首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of Long-Lasting Diabetes Mellitus on Rat and Human Brain Monoamines   总被引:3,自引:1,他引:2  
Experimental alloxan- or streptozotocin-produced diabetes in rats was accompanied by an increase in the levels of norepinephrine, dopamine, and serotonin, whereas the contents of metabolites, i.e., 5-hydroxyindoleacetic acid and homovanillic acid, in the whole brain gradually decreased with the duration of diabetes. Among the striatum, thalamus, and hypothalamus of alloxan diabetic rats, monoamine alterations were observed only in the hypothalamus; after 1 week an increase of norepinephrine content and after 13 weeks an increase of norepinephrine and dopamine contents were found. Tissues of 11 brain regions of 10 diabetic and 12 control patients post mortem were investigated for monoamine concentrations. Patients were all male, of similar age and interval between death and autopsy. Diabetic patients had an increase in the content of serotonin in the medial and lateral hypothalamus. The content of dopamine increased in the medial hypothalamus, putamen, and medial and lateral pallidus. In diabetic patients, the content of norepinephrine increased in the lateral pallidus and decreased in the nucleus accumbens and claustrum. Thus, it seems that diabetes mellitus in rats, as well as in humans is associated with regionally specific changes in brain monoamines.  相似文献   

2.
E B Olson 《Life sciences》1988,42(15):1469-1476
Awake, adult male rats (some with chronically indwelling femoral artery catheters) were exposed for up to 7 days to one of three environments: a) normoxia (PIO2 = 155 Torr), b) hypoxic hypocapnia (PIO2 = 90 Torr), and c) hypoxic normocapnia (PIO2 = 73 Torr, PICO2 = 32 Torr), and arterial blood gas and acid-base status were documented. After 1 hour to 7 days, rats were sacrificed, and the time courses of the brain levels and turnovers of norepinephrine (NE), dopamine (DA) and serotonin (5-hydroxytryptamine or 5HT) were determined in each condition. The transient decrease in monoamine levels seen on exposure to acute hypoxia was absent if normocapnia was maintained; 7 days hypoxia with or without hypocapnia resulted in increased monoamine levels. Normocapnia also prevented an immediate, sustained decrease in 5HT turnover and a delayed decrease in DA turnover which were observed in hypoxic hypocapnia. A delayed increase in 5HT turnover appeared to be due to hypoxia independent of PaCO2. Therefore, the initial, transient loss of mental acuity and some ventilatory adaptations observed during prolonged hypoxia may be a result of the decrease in PaCO2 rather than the decreased oxygen concentration.  相似文献   

3.
Spontaneously hypertensive rats (SHRs) are used as a model for attention-deficit/hyperactivity disorder (ADHD), since SHRs are hyperactive and show defective sustained attention in behavioral tasks. The psychostimulants amphetamine and methylphenidate and the selective norepinephrine reuptake inhibitor atomoxetine are used as ADHD medications. The effects of high K+ stimulation or psychostimulants on brain norepinephrine or dopamine release in SHRs have been previously studied both in vitro and in vivo, but the effects of atomoxetine on these neurotransmitters have not. The present study examined the effects of administration of atomoxetine on extracellular norepinephrine, dopamine, and serotonin levels in the prefrontal cortex of juvenile SHRs and Wistar-Kyoto (WKY) rats. Baseline levels of prefrontal norepinephrine, dopamine, and serotonin were similar in SHRs and WKY rats. Systemic administration of atomoxetine (3 mg/kg) induced similar increases in prefrontal norepinephrine and dopamine, but not serotonin, levels in both strains. Furthermore, there was no difference in high K+-induced increases in extracellular norepinephrine, dopamine, and serotonin levels in the prefrontal cortex between SHRs and WKY rats. These findings indicate that monoamine systems in the prefrontal cortex are similar between SHRs and WKY rats.  相似文献   

