首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytosine methylation is the major epigenetic modification of metazoan DNA. Although there is strong evidence that active DNA demethylation occurs in animal cells, the molecular details of this process are unknown. The recent discovery of the TET protein family (TET1–3) 5-methylcytosine hydroxylases has provided a new entry point to reveal the identity of the long-sought DNA demethylase. Here, we review the recent progress in understanding the function of TET proteins and 5-hydroxymethylcytosine (5hmC) through various biochemical and genomic approaches, the current evidence for a role of 5hmC as an early intermediate in active DNA demethylation and the potential functions of TET proteins and 5hmC beyond active DNA demethylation. We also discuss how future studies can extend our knowledge of this novel epigenetic modification.Key words: TET1, 5-hydroxymethylcytosine, active DNA demethylation, epigenetic, DNA methylation, hippocampus, electroconvulsive stimulation, Gadd45b, BER  相似文献   

2.
3.
DNA的胞嘧啶(C)5-甲基化是一种重要的表观修饰,它参与基因调节、基因组印记、X-染色体失活、重复序列抑制和癌症发生等过程. 5-甲基胞嘧啶(5mC)可被TET (ten-eleven translocation)蛋白家族进一步转化为5-羟甲基胞嘧啶(5hmC),该过程是DNA去甲基化的1个必要阶段. 5hmC可在活性转录基因起始位点和Polycomb抑制基因启动子延伸区域富集.TET蛋白包括3个成员TET1、TET2和TET3,均属于α-酮戊二酸和Fe2+依赖的双加氧酶,其催化涉及氧化过程.小鼠Tet1在胚胎干细胞发育中拥有双重作用,即促进全能因子的转录,又参与发育调节因子的抑制.人TET蛋白的破坏与造血系统肿瘤相关,如在骨髓增生性疾病/肿瘤存在频繁的TET2基因突变.TET蛋白和5hmC的研究为DNA甲基化/去甲基化及其生物学功能提供了新的视点.  相似文献   

4.
TET蛋白的去甲基化机制及其在调控小鼠发育过程中的作用   总被引:1,自引:0,他引:1  
TET(Ten-eleven translocation)蛋白家族共有3个成员,分别为TET1、TET2和TET3,均属于α-酮戊二酸(α-KG)和Fe2+依赖的双加氧酶,可以将5-甲基胞嘧啶(5-methylcytosine, 5 mC)氧化为5-羟甲基胞嘧啶(5-hydroxymethylcytosine, 5 hmC)、5-甲酰基胞嘧啶(5-formylcytosine, 5 fC)及5-羧基胞嘧啶(5-carboxylcytosine, 5 caC)。研究表明,TET蛋白通过不同机制以主动或被动的方式调控DNA去甲基化,且去甲基化的活性可能受其他因子的调控。TET蛋白广泛参与哺乳动物发育过程的调节,其中在原始生殖细胞的形成、胚胎发育、干细胞多能性及神经和脑发育等方面发挥了重要作用。TET蛋白生物功能的发现为表观遗传学研究开辟了全新的研究领域,而且相关研究结果对拓展生命科学研究具有重要意义。文章综述了TET蛋白家族的结构、去甲基化分子机制及在小鼠发育过程中的作用,为深入了解TET蛋白的功能提供理论基础。  相似文献   

5.
6.
Brain development and aging are associated with alterations in multiple epigenetic systems,including DNA methylation and demethylation patterns.Here,we observed that the levels of the 5-hydroxymethylcytosine (5hmC) ten-eleven translocation (TET) enzyme-mediated active DNA demethylation products were dynamically changed and involved in postnatal brain development and aging in tree shrews (Tupaia belangeri chinensis).The levels of 5hmC in multiple anatomic structures showed a gradual increase throughout postnatal development,whereas a significant decrease in 5hmC was found in several brain regions in aged tree shrews,including in the prefrontal cortex and hippocampus,but not the cerebellum.Active changes in Tet mRNA levels indicated that TET2 and TET3 predominantly contributed to the changes in 5hmC levels.Our findings provide new insight into the dynamic changes in 5hmC levels in tree shrew brains during postnatal development and aging processes.  相似文献   

