首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soybean [Glycine max (Linn.) Merrill] and mung bean [Vigna radiate (Linn.) Wilczek] plants were challenged with 5 kinds of heavy metals [cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb) and mercury (Hg)] in a hydroponic system. We applied 4 different metal treatments to study the effects of heavy metals on several physiological and biochemical parameters in these species, including root length, heavy metal concentrations and allocation in different organs, superoxide dismutase, catalase, and peroxidase activities, the content of malondialdehyde (MDA), protein and chlorophyll. The data showed that the growth of the roots of soybean and mung bean was equally sensitive to external Hg concentrations. Soybean was more sensitive to external Cd concentrations, and mung bean was more sensitive to external Cr, Cu and Pb concentrations. Normal concentrations of heavy metal would not cause visible toxic symptoms, and a low level of heavy metal even slightly stimulated the growth of plants. With the rise of heavy metal concentration, heavy metal stress induces an oxidative stress response in soybean and mung bean plants, characterized by an accumulation of MDA and the alternation pattern of antioxidative enzymes. Meanwhile, the growth of plants was suppressed, the content of chlorophyll decreased and leaves showed chlorosis symptoms at high metal concentrations.  相似文献   

2.
Inoculating plants that have inefficient antioxidant systems with plant-associated bacteria allows them to overcome heavy metal intoxication. We monitored protein oxidation, the activity of plant defense system enzymes, and the phenolics content in soybean (Glycine max L.) during a prolonged exposure to cadmium (Cd). The assistance of the bacterial consortium reduced the bioavailability of Cd in a soil containing 10 times the metal’s Standard Maximum Value (SMV). This reduced the accumulation of Cd in the soybeans’ roots and seeds. At 100 SMV, bacterial inoculation resulted in increased Cd bioavailability, which enhanced cadmium uptake by the soybean plants. At both Cd concentrations, oxidative stress was more prolonged in the soybean’s roots than its leaves. In cadmium-polluted soil, glutathion peroxidase activity changed more rapidly in the roots of plants when they had been inoculated. Inhibition of the peroxidases’ activities strengthened the activity of glutathione-S-transferase; increased the phenolics content in plant roots; and alleviated stress in inoculated soybean plants compared to untreated plants. The bacterial consortium may be recommended for a plant protection at 10 SMV Cd in the soil, and for phytostabilization at 100 SMV.  相似文献   

3.
The mechanism of selenium (Se)-induced salt tolerance was studied in moderately sensitive soybean (Glycine max L.) plants. To execute this view, soybean plants were imposed with salt stress (EC 6 dS m−1 ) applying NaCl. In other treatments, Se (0, 25, 50 and 75 µM Na2SeO4) was sprayed as co-application with that level of salt stress. Plant height, stem diameter, leaf area, SPAD value decreased noticeably under salt stress. Altered proline (Pro) level, together with decreased leaf relative water content (RWC) was observed in salt-affected plants. Salt stress resulted in brutal oxidative damage and increased the content of H2O2, MDA level and electrolyte leakage. Exogenous Se spray alleviated oxidative damage through boosting up the antioxidant defense system by increasing the activity of antioxidant enzymes such as catalase (CAT), peroxidase (POD) and glutathione reductase (GR), as well as by improving non-enzymatic antioxidants like glutathione (GSH) and GSH/glutathione disulfide (GSSG). The upregulated antioxidant defense system, restored Pro and leaf RWC, higher SPAD value conferred better growth and development in Se-sprayed salt-affected soybean plants which altogether put forth for the progressive yield contributing parameters and finally, seed yield. Among different doses of Se, soybean plants sprayed with 50 µM Na2SeO4 showed better salt tolerance.  相似文献   

4.
5.
6.
Soybean (Glycine max (L.) Merr.) is an important cultivated crop, which requires much water during its growth, and drought seriously affects soybean yields. Studies have shown that the expression of small heat shock proteins can enhance drought resistance, cold resistance and salt resistance of plants. In this experiment, soybean GmHsps_p23-like gene was successfully cloned by RT-PCR, the protein encoded by the GmHsps_p23-like gene was subjected to bioinformatics analysis, and the pCAMBIA3301-GmHsps_p23-like overexpression vector and pCBSG015-GmHsps_p23-like gene editing vector were constructed. Agrobacterium-mediated method was used to transform soybeans to obtain positive plants. RT-PCR detection, rehydration experiment and drought resistance physiological and biochemical index detection were performed on the T2 generation positive transgenic soybean plants identified by PCR and Southern hybridization. The results showed that the overexpression vector plant GmHsps_p23-like gene expression increased. After rehydration, the transgenic overexpression plants returned to normal growth, and the damage to the plants was low. After drought stress, the SOD and POD activities and the PRO content of the transgenic overexpression plants increased, while the MDA content decreased. The reverse was true for soybean plants with genetically modified editing vectors. The drought resistance of the overexpressed soybeans under drought stress was higher than that of the control group, and had a stronger drought resistance. It showed that the expression of soybean GmHsps_p23-like gene can improve the drought resistance of soybean. The cloning and functional verification of soybean GmHsps_p23-like gene had not been reported yet. This is the first time that PCR technology has been used to amplify the soybean GmHsps_p23-like gene and construct an expression vector for this gene. This research has laid the foundation for transgenic technology to improve plant drought resistance and cultivate new drought-resistant transgenic soybean varieties.  相似文献   