4.
The effects of hypoxia (10% O2, 90% N2) on the content, biosynthesis, and turnover of noradrenaline (NA) and 3,4-dihydroxyphenylethylamine (dopamine, DA) in the rat brain were examined. Up to 24 h following exposure to hypoxia, NA content in the whole brain was decreased, whereas DA content remained unchanged. The accumulation of 3,4-dihydroxyphenylalanine (DOPA) after central decarboxylase inhibition was decreased. The turnover rate of DA after synthesis inhibition was markedly decreased up to 8 h and returned to the control level within 24 h. In contrast, the turnover rate of NA was all but unchanged, except for a 4-h exposure. The 2-h exposure to the hypoxic environment resulted in a significant decrease in NA content and DOPA accumulation in all brain regions tested, but no significant change was observed in DA content. The turnover rate of DA was remarkably decreased in all brain regions tested, whereas the rate of NA was slightly decreased only in the cerebral cortex and hippocampus. These results suggest that although hypoxia decreases the biosynthesis of both NA and DA, the effects of oxygen depletion on the functional activities of NA neurons differ considerably from those of DA neurons: Only in the cerebral cortex and hippocampus are the NA neurons slightly sensitive to hypoxia, whereas the DA neurons are most sensitive in all brain regions.  相似文献   

5.
Carbamazepine (25 mg/kg body weight) was administered intraperitoneally to adult male Wistar rats for 45 days and norepinephrine (NE), dopamine (DA) and serotonin (5-HT) levels were simultaneously assayed in discrete brain regions by high performance liquid chromatographic (HPLC) method. Experimental rats displayed no behavioral abnormalities. Body and brain weights were not significantly different from control group of rats. After exposure it was observed that norepinephrine levels were elevated in motor cortex (P<0.01) and cerebellum (P<0.05), while dopamine levels were decreased in these two regions (P<0.001, P<0.05). However, dopamine levels were increased in hippocampus (P<0.01). Serotonin levels were significantly decreased in motor cortex (P<0.001) and hypothalamus (P<0.001) but increased in striatum-accumbens (P<0.001) and brainstem (P<0.001). These results suggest that carbamazepine may mediate its anticonvulsant effect by differential alterations of monoamine levels in discrete brain regions particularly in motor cortex and cerebellum.  相似文献   

6.
7.
Although many studies have revealed alterations in neurotransmission during ischaemia, few works have been devoted to the neurochemical effects of mild hypoxia, a situation encountered during life in altitude or in several pathologies. In that context, the present work was undertaken to determine the in vivo mechanisms underlying the striatal dopamine efflux induced by mild hypoxaemic hypoxia. For that purpose, the extracellular concentrations of dopamine and its metabolite 3,4-dihydroxyphenyl acetic acid were simultaneously measured using brain microdialysis during acute hypoxic exposure (10% O2, 1 h) in awake rats. Hypoxia induced a +80% increase in dopamine. Application of the dopamine transporters inhibitor, nomifensine (10 μM), just before the hypoxia prevented the rise in dopamine during the early part of hypoxia; in contrast the application of nomifensine after the beginning of hypoxia, failed to alter the increase in dopamine. Application of the voltage-dependent Na+ channel blocker tetrodotoxin abolished the increase in dopamine, whether administered just before or after the beginning of hypoxia. These data show that the neurochemical mechanisms of the dopamine efflux may change over the course of the hypoxic exposure, dopamine transporters being involved only at the beginning of hypoxia.  相似文献   

8.
Pargyline, an inhibitor of monoamine oxidase type B (MAO-B), did not prevent the depletion of heart norepinephrine 24 hr after a single dose of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in mice. In mice killed 24 hr after the last of 4 daily doses of MPTP, the depletion of dopamine in the striatum and of norepinephrine in the frontal cortex was completely prevented by pargyline, but the depletion of heart norepinephrine was not prevented. These results with pargyline are the same as results obtained earlier with deprenyl, another selective inhibitor of MAO-B. The doses of pargyline and of deprenyl that were used resulted in almost complete inhibition of MAO-B activity (phenylethylamine as substrate) in brain, heart and liver of mice. Deprenyl did not inhibit MAO-A activity (serotonin as substrate) in brain, but pargyline caused some inhibition of MAO-A in brain. In heart and liver, serotonin was oxidized only at about 1/10 the rate of phenylethylamine oxidation, suggesting that MAO-B predominates in these tissues. Both pargyline and deprenyl caused some inhibition of serotonin deamination in heart and liver, suggesting that the oxidation may have been due partly to MAO-B. Experiments with selective MAO inhibitors in vitro showed that only about 20% of the oxidation of serotonin was occurring via MAO-B in heart and liver. The in vitro oxidation of MPTP by MAO in mouse brain, heart and liver was almost completely inhibited by pretreatment with either pargyline or deprenyl. Neither pargyline nor deprenyl had any significant effect on the concentrations of MPTP in brain or heart one-half hr after injection of MPTP into mice. The concentrations of the metabolite, MPP+ (1-methyl-4-phenyl-pyridinium), were markedly reduced in brain and in heart by pretreatment with either pargyline or deprenyl. The data suggest that MPP+ formation, which is necessary for the depletion of brain catecholamines after MPTP injection, may not be necessary for depletion of norepinephrine in heart. Since the oxidation of MPTP in vitro was inhibited more by pargyline or deprenyl pretreatment than was the appearance of MPP+ in vivo, the possibility exists that some MPP+ formation might occur by an enzyme other than MAO.  相似文献   