7.
DNA methylation at cytosines (5mC) is a major epigenetic modification involved in the regulation of multiple biological processes in mammals. How methylation is reversed was until recently poorly understood. The family of dioxygenases commonly known as Ten-eleven translocation (Tet) proteins are responsible for the oxidation of 5mC into three new forms, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Current models link Tet-mediated 5mC oxidation with active DNA demethylation. The higher oxidation products (5fC and 5caC) are recognized and excised by the DNA glycosylase TDG via the base excision repair pathway. Like DNA methyltransferases, Tet enzymes are important for embryonic development. We will examine the mechanism and biological significance of Tet-mediated 5mC oxidation in the context of pronuclear DNA demethylation in mouse early embryos. In contrast to its role in active demethylation in the germ cells and early embryo, a number of lines of evidence suggest that the intragenic 5hmC present in brain may act as a stable mark instead. This short review explores mechanistic aspects of TET oxidation activity, the impact Tet enzymes have on epigenome organization and their contribution to the regulation of early embryonic and neuronal development. [BMB Reports 2014; 47(11): 609-618]  相似文献   

8.
9.
王建  张凯翔  芦国珍  赵湘辉 《遗传》2017,39(12):1138-1149
神经系统的正常发育是多种因素相互协调作用的结果,一旦特定因素失衡将引起相关疾病的发生。近年来不断有研究发现,DNA去甲基化过程的一类中间产物5-羟甲基胞嘧啶(5-hydroxymethylcytosine, 5hmC)作为一种新的表观遗传标记,在神经系统中高水平分布,并参与认知、记忆等重要的神经功能。5hmC的形成由氧合酶家族分子(ten-eleven translocation protein, TET)催化,在多种神经系统相关疾病中,5hmC水平和TETs分子的表达都发生改变,提示TET-5hmC表观遗传机制在复杂的神经系统发生发展过程中发挥了重要的调控作用。此外,作为基因表达调控的DNA标记物,5hmC的基因定位与基因表达水平的关系也是重要的研究方向。本文就近年来5hmC和TET家族蛋白分子在神经系统发育和相关疾病方面的重要研究发现进行了综述总结,希望为相关领域研究人员深入开展研究提供重要的思路,并为相关疾病设计治疗策略提供理论支持。  相似文献   

10.
11.
DNA active demethylation is an important epigenetic phenomenon observed in porcine zygotes, yet its molecular origins are unknown. Our results show that 5-methylcytosine (5mC) converts into 5-hydroxymethylcytosine (5hmC) during the first cell cycle in porcine in vivo fertilization (IVV), IVF, and SCNT embryos, but not in parthenogenetically activated embryos. Expression of Ten-Eleven Translocation 1 (TET1) correlates with this conversion. Expression of 5mC gradually decreases until the morula stage; it is only expressed in the inner cell mass, but not trophectoderm regions of IVV and IVF blastocysts. Expression of 5mC in SCNT embryos is ectopically distinct from that observed in IVV and IVF embryos. In addition, 5hmC expression was similar to that of 5mC in IVV cleavage-stage embryos. Expression of 5hmC remained constant in IVF and SCNT embryos, and was evenly distributed among the inner cell mass and trophectoderm regions derived from IVV, IVF, and SCNT blastocysts. Ten-Eleven Translocation 3 was highly expressed in two-cell embryos, whereas TET1 and TET2 were highly expressed in blastocysts. These data suggest that TET1-catalyzed 5hmC may be involved in active DNA demethylation in porcine early embryos. In addition, 5mC, but not 5hmC, participates in the initial cell lineage specification in porcine IVV and IVF blastocysts. Last, SCNT embryos show aberrant 5mC and 5hmC expression during early porcine embryonic development.  相似文献   