7.
Heavy metal toxicity is one of the major ecosystem concerns globally in present time and is also responsible for significant threat to agronomic crops. The current work was conducted to investigate the possible ameliorative role of proline in Coriandrum sativum L. seedlings treated with mercury (Hg). The seedlings were exposed to different concentrations of Hg (0, 0.1, 0.3 and 0.5 mM) for 20 days. The effects of pre-sowing treatment with proline were studied on C. sativum seedlings in terms of pigment (chlorophylls, carotenoids and anthocyanins), malondialdehyde (MDA), antioxidant compound (glutathione, total phenolic compounds, ascorbic acid) and osmolytes (proline, glycine betaine). Additionally, activities of antioxidant enzymes, namely catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) were also studied. A strong decline of photosynthetic pigment concentrations was observed in leaves of C. sativum under Hg toxicity. Treatment of seeds with proline reduced the loss of photosynthetic pigments, counteract Hg-triggered oxidative stress, likely preserving the functionality of antioxidant apparatus under Hg stress. The increment of total polyphenols and glycine betaine also contributed in ameliorating Hg toxicity, suggesting the use of exogenous proline as a potential method to enhance the plant tolerance against heavy metal stress.  相似文献   

8.
9.
Contamination of agricultural soils with heavy metals (HMs) has posed major threat to the environment as well as human health. The aim of this study was to appraise the efficiency of key-antioxidant enzymes in enhancing plants’ tolerance to HMs (heavy metals) like copper (Cu) and Cadmium (Cd), under the action of methyl jasmonate (Me-JA) in Cajanus cajan L. Seeds of C. cajan treated with Me-JA (0, 1 nM) were discretely subjected to noxious concentrations of Cu and Cd (0, 1, 5 mM) and raised for 12 days under controlled conditions in plant growth chamber for biochemical analysis. In contrast to Cd, Cu triggered oxidative stress more significantly (44.54% in 5 mM Cu increase in MDA as compared to control) and prominently thereby affecting plants’ physiological and biochemical attributes. By activating the antioxidant machinery, Me-JA pre-treatment reduced HMs-induced oxidative stress, increased proline production, glutathione (41.95% under 5 mM Cu when treated with 1 nM Me-JA treatment) and ascorbic acid content by 160.4 % under aforemtioned treatments thus improving the redox status. Thus, in light of this our results put forward a firm basis of the positive role that Me-JA might play in the mitigation of oxidative stress caused due to HMs stress by stimulating antioxidant defense system leading to overall improvement of growth of C. cajan seedlings.  相似文献   

10.
Sunflower mutant lines with an enhanced tolerance and metal accumulation capacity obtained by mutation breeding have been proposed for Zn, Cd and Cu removal from metal-contaminated soils in previous studies. However, soils contaminated with trace elements induce various biochemical alterations in plants leading to oxidative stress. There is a lack of knowledge concerning the metal accumulation and antioxidant responses during the growth and development of sunflowers. This study, therefore, aimed to characterise metal accumulation and possible metal detoxification mechanisms in young seedlings and adult sunflowers. Beside the inbred line, two mutant lines with an improved growth and enhanced metal uptake capacity on a metal contaminated soil were investigated in more detail.Sunflowers cultivated on a metal-contaminated soil in the greenhouse showed a decrease in shoot biomass and chlorophyll concentration in two different developmental stages. Adult sunflowers showed a lower sensitivity to metal toxicity than young seedlings, whereas mutant lines were more tolerant to metal stress than the control. Mutant lines also produced a higher amount of carotenoids on a metal-contaminated soil than on the control soil, indicating a possible protective mechanism of sunflower mutants against oxidative stress caused by Cd and excess Zn.Heavy metals primarily increased the activity of antioxidant enzymes involved in the ascorbate–glutathione cycle in sunflower leaves. Activity of dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and glutathione reductase (GR) was strongly increased in young seedlings exposed to heavy metals. The enzyme activities were even more pronounced in mutant lines. A significantly increased ascorbate peroxidase (APOX) activity in adult sunflowers exposed to heavy metals indicated an elevated use of ascorbate after a longer exposure to metal stress.An increased antioxidant level corresponded to a high Cd and Zn accumulation in young and adult sunflowers. Metal distribution, zinc translocation in particular, from the root into the shoot tissue obviously increased during sunflower growth and ripening. Altogether, these results suggest that sunflower plants, primarily the mutant lines, possess an efficient defence mechanism against oxidative stress caused by metal toxicity. A good tolerance of sunflowers toward heavy metals coupled with an increased metal accumulation capacity might contribute to an efficient removal of heavy metals from a polluted area.  相似文献   

