protocol that allows the recovery of living cells after storage. We analyzed the effect of storage time on cell viability, growth rates, and protein expression of ten human breast cancer specimens subjected to various cryopreservation techniques. Cryopreservation of cancer tissue specimens for 12 months allowed protein characterization but not the recovery of living cells. Here we show that enzymatic digestion immediately before slow freezing, and storage in liquid nitrogen permits the recovery and expansion of living cells that can be tailored to specific requirements and projects.  相似文献   

3.
The tissue cryopreservation maintains the cellular metabolism in a quiescence state and makes the conservation possible for an indefinite period of time. The choice of an appropriate cryopreservation protocol is essential for maintenance of cryopreserved tissue banks. This study evaluated 10 samples of umbilical cord, from which small fragments of tissue (Wharton’s jelly and cord lining membrane) were subjected to two protocols of cryopreservation: slow cooling and vitrification. The samples were frozen for a period of time ranging from 5 to 78 days. The efficiency of cryopreservation was evaluated by testing cell viability, histological analysis, cell culture, cytogenetic analysis and comparison with the results of the fresh samples. The results showed that the slow cooling protocol was more efficient than the vitrification for cryopreservation of umbilical cord tissue, because it has caused fewer changes in the structure of tissue (edema and degeneration of the epithelium) and, despite the significant decrease cell viability compared to fresh samples, the ability of cell proliferation in vitro was preserved in most samples. In conclusion, this study showed that it is possible to cryopreserve small fragments of tissue from the umbilical cord and, to obtain viable cells capable of proliferation in vitro after thawing, contributing to the creation of a frozen tissue bank.  相似文献   

4.
A number of studies on the cryopreservation of precision-cut liver slices using various techniques have been reported. However, the identification of important factors that determine cell viability following cryopreservation is difficult because of large differences between the various methods published. The aim of this study was to evaluate some important factors in the freezing process in an effort to find an optimized approach to the cryopreservation of precision-cut liver slices. A comparative study of a slow and a fast freezing technique was carried out to establish any differences in tissue viability for a number of endpoints. Both freezing techniques aim at the prevention of intracellular ice formation, which is thought to be the main cause of cell death after cryopreservation. Subsequently, critical variables in the freezing process were studied more closely in order to explain the differences in viability found in the two methods in the first study. For this purpose, a full factorial experimental design was used with 16 experimental groups, allowing a number of variables to be studied at different levels in one single experiment. It is demonstrated that ATP and K(+) content and histomorphology are sensitive parameters for evaluating slice viability after cryopreservation. Subsequently, it is shown that freezing rate and the cryopreservation medium largely determine the residual viability of liver slices after cryopreservation and subsequent culturing. It is concluded that a cryopreservation protocol with a fast freezing step and using William's Medium E as cryopreservation medium was the most promising approach to successful freezing of rat liver slices of those tested in this study.  相似文献   

5.
In vitro techniques are very useful for conserving plant biodiversity, including (a) genetic resources of recalcitrant seed and vegetatively propagated species, (b) rare and endangered plant species and (c) biotechnology products such as elite genotypes and genetically engineered material. Explants from recalcitrant seed and vegetatively propagated species can be efficiently collected under field conditions using in vitro techniques. In vitro culture techniques ensure the production and rapid multiplication of disease-free material. Medium-term conservation is achieved by reducing growth of plant material, thus increasing intervals between subcultures. For long-term conservation, cryopreservation (liquid nitrogen, −196°C) allows storing plant material without modification or alteration for extended periods, protected from contaminations and with limited maintenance. Slow growth storage protocols are routinely employed for a large number of species, including numerous endangered plants, from temperate and tropical origin. Cryopreservation is well advanced for vegetatively propagated species, and techniques are ready for large-scale experimentation in an increasing number of cases. Research is much less advanced for recalcitrant species due to their seed characteristics, viz., very high sensitivity to desiccation, structural complexity and heterogeneity in terms of developmental stage and water content at maturity. However, various technical approaches should be explored to develop cryopreservation techniques for a larger number of recalcitrant seed species. A range of analytical techniques are available, which allow understanding physical and biological processes taking place in explants during cryopreservation. These techniques are extremely useful to assist in the development of cryopreservation protocols. In comparison with crop species, only limited research has been performed on cryopreservation of rare and endangered species. Even though routine use of cryopreservation is still limited, an increasing number of examples where cryopreservation is used on a large scale can be found both in genebanks for crops and in botanical gardens for endangered species.  相似文献   