9.
The psychostimulant drug amphetamine is often prescribed to treat Attention-Deficit/Hyperactivity Disorder. The behavioral effects of the psychostimulant drug amphetamine depend on its ability to increase monoamine neurotransmission in brain regions such as the nucleus accumbens (NAC) and medial prefrontal cortex (mPFC). Recent behavioral data suggest that the endocannabinoid system also plays a role in this respect. Here we investigated the role of cannabinoid CB1 receptor activity in amphetamine-induced monoamine release in the NAC and/or mPFC of rats using in vivo microdialysis. Results show that systemic administration of a low, clinically relevant dose of amphetamine (0.5mg/kg) robustly increased dopamine and norepinephrine release (to ~175-350% of baseline values) in the NAC shell and core subregions as well as the ventral and dorsal parts of the mPFC, while moderately enhancing extracellular serotonin levels (to ~135% of baseline value) in the NAC core only. Although systemic administration of the CB1 receptor antagonist SR141716A (0-3mg/kg) alone did not affect monoamine release, it dose-dependently abolished amphetamine-induced dopamine release specifically in the NAC shell. SR141716A did not affect amphetamine-induced norepinephrine or serotonin release in any of the brain regions investigated. Thus, the effects of acute CB1 receptor blockade on amphetamine-induced monoamine transmission were restricted to dopamine, and more specifically to mesolimbic dopamine projections into the NAC shell. This brain region- and monoamine-selective role of CB1 receptors is suggested to subserve the behavioral effects of amphetamine.  相似文献   

10.
Chronic intake of methamphetamine (METH) causes tolerance to its behavioral and subjective effects. To better mimic human patterns of drug abuse, the present study used a rodent model that took into account various facets of human drug administration and measured METH-induced effects on brain monoamine levels. Adult male Sprague–Dawley rats were injected with METH or saline according to an escalating dose schedule for 2 weeks. This was followed by a challenge regimen of either saline or one of two doses of METH (3 × 10 mg/kg every 2 h or 6 × 5 mg/kg given every hour, both given within a single day). Both challenge doses of METH caused significant degrees of depletion of dopamine in the striatum and norepinephrine and serotonin in the striatum, cortex, and hippocampus. Animals pre-treated with METH showed significant attenuation of METH-induced striatal dopamine depletion but not consistent attenuation of norepinephrine and serotonin depletion. Unexpectedly, METH pre-treated animals that received the 3 × 10 mg/kg challenge showed less increases in tympanic temperatures than saline pre-treated rats whereas METH pre-treated animals that received the 6 × 5 mg/kg METH challenge showed comparable increases in temperatures to saline pre-treated rats. Therefore, pre-treatment-induced partial protection against monoamine depletion is probably not because of attenuated METH-induced hyperthermia in those rats.  相似文献   