11.
12.
13.
14.
Water, minerals, nutrients, etc., can be shared by physiological integration among inter-connected ramets of clonal plants. Nitrogen plays an important role in alleviating cadmium (Cd) stress for clonal plants. But how different forms of nitrogen affect growth performance of clonal plants subjected to heterogeneous Cd stress still remains poorly understood. A pot experiment was conducted to investigate the differential effects of ammonium and nitrate on growth performance of Glechoma longituba under heterogeneous Cd stress. In the experiment, parent ramets of Glechoma longituba clonal fragments were respectively supplied with modified Hoagland solution containing 7.5 mM ammonium, 7.5 mM nitrate or the same volume of nutrient solution without nitrogen. Cd solution with different concentrations (0, 0.1 or 2.0 mM) was applied to offspring ramets of the clonal fragments. Compared with control (N-free), nitrogen addition to parent ramets, especially ammonium, significantly improved antioxidant capacity [glutathione (GSH), proline (Pro), peroxidase (POD,) superoxide dismutase (SOD) and catalase (CAT)], PSII activity [maximum quantum yield of PSII (Fv/Fm) and effective quantum yield of PSII (ΦPSII)], chlorophyll content and biomass accumulation of the offspring ramets suffering from Cd stress. In addition, negative effects of nitrate on growth performance of whole clonal fragments were observed under Cd stress with high concentration (2.0 mM). Transportation or sharing of nitrogen, especially ammonium, can improve growth performance of clonal plants under heterogeneous Cd stress. The experiment provides insight into transmission mechanism of nitrogen among ramets of clonal plants suffering from heterogeneous nutrient supply. Physiological integration might be an important ecological strategy for clonal plants adapting to heterogeneous environment stress conditions.  相似文献   

15.

Arsenic (As) contaminated food chains have emerged as a serious public concern for humans and animals and are known to affect the cultivation of edible crops throughout the world. Therefore, the present study was designed to investigate the individual as well as the combined effects of exogenous silicon (Si) and sodium nitroprusside (SNP), a nitric oxide (NO) donor, on plant growth, metabolites, and antioxidant defense systems of radish (Raphanus sativus L.) plants under three different concentrations of As stress, i.e., 0.3, 0.5, and 0.7 mM in a pot experiment. The results showed that As stress reduced the growth parameters of radish plants by increasing the level of oxidative stress markers, i.e., malondialdehyde and hydrogen peroxide. However, foliar application of Si (2 mM) and pretreatment with SNP (100 µM) alone as well as in combination with Si improved the plant growth parameters, i.e., root length, fresh and dry weight of plants under As stress. Furthermore, As stress also reduced protein, and metabolites contents (flavonoids, phenolic and anthocyanin). Activities of antioxidative enzymes such as catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POD), and polyphenol oxidase (PPO), as well as the content of non-enzymatic antioxidants (glutathione and ascorbic acid) decreased under As stress. In most of the parameters in radish, As III concentration showed maximum reduction, as compared to As I and II concentrations. However, the individual and combined application of Si and NO significantly alleviated the As-mediated oxidative stress in radish plants by increasing the protein, and metabolites content. Enhancement in the activities of CAT, APX, POD and PPO enzymes were recorded. Contents of glutathione and ascorbic acid were also enhanced in response to co-application of Si and NO under As stress. Results obtained were more pronounced when Si and NO were applied in combination under As stress, as compared to their individual application. In short, the current study highlights that Si and NO synergistically regulate plant growth through lowering the As-mediated oxidative stress by upregulating the metabolites content, activity of antioxidative enzymes and non-enzymatic antioxidants in radish plants.