6.
Cryopreservation of testicular tissue before cancer therapy for fertility preservation in prepubertal boys with cancer is of great interest in reproductive medicine. Isolation of spermatogonial stem cells (SSCs) from cryopreserved tissues would be a suitable cell source to re-establish spermatogenesis after cancer therapy. We herein establish optimized protocols for cryopreservation of human testicular tissue and isolation of SSCs from cryopreserved tissue. We developed a freezing protocol that provided high testicular cell viability and supported structural integrity and tubular epithelium coherence similar to fresh tissue. Then, we established a protocol that allowed efficient isolation of functional SSCs from cryopreserved tissues. Isolated cells were found on the testicular basement membrane after xenotransplantation. Our results demonstrated the preservation of testicular tissue structure and high cell viability with efficient isolation of SSCs after testicular cryopreservation, which is promising for future therapeutic applications in fertility preservation.  相似文献   

7.
Plants have been established as an useful production system for commercially relevant proteins. Plant cell cultures show certain advantages compared to field-grown plants. However, one critical drawback for the long-term use of recombinant plant cell cultures is the instability of cell cultures concerning genetic background and productivity when maintained by subculturing. The ability to store recombinant cell lines stably by cryopreservation allows to maintain an efficient and stable production system. In this work, we describe the development of a cryopreservation protocol for a transgenic BY-2 cell culture expressing human serum albumin. In 1.75-L stirred-tank bioreactors growth and production kinetics of the transgenic cell line were compared after cryopreservation to the hitherto performed maintenance by subculturing. Growth and productivity of the cryopreserved cell culture remained stable after freezing for one week. Here, we show that we developed an efficient method which allows the storage of transgenic plant cell cultures, an important requirement for industrial processes.  相似文献   

8.
The cryopreservation of oocytes is valuable for the preservation of women's fertility and might also be an interesting tool to preserve animal genetic biodiversity but it is not often used because of the very poor fertility recovered after thawing, especially in rabbit species. The objective of our study was to evaluate the effect of slow-freezing and vitrification on the structural integrity of ovulated rabbit oocytes, their ATP contents, and their developmental competence. Results show that, whatever the method is used, cryopreservation has a dramatic effect on the metabolic integrity, the structural integrity, and the developmental ability of the oocytes. Vitrification and slow freezing both impair the rabbit oocytes viability after thawing but the processes act differently. Further studies are needed to improve the cryopreservation techniques in rabbit species. Moreover, we underlined that morphology and maintenance of the structural integrity of the oocytes are not suitable enough to assess the potential for further development of cryopreserved MII oocytes. The assessment of ATP metabolism allows efficient evaluation of the viability of the frozen or vitrified oocytes. It should be used in addition to parthenogenesis to better assess the potential for further development.  相似文献   

9.
Efficient methods for in vitro propagation, regeneration, and transformation of plants are of pivotal importance to both basic and applied research. While being the world’s major food crops, cereals are among the most difficult-to-handle plants in tissue culture which severely limits genetic engineering approaches. In maize, immature zygotic embryos provide the predominantly used material for establishing regeneration-competent cell or callus cultures for genetic transformation experiments. The procedures involved are demanding, laborious and time consuming and depend on greenhouse facilities. We have developed a novel tissue culture and plant regeneration system that uses maize leaf tissue and thus is independent of zygotic embryos and greenhouse facilities. We report here: (i) a protocol for the efficient induction of regeneration-competent callus from maize leaves in the dark, (ii) a protocol for inducing highly regenerable callus in the light, and (iii) the use of leaf-derived callus for the generation of stably transformed maize plants.  相似文献   

10.
Petiveria alliacea L. is a medicinal plant originating from the Amazon region. This study describes an efficient cryopreservation protocol for somatic embryos (SEs) produced from roots of P. alliacea based on the comparison of vitrification, encapsulation-dehydration, and D cryo-plate techniques. With the vitrification technique, SEs treated with PVS2 solution (0.4 M sucrose, 3.3 M glycerol, 2.4 M ethylene glycol, and 1.9 M DMSO) for 30 min displayed high viability (85%) and intermediate proliferation recovery (about 12 adventitious SEs produced from original SEs [SEs/SE] after 90 d of culture). With the encapsulation-dehydration technique, lower viability (70%) and very low proliferation recovery (about two SEs/SE) were achieved with cryopreserved SEs dehydrated for 10 min in a laminar air flow cabinet. The D cryo-plate technique led to high viability (85%) and proliferation recovery (19 SEs/SE) of cryopreserved SEs after 90 min dehydration. In the experimental conditions tested, the D cryo-plate method was the most efficient technique for cryopreservation of P. alliacea SEs.  相似文献   