11.
EFFECT OF γ-AMINOBUTYRIC ACID ON BRAIN SEROTONIN AND CATECHOLAMINES   总被引:1,自引:0,他引:1  
—Intraperitoneal injections of GABA (5 mg/kg) to rats lowered the level of norepinephrine in brain, heart and spleen but not suprarenals and raised that of serotonin in brain. Changes of these monoamines were most pronounced in the hypothalamic region after 20min. A reduction of hypothalamic norepinephrine was also observed 15min following the intracarotid administration of 0·5 mg/kg of GABA. In these experiments there was a concomitant increase in the level of free GABA in the anterior portion of the ventral hypothalamus. Brain dopamine level and 5-hydroxytryptophan decarboxylase, dihydroxyphenylalanine decarboxylase and monoamine oxidase activities were not affected. The 20 per cent increase of endogenous GABA observed in the midbrain 30 min following the administration of amino-oxyacetic acid was accompanied by a sharp fall in norepinephrine level (39 per cent) and an increase in serotonin (20 per cent). In in vitro studies 10–300 μg/ml of GABA were shown to release norepinephrine from cortical and hypothalamic slices, and to inhibit serotonin release without affecting 5-hydroxytryptophan uptake and to have no effect on the release of dopamine from slices of the region of the corpus striatum nor on the activity of the enzymes mentioned. Subcellular studies showed that the particulate:supernatant ratio for norepinephrine was reduced from a control value of 2·04 to 1·75 and that of serotonin was raised from 2·8 to 3·5. Following pretreatment with iproniazid, GABA reduced the raised level of brain norepinephrine to a greater extent than reserpine but not as intensively as amphetamine. The results obtained suggest that these monoamines may be involved in the mechanisms underlying the action of GABA in brain and that the effect of GABA on brain monoamines may be of certain significance in synaptic events.  相似文献   

12.
Abstract— Daily exposure to cadmium (10 μg/100g) for 30 days since birth significantly increased spontaneous locomotor activity as well as striatal tyrosine hydroxylase and mid-brain tryptophan hydroxylase. The endogenous levels of norepinephrine, dopamine and serotonin failed to change in various brain regions of cadmium-treated rats. In contrast, the concentration of 5-hydroxyindoleacetic acid tended to rise but was significantly different from controls only in the mid-brain region. The data suggest that cadmium treatment in early life increased the synthesis and physiological utilization of these putative transmitters which in turn probably altered locomotor performance. Increasing the dose of cadmium to 100 μg/100 g for 30 days decreased body weight (by 19%) and produced slight increases in the turnover of brain amines. However, the rise was not dose-dependent. Furthermore, the locomotor activity remained the same as that seen in rats treated with the low dose of cadmium. The levels of dopamine in hypothalamus and that of norepinephrine in several brain regions examined were enhanced. This could in part, be attributed to decreased (12%) activity of catechol-O-methyl transferase enzyme. Administration of the high dose of cadmium produced significant increases in 5-hydroxyindoleacetic acid level. Data suggest that cadmium acts at some step in the sequence of intracellular events that leads to increased synthesis and presumably turnover of brain catecholamines and serotonin. Since high dosage of this heavy metal failed to produce a dose-dependent change in locomotor activity, it is not possible to impute any casual role for these amines in the production of hyperactivity seen in cadmium-treated rats.  相似文献   

13.
There is little information regarding the effect of hypoxia on alveolar fluid clearance capacity. We measured alveolar fluid clearance, lung water volume, plasma catecholamine concentrations, and serum osmolality in rats exposed to 10% oxygen for up to 120 h and explored the mechanisms responsible for the increase in alveolar fluid clearance. The principal results were 1) alveolar fluid clearance did not change for 48 h and then increased between 72 and 120 h of exposure to hypoxia; 2) although nutritional impairment during hypoxia decreased basal alveolar fluid clearance, endogenous norepinephrine increased net alveolar fluid clearance; 3) the changes of lung water volume and serum osmolality were not associated with those of alveolar fluid clearance; 4) an administration of beta-adrenergic agonists further increased alveolar fluid clearance; and 5) alveolar fluid clearance returned to normal within 24 h of reoxygenation after hypoxia. In conclusion, alveolar epithelial fluid transport capacity increases in rats exposed to hypoxia. It is likely that a combination of endogenous norepinephrine and nutritional impairment regulates alveolar fluid clearance under hypoxic conditions.  相似文献   