12.
Ten Eleven Translocation (TET) protein-catalyzed 5mC oxidation not only creates novel DNA modifications, such as 5hmC, but also initiates active or passive DNA demethylation. TETs’ role in the crosstalk with specific histone modifications, however, is largely elusive. Here, we show that TET2-mediated DNA demethylation plays a primary role in the de novo establishment and maintenance of H3K4me3/H3K27me3 bivalent domains underlying methylated DNA CpG islands (CGIs). Overexpression of wild type (WT), but not catalytic inactive mutant (Mut), TET2 in low-TET-expressing cells results in an increase in the level of 5hmC with accompanying DNA demethylation at a subset of CGIs. Most importantly, this alteration is sufficient in making de novo bivalent domains at these loci. Genome-wide analysis reveals that these de novo synthesized bivalent domains are largely associated with a subset of essential developmental gene promoters, which are located within CGIs and are previously silenced due to DNA methylation. On the other hand, deletion of Tet1 and Tet2 in mouse embryonic stem (ES) cells results in an apparent loss of H3K27me3 at bivalent domains, which are associated with a particular set of key developmental gene promoters. Collectively, this study demonstrates the critical role of TET proteins in regulating the crosstalk between two key epigenetic mechanisms, DNA methylation and histone methylation (H3K4me3 and H3K27me3), particularly at CGIs associated with developmental genes.  相似文献   

13.
In mammalian genomes, cytosine methylation occurs predominantly at CG (or CpG) dinucleotide contexts. As part of dynamic epigenetic regulation, 5-methylcytosine (mC) can be erased by active DNA demethylation, whereby ten-eleven translocation (TET) enzymes catalyze the stepwise oxidation of mC to 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxycytosine (caC), thymine DNA glycosylase (TDG) excises fC or caC, and base excision repair yields unmodified cytosine. In certain cell types, mC is also enriched at some non-CG (or CH) dinucleotides, however hmC is not. To provide biochemical context for the distribution of modified cytosines observed in biological systems, we systematically analyzed the activity of human TET2 and TDG for substrates in CG and CH contexts. We find that while TET2 oxidizes mC more efficiently in CG versus CH sites, this context preference can be diminished for hmC oxidation. Remarkably, TDG excision of fC and caC is only modestly dependent on CG context, contrasting its strong context dependence for thymine excision. We show that collaborative TET-TDG oxidation-excision activity is only marginally reduced for CA versus CG contexts. Our findings demonstrate that the TET-TDG-mediated demethylation pathway is not limited to CG sites and suggest a rationale for the depletion of hmCH in genomes rich in mCH.  相似文献   

14.
Aging is a complex time-dependent biological process that takes place in every cell and organ, eventually leading to degenerative changes that affect normal biological functions. In the past decades, the number of older parents has increased significantly. While it is widely recognized that oocyte aging poses higher birth and reproductive risk, the exact molecular mechanisms remain largely elusive. DNA methylation of 5-cytosine (5mC) and histone modifications are among the key epigenetic mechanisms involved in critical developmental processes and have been linked to aging. However, the impact of oocyte aging on DNA demethylation pathways has not been examined. The recent discovery of Ten-Eleven-Translocation (TET) family proteins, thymine DNA glycosylase (TDG) and the demethylation intermediates 5hmC, 5fC and 5caC has provided novel clues to delineate the molecular mechanisms in DNA demethylation. In this study, we examined the cellular level of modified cytosines (5mC, 5hmC, 5fC and 5caC) and Tet/Tdg expression in oocytes obtained from natural and accelerated oocyte aging conditions. Here we show all the DNA demethylation marks are dynamically regulated in both aging conditions, which are associated with Tet3 over-expression and Tdg repression. Such an aberrant expression pattern was more profound in accelerated aging condition. The results suggest that DNA demethylation may be actively involved in oocyte aging and have implications for development of potential drug targets to rejuvenate aging oocytes.This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.  相似文献   