11.
Long-term viability of preserved eukaryotic algae   总被引:5,自引:0,他引:5  
Levels of viability of Chlorella emersonii after storage of dried material for one year were 0.1% on rehydration, all other dried organisms examined in this study failed to recover after prolonged storage. In addition, no detectable recovery was observed in any of the algae tested after storage of freeze-dried cultures. Methods have also been developed to cryopreserve a range of microalgae, but no single protocol has been found to be universally satisfactory. Some strains are apparently not able to withstand cryopreservation using known methods, whilst others may be frozen successfully in the absence of cryoprotectant by plunging directly into liquid nitrogen. A two-step protocol (cooling to an intermediate subzero temperature prior to plunging into liquid nitrogen) has been used to cryopreserve the majority of strains. Where this has proven successful, post-thaw viability levels of over 95% have been attained for some algae. This paper demonstrates that, where applicable, cryopreservation allows the long-term preservation of frozen algae with no significant reduction in viability up to 22 years storage. (Previous location of Culture Collection of Algae and Protozoa) This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

12.
We have established a procedure for automated, kinetic analysis of β-glucuronidase (GUS) activities using a colorimetric or fluorometric microtiter plate reader connected to a computer that directs the measurements and accesses the data. Compared with end-point measurements, the procedure saves time, is more accurate, and needs 20 times less material. It allows a more precise determination of GUS activities over a range of 400,000-fold, with a limit of detection of about 0.01 units of GUS per mL in the colorimetric assay and 0.1 milliunit of GUS in the fluorometric assay. A general protocol for the determination of GUS activities in transgenic plant tissue was worked out and applied to investigate the expression of a chimeric β-glucuronidase gene in stably transformed tobacco calli.  相似文献   

13.

Germplasm conservation of pineapple [Ananas comosus (L.) Mer.] is crucial to preserve the genus’ genetic diversity, to secure material for genetic improvement and to support innovative and new research. Long-term conservation is accomplished through cryopreservation, that is done by storing cells or tissues at ultra-low temperature in liquid nitrogen (−196 °C). Droplet-vitrification, a combination of droplet freezing and solution-based vitrification, was used to establish a protocol for cryopreservation of pineapple genetic resources. This protocol was tested on cultivated and wild pineapple genotypes to establish a long-term germplasm security duplicate as well as to investigate cryo-injuries in the tissues by means of histological techniques. Excised shoot tips (0.5–1 mm with one primordial leaf) of different pineapple genotypes were precultured for 48 h on solid MS medium containing 0.3 M of sucrose. Three PVS2 exposure times (30, 45 and 60 min) were tested. The results showed high post cryopreservation survival for all genotypes evaluated. The best PVS2 exposure time varied according to genotype, although 45 min gave the best survival for the majority of genotypes. The technique was highly efficient in cryopreserving meristem shoot tips of different pineapple genotypes, and was also less laborious than techniques previously reported. This is a first report on application of the droplet-vitrification technique to diverse genotypes of cultivated and wild pineapples and the first report on histological changes occurring in cryopreserved Ananas tissue.

  相似文献   

14.
Microalgae currently receive growing attention as promising candidates for future bio‐economy concepts. However, the reliable maintenance of production strains remains challenging. The well‐established serial subculturing techniques suffer from low long‐time stability and high effort and are therefore stepwise being replaced by cryopreservation. Currently, available protocols are often deduced from cell culture technology and are rather complex. This study aimed to investigate if less complex approaches can be applied. We introduce an easy‐to‐use cryopreservation protocol based on the model organism Chlorella vulgaris. To overcome error‐prone viability estimation by plating techniques, an alternative method using growth pattern analysis was developed. As revealed by growth pattern analysis, the preservation of stationary phase cells proved superior to the commonly applied concept of freezing cells from the growing phase. Controlled‐rate cooling using simple devices resulted in reproducibly high post‐thawing viabilities in the range of 63 ± 2%. Moreover, the presented protocol highlights the potential of simplifying microalgal cryo‐preservation procedures, thereby reducing the required labor and material need to a minimum. Apart from the viability analysis of the cryopreserved microalga C. vulgaris, this approach seems to have the potential to be applied for other algae species and microorganisms, as well.  相似文献   

15.
We describe a general method for the preparation of λZAP II cDNA libraries from very small amounts (<50 mg) of plant tissue. We have achieved this by combining an efficient method for RNA extraction with a modified PCR protocol for the synthesis and amplification of cDNA. Using this protocol we have found it possible to generate cDNA libraries containing more than 106 clones from as little as 1 μg of total RNA.  相似文献   