14.
Kinetic parameters of monoamine oxidative deamination in compensatory and preconvulsive periods of oxygen epilepsia were studied. It was shown that in rat brain MAO's affinity for serotonin reduced from the 5th minute of exposure to hyperbaric oxygen and went on reducing on the 15th minute. In rat heart the affinity of MAO for serotonin firstly decreased and then returned to normal meaning. Dopamine deamination in rat brain in compensatory period of epilepsia was activated and then was inhibited. In rat heart from the 5th minute of exposure to oxygen dopamine and 2-phenylethylamine deamination was blocked. Tyramine deamination in preconvulsive period of epilepsia changed in a complex manner. It is concluded that the kinetic parameters of monoamine deamination change in the initial phases of exposure to hyperbaric oxygen, and the most distinct modifications take place in rat heart, but not in rat brain.  相似文献   

15.
Previous work has shown that [3H]paroxetine is a potent and selective in vitro label for serotonin uptake sites in the mammalian brain. In the present study, [3H]paroxetine was tested in mice as an in vivo label for serotonin uptake sites. Maximum tritium concentration in the whole brain (1.4% of the intravenous dose) was reached 1 h after injection into a tail vein. Distribution of the tracer at 3 h after injection followed the distribution of serotonin uptake sites known from previous in vitro binding studies (r = 0.85). The areas of highest [3H]paroxetine concentration, in decreasing order, were: hypothalamus greater than frontal cortex greater than olfactory tubercles greater than thalamus greater than upper colliculi greater than brainstem greater than hippocampus greater than striatum greater than cerebellum. Preinjection of carrier paroxetine (1 mg/kg) significantly decreased [3H]paroxetine concentration in all areas except in the cerebellum, which is known to contain a relatively low number of specific binding sites. Kinetic studies showed highest specific [3H]paroxetine binding (tissue minus cerebellum) at 2 h after injection and slow clearance of activity thereafter (half-time of dissociation from the hypothalamus, 215 min). The specificity of in vivo [3H]paroxetine binding was studied by preinjecting monoamine uptake blockers or receptor antagonists 5 min before administration of [3H]paroxetine. Serotonergic or muscarinic cholinergic receptor antagonists and dopamine or norepinephrine uptake blockers did not reduce the in vivo binding of [3H]paroxetine. In contrast, there was an excellent correlation (r = 0.99) between the in vivo inhibitory potencies of serotonin uptake blockers in this study and previously published in vitro data on inhibition of [3H] serotonin uptake in brain synaptosomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
1. The 4-fluoro analogue of the monoamine oxidase-inhibiting antidepressant tranylcypromine was compared to the parent drug with regard to the following: inhibition of monoamine oxidases A and B in vitro and ex vivo; levels of both drugs in brain, liver, and blood after injection of equimolar doses; and effects on brain levels of the amines 2-phenylethylamine, tryptamine, norepinephrine, dopamine, and 5-hydroxytryptamine. 2. 4-Fluorotranylcypromine was found to be 10 times more potent than tranylcypromine at inhibiting monoamine oxidases A and B in vitro in rat brain homogenates. 3. After administration (0.1 mmol/kg, ip), 4-fluorotranylcypromine attained higher brain and liver levels and provided greater availability than did tranylcypromine after the injection of an equimolar amount. 4. At the dose employed, the ex vivo monoamine oxidases A and B inhibitory profiles in brain and liver over a 24-hr period following tranylcypromine and 4-fluorotranylcypromine treatment were not different from each other. 5. Although the drugs had similar effects on inhibition of brain MAO ex vivo, they differed from one another at several time intervals in the increases in concentrations of 2-phenylethylamine, tryptamine, norepinephrine, dopamine, and 5-hydroxytryptamine produced in brain. 6. In conclusion, fluorination of tranylcypromine in the 4 position of the phenyl ring produced a drug which was more potent than the parent drug at inhibiting MAO in vitro and attained higher levels in brain than did tranylcypromine itself after intraperitoneal injection of equimolar amounts of the drugs. 4-Fluorotranylcypromine increased the concentrations of trace amines, catecholamines, and 5-hydroxytryptamine in brain at most time intervals following intraperitoneal injection, and at some time intervals there were differences from tranylcypromine with regard to the amine concentrations produced.  相似文献   