  相似文献   

16.
This study investigates the modulation of antioxidant defence system of Typha angustifolia after 30 days exposure of 1 mM chromium (Cr), cadmium (Cd), or lead (Pb). T. angustifolia showed high tolerance to heavy metal toxicity with no visual toxic symptom when exposed to metal stress, and Cd/Pb addition also increased plant height and biomass especially in Pb treatment. Along with increased Cr, Cd, and Pb uptake in metal treatments, there was enhanced uptake of plant nutrients including Ca and Fe, and Zn in Pb treatment. A significant increase in malondialdehyde (MDA) content and superoxide dismutase (SOD) and peroxidase (POD) activities were recorded in plants subjected to Cr, Cd, or Pb stress. Furthermore, Pb stress also improved catalase (CAT), ascorbate peroxidase (APX), and glutathione peroxidase (GPX) activities; whereas Cr stress depressed APX and GPX. The results indicate that enzymatic antioxidants and Ca/Fe uptake were important for heavy metal detoxification in T. angustifolia, stimulated antioxidative enzymes, and Ca, Fe, and Zn uptake could partially explain its hyper-Pb tolerance.  相似文献   

17.
18.
The research aimed to verify the important physiological effect of nitrogen (N) on plants exposed to cadmium (Cd). The poplar plants were grown in a Hoagland nutrient solution and treated with extra N, Cd, and N + Cd. After treatment, plant growth and chlorophyll content were recorded. The oxidative stress, the activity of antioxidant enzymes, and the expression of related genes were also examined. The results indicated the plants treated with sole Cd presented obvious toxicity symptoms, i.e. growth inhibition, reactive oxygen species accumulation, and chlorophyll content decrement. However, when N was added to the plants under Cd stress, plant growth was enhanced, chlorophyll synthesis was promoted, and the oxidative stress was alleviated. Further, the expression of antioxidant enzymes genes was upregulated by N. The results indicated that N partially reversed the toxic effect of Cd on poplar plants, which can provide new methodology to enhance the phytoremediation technology for heavy metal pollution soil.  相似文献   

19.
Phytoremediation is an important strategy adapted by plants to sequester and/or detoxify pollutants. Phytochelatins, a family of cysteine-rich thiol-reactive peptides, bind to various heavy metals and metalloids making them good candidates for phytoremediation. Phytochelatin synthase catalyses the final step in the biosynthesis of phytochelatins and can be used as a strategy to improve tolerance against heavy metals. In the present study, an AtPCS gene was overexpressed in rice following the in planta transformation approach. Stringent screening strategies were standardized to select putative transformants under a Cd stress of 125 μM at both seedling and plant levels. Molecular analysis by PCR in 18 tolerant plants confirmed the transgene integration and absence of Agrobacterium. Genomic Southern analysis further confirmed the integration of the T-DNA as a single copy. The stability of the T-DNA in the progeny of 5 selected T1 generation plants was confirmed by tolerance assay, molecular characterization and biochemical analysis for the reduced glutathione, phytochelatin content and lipid peroxidation. This strategy is discussed as a potential mechanism to enhance the tolerance of rice plants to Cd stress.  相似文献   

20.
The aim of the present study was to evaluate the role of arbuscular mycorrhizal (AM) fungi on metal uptake, oxidative effects and antioxidant defence mechanisms under cadmium (Cd) and lead (Pb) stresses in Cajanus cajan (L.) Millsp. (pigeonpea). Treatments consisted of two concentrations each of Cd (25 and 50 mg/kg of soil) and Pb (500 and 800 mg/kg of soil) singly as well as in combination. Both metals induced oxidative damage through increased lipid peroxidation, electrolyte leakage and hydrogen peroxide levels, but Cd was found to be more toxic than Pb. Compared with the effects of Cd or Pb alone, the combination of Cd and Pb acted synergistically; however, Pb immobilisation in soil controlled the uptake of Cd in plants. There was a direct correlation between the type of genotype, heavy metal content and oxidative damage in concentration dependent manner. Superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) increased under stress. The toxicity symptoms of the metal stress were significantly higher in Sel-141-97 genotype when compared with Sel-85 N. The high ratio of glutathione to its oxidised form, glutathione disulfide (GSH/GSSG), could be restored by means of higher glutathione reductase (GR) activity and increased GSH synthesis in mycorrhizal stressed plants. AM inoculations with Glomus mosseae significantly arrested uptake of Cd and Pb into the root system and further translocation into the above ground parts and led to decreased lipid peroxidation and electrolyte leakage. Increased activities of SOD, CAT, POX as well as GR were observed in all mycorrhizal stressed plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号