15.
The TET family of dioxygenases (TET1/2/3) can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) and has been shown to be involved in active and passive DNA demethylation. Here, we demonstrate that altering TET dioxygenase levels within physiological range can affect DNA methylation dynamics of HEK293 cells. Overexpression of TET1 increased global 5hmC levels and was accompanied by mild DNA demethylation of promoters, gene bodies and CpG islands. Conversely, the simultaneous knockdown of TET1, TET2, and TET3 led to decreased global 5hmC levels and mild DNA hypermethylation of above-mentioned regions. The methylation changes observed in the overexpression and knockdown studies were mostly non-reciprocal and occurred with different preference depending on endogenous methylation and gene expression levels. Single-nucleotide 5hmC profiling performed on a genome-wide scale revealed that TET1 overexpression induced 5mC oxidation without a distribution bias among genetic elements and structures. Detailed analysis showed that this oxidation was related to endogenous 5hmC levels. In addition, our results support the notion that the effects of TET1 overexpression on gene expression are generally unrelated to its catalytic activity.  相似文献   

16.
17.
Oocyte vitrification has extensively been applied in the field of embryo engineering and in the preservation of genetic resources of fine livestock. Following our previous work in oocyte vitrification and the level change of DNA methylation, here we further explored the dynamic change of three active demethylation proteins: Ten-Eleven-Translocation 1/2/3(TET1/2/3), 5-methylcytosine (5 mC) and 5-hydroxymethycytosine (5hmC) after vitrification and warming. In order to observe the active demethylation in vitrified oocytes, two small molecular regulators, i.e. Vitamin C (VC) and dimethyloxaloylglycine (DMOG) were used to adjust activity and level of the TET 3 protein. The results showed that the levels of 5 mC and 5hmC were significantly decreased after 2 h of vitrification (P < 0.01). Moreover, the level of TET3 protein was significantly increased after 2 h warming (P < 0.01). And the relative gene expression of TET2/3 did not change in the first 2 h, but significantly increased after 2 h (P < 0.01). When VC was added to vitrification and recovery medium, it could not significantly improve the level of TET3 gene expression, and affect 5 mC and 5hmC expression (P > 0.05). When the DMOG was added to the solutions of vitrification, the level of 5hmC showed significantly increase (P < 0.01). In conclusion, the oocyte vitrification procedure reduced DNA methylation and hydroxymethylation in MII oocytes, but adding VC and DMOG to vitrification medium can prevent the reduction of DNA hydroxymethylation by increasing activity of TET3 methylation protein after vitrification and warming.  相似文献   

18.
19.
Although epigenetic modulation is critical for a variety of cellular activities, its role in erythropoiesis remains poorly understood. Ten-eleven translocation (TET) molecules participate in methylcytosine (5mC) hydroxylation, which results in DNA demethylation in several biological processes. In this research, the role of TETs in erythropoiesis was investigated by using the zebrafish model, where three TET homologs were identified. These homologs share conserved structural domains with their mammalian counterparts. Zebrafish TETs mediate the conversion of 5mC to hydroxymethylcytosine (5hmC) in zebrafish embryos, and the deletion of TET2 inhibits erythropoiesis by suppressing the expression of the scl, gata-1, and cmyb genes. TET2-upregulated lineage-specific genes and erythropoiesis are closely associated with the occurrence of 5hmC and demethylation in the intermediate CpG promoters (ICPs) of scl, gata-1, cmyb, which frequently occur at specific regions or CpG sites of these ICPs. Moreover, TET2 regulates the formation and differentiation of erythroid progenitors, and deletion of TET2 leads to erythrocyte dysplasia and anemia. Here, we preliminarily proved that TET2 plays an essential role in erythrocyte development by regulating lineage-specific genes via DNA oxidative demethylation. This report is anticipated to broaden current information on hematopoiesis and pathogenesis of hematopoiesis-related diseases.  相似文献   

20.
One of the main regulators of gene expression during embryogenesis and stem cell differentiation is DNA methylation. The recent identification of hydroxymethylcytosine (5hmC) as a novel epigenetic mark sparked an intense effort to characterize its specialized enzymatic machinery and to understand the biological significance of 5hmC. The recent discovery of recurrent deletions and somatic mutations in the TET gene family, which includes proteins that can hydroxylate methylcytosine (5mC), in a large fraction of myeloid malignancies further suggested a key role for dynamic DNA methylation changes in the regulation of stem cell differentiation and transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号