16.
The use of ex situ techniques for the conservation of threatened plants has been increasing over the past decades. Cryopreservation is often used for the long-term storage of plant germplasm where conventional methods (i.e. seedbanking) are inappropriate. Simple encapsulation–dehydration protocols were developed for the cryopreservation of bryophytes at The Royal Botanic Gardens, Kew, as part of an ex situ project for the conservation of UK threatened species. The applicability of these methods was tested on 22 species with a broad range of ecological requirements and found to be highly successful across the board. Regeneration rates from frozen material were >68% for all species tested and half had regeneration rates of 100%. The high regeneration rate and broad applicability of the protocols across a range of species was attributed to a combination of the inherent totipotency of bryophytes and the in-built recovery periods in the pre-treatment protocol. In conclusion, bryophytes are well suited to cryopreservation and such techniques would be applicable for the long-term storage of similar conservation collections across the globe.  相似文献   

17.
Many plant RNA isolation techniques aim to prevent contamination by means of secondary phenolics, carbohydrates, RNase, and other chemicals. However, when applied in our laboratory to the isolation of RNA fromRumex obtusifolius, these protocols failed to produce good quality RNA. A major problem was contamination of the RNA samples with the secondary metabolite oxalate. The relative quantities of guanidine isothiocyanate extraction buffer to plant tissue used in the protocol had significant effects on oxalate contamination. An increase in extraction buffer, from 1.5 mL in the original method to 15 mL per 200–300 mg of tissue in our protocol, removed the oxalate from the RNA. This RNA was of a good quality and was suitable for molecular biology applications.  相似文献   

18.
The impact of successful cryopreservation of spermatozoa can be found in many fields, including agriculture, laboratory animal medicine, and human assisted reproduction, providing a cost-effective and efficient method to preserve genetic material for decades. The success of any cryobiologic protocol depends critically on understanding the fundamentals that underlie the process. In this review, we summarize the biophysical fundamentals critical to much of the research in sperm cryobiology, provide a synopsis of the development of sperm cryobiology as a discipline, and present the current state and directions for future research in sperm cryobiology in the three major areas outlined above—agriculture, laboratory animal medicine, and human clinical assisted reproduction. There is much room for new research, both empiric and fundamental, in all areas, including refinement of mathematical models, optimization of cryoprotective agent addition and removal procedures for spermatozoa from many species, development of effective, efficient, and facile cryopreservation protocols and freezing containers for agricultural sperm cryopreservation, and tailoring cryopreservation protocols for individual human samples.  相似文献   

19.
Jatropha curcas L. is one potential source of non-edible biofuel-producing energy crop. Its importance also lies in its medicinal properties. The species is primarily propagated through heterozygous seeds, and thus the seed oil content varies from 4 to 40%. Moreover, due to its perennial nature, seed setting requires 2 to 3 years time. The seed viability and rate of germination are low, and quality seed screening is another laborious task; thus, seed propagation alone cannot provide quality planting material for sustainable use. Somatic embryogenesis, a powerful tool of plant biotechnology for faster and quality plant production has been successfully applied to regenerate plants in Jatropha curcas for the first time. Embryogenic calli were obtained from leaf explants on MS basal medium supplemented with only 9.3 μM Kn. Induction of globular somatic embryos from 58% of the cultures was achieved on MS medium with different concentrations of 2.3–4.6 μM Kn and 0.5–4.9 μM IBA; 2.3 μM Kn and 1.0 μM IBA proved to be the most effective combination for somatic embryo induction in Jatropha curcas. Addition of 13.6 μM adenine sulphate stimulated the process of development of somatic embryos. Mature somatic embryos were converted to plantlets on half strength MS basal medium with 90% survival rate in the field condition. The whole process required 12–16 weeks of culture for completion of all steps of plant regeneration. This protocol of somatic embryogenesis in Jatropha curcas may be an ideal system for future transgenic research.  相似文献   

20.
In this study, we outline a standardized protocol for the successful cryopreservation and thawing of cortical brain tissue blocks to generate highly enriched neuronal cultures. For this protocol the freezing medium used is 10% dimethyl sulfoxide (DMSO) diluted in Hank''s Buffered Salt Solution (HBSS). Blocks of cortical tissue are transferred to cryovials containing the freezing medium and slowly frozen at -1°C/min in a rate-controlled freezing container. Post-thaw processing and dissociation of frozen tissue blocks consistently produced neuronal-enriched cultures which exhibited rapid neuritic growth during the first 5 days in culture and significant expansion of the neuronal network within 10 days. Immunocytochemical staining with the astrocytic marker glial fibrillary acidic protein (GFAP) and the neuronal marker beta-tubulin class III, revealed high numbers of neurons and astrocytes in the cultures. Generation of neural precursor cell cultures after tissue block dissociation resulted in rapidly expanding neurospheres, which produced large numbers of neurons and astrocytes under differentiating conditions. This simple cryopreservation protocol allows for the rapid, efficient, and inexpensive preservation of cortical brain tissue blocks, which grants increased flexibility for later generation of neuronal, astrocyte, and neuronal precursor cell cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号