17.
Amitriptyline is a commonly used tricyclic antidepressant (TCA) inhibiting serotonin and norepinephrine reuptake. The exact CNS action of TCAs remains poorly understood, necessitating new screening approaches and novel model organisms. Zebrafish (Danio rerio) are rapidly emerging as a promising tool for pharmacological research of antidepressants, including amitriptyline. Here, we examine the effects of chronic 2-week exposure to 10 and 50 μg/L amitriptyline on zebrafish behavior and monoamine neurotransmitters. Overall, the drug at 50 μg/L evoked pronounced anxiolytic-like effects in the novel tank test (assessed by more time in top, fewer transition and shorter latency to enter the top). Like other TCAs, amitriptyline reduced serotonin turnover, but also significantly elevated whole-brain norepinephrine and dopamine levels. The latter effect was not reported in this model previously, and accompanied higher brain expression of tyrosine hydroxylase (a rate-limiting enzyme of catecholamine biosynthesis), but unaltered expression of dopamine-β-hydroxylase and monoamine oxidase (the enzymes of dopamine metabolism). This response may underlie chronic amitriptyline action on dopamine and norepinephrine neurotransmission, and contribute to the complex CNS profile of this drug observed both clinically and in animal models. Collectively, these findings also confirm the important role of monoamine modulation in the regulation of anxiety-related behavior in zebrafish, and support the utility of this organism as a promising in-vivo model for CNS drug screening.  相似文献   

18.
Abstract— The rates of brain tyrosine and tryptophan hydroxylation, estimated in vivo from the accumulation of DOPA and 5-hydroxytryptophan after the administration of a decarboxylase inhibitor, appear dependent on the availability of oxygen as a substrate. During two types of physical stress, electroshock and curare-immobilization, the rate of brain tyrosine hydroxylation was greater than in unstressed controls and was not significantly decreased when the stresssed animals were made hypoxic. The loss of oxygen dependence by brain tyrosine hydroxylation during stress was observed in several brain regions and was not associated with alterations in the concentrations of brain tyrosine. tryptophan, serotonin, dopamine or norepinephrine. The rate of brain tryptophan hydroxylation was not affected by stress and remained oxygen dependent. The increase in catecholamine synthesis during stress appears to be the result of increased catecholaminergic nerve impulse flow. These experiments are consistent with the hypothesis that during neuronal stimulation an allosteric change in tyrosine hydroxylase increases the affinity of the enzyme for oxygen allowing greater catecholamine synthesis despite limiting concentrations of this substrate.  相似文献   

19.
Abstract: Methylazoxymethanol (MAM) injection to rats on day 15 of gestation caused a significant rise in monoamine concentrations (1.6, 2.0, and 2.8 times the control value for serotonin, norepinephrine, and dopamine, respectively) accompanying a decrease in the brain weight and DNA content in the cerebral hemispheres of the offspring at 3 months of age; in the brain stem, these changes were much smaller. Similar change of monoamine concentrations was observed in cytosine arabinoside-induced microencephaly. The decrease of DNA content and the elevation of monoamine levels were lower with MAM injection on day 15, 13, or 17 of gestation (in that order). Serotonin content of the MAM-treated cerebral hemispheres was already 50% higher than the control immediately after birth. The activity of tryptophan hydroxylase in the MAM-treated cerebrum was 1.6 times the control value, with no change in the brain stem, while the concentration of tryptophan in the brain and plasma was equal to the control value, suggesting an important role played by this enzyme in the elevation of serotonin content. Although the marked decrease of DNA content in the cerebral hemispheres of MAM-treated rats indicates a loss of cerebral cells due to prenatal MAM poisoning, the kind of cells destroyed remain to be studied. That the remaining neurons, axons, and oligodendroglia were intact was suggested by the normal activity of CNPase.  相似文献   

20.
Effects of progressive starvation of 12, 24, 48 and 60 h upon brain mitochondrial monoamine oxidase activity were studied. The enzyme activity was determined by three different substrates: 14C-labeled tryptamine, dopamine and kynuramine. With dopamine as substrate, the enzyme activity showed decline during 24 and 48 h of starvation. Monoamine oxidase when determined by tryptamine as the substrate, showed a decrease after 60 h of starvation. The use of kynuramine as substrate also produced a decrease in enzyme activity after 48 and 60 h of starvation. Refeeding the 60-h-starved rats for the following 24 h resulted in further decrease of monoamine oxidase activity of brain mitochondria from the 60 h starved values. The results suggest that oxidative deamination of biogenic amines is greatly inhibited during progressive starvation and remains low even after feeding the 60 h starved rats for 24 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号