首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
《生态学杂志》2012,23(3):739-744
采用静态暗箱-气相色谱法,研究了南京市郊区集约化生产管理下,芹菜-空心菜-小白菜-苋菜轮作菜地与休闲裸地的N2O排放通量的动态变化,及其与土壤温度、湿度以及NO3--N和NH4+-N含量的关系.结果表明: 轮作菜地的N2O累积排放量达1372 kg N·hm-2,显著大于休闲裸地(29.2 kg N·hm-2);轮作菜地生态系统N2O-N的排放系数高达46%.4种蔬菜地中,空心菜地对轮作菜地的周年累积排放量贡献最大,为53.5%,小白菜地次之,为31.9%,芹菜地和苋菜地最小,分别为4.5%和4.8%.轮作菜地的N2O排放通量与土壤温度呈显著正相关,Q10为2.80;土壤湿度以及NO3--N和NH4+-N含量与轮作菜地的N2O排放通量之间的相关性不显著.  相似文献   

2.
紫色土菜地生态系统土壤N2O排放及其主要影响因素   总被引:3,自引:0,他引:3  
于亚军  王小国  朱波 《生态学报》2012,32(6):1830-1838
应用静态箱/气相色谱法对种菜历史超过20a的紫色土菜地进行了一年N2O排放的定位观测, 分析了菜地N2O排放特征及施氮、土壤温度、土壤湿度和蔬菜参与对N2O排放的影响. 结果表明, 紫色土菜地生态系统在不施氮和施氮(N150kg?hm-2)情况下N2O平均排放通量为50.713.3和168.437.3g?m-2?h-1, N2O排放系数为1.86%. 菜地生态系统N2O排放强度高于当地粮食作物农田,其主要原因在于菜地较高的养分水平和频繁的施肥、浇水等田间管理措施. 从菜地N2O排放总量的季节分配来看, 有64%的N2O排放量来自于土壤水热条件较好的夏秋季蔬菜生长期, 冬春季蔬菜生长期N2O排放量较少, 仅占34%. 因此, 土壤水热条件不同是造成菜地N2O排放量季节分配差异的重要原因. 氮肥对增加N2O排放的效应因蔬菜生育期内单位时间施肥强度不同而异, 蔬菜生育期越短, 施氮对增加N2O排放的效应越明显.不施氮和常规施氮菜地N2O排放通量与地下5cm处土壤温度呈显著的正相关, 但不种蔬菜的空地两者之间的关系不显著, 并且常规施氮菜地土壤温度(T)对N2O排放通量(F)的影响可用指数方程F=11.465e0.032T(R=0.26, p<0.01)表示. 土壤湿度对菜地N2O排放的影响存在阈值效应, 当土壤含水空隙率(WFPS)介于60%-75%时更易引发N2O高排放. 因此, 依据蔬菜生育期特点, 结合土壤水分状况调节施肥量与施肥时间可能会减少菜地N2O排放.  相似文献   

3.
不同施肥措施对黄河上游灌区油葵田土壤N2O排放的影响   总被引:4,自引:0,他引:4  
农田土壤已成为大气氧化亚氮(N2O)最大的人为释放源,为了解长期有机肥与无机肥配施对后茬作物土壤N2O排放的影响,本研究基于宁夏河套地区典型冬小麦-油葵复种农田生态系统,利用静态箱-气相色谱法对后茬作物(油葵)种植期内土壤N2O通量特征进行了测定.结果表明:前茬施肥对后茬油葵土壤N2O排放具有显著的刺激效应,N300-OM(210kg N·hm-2无机肥、90 kg N·hm-2有机肥)、N240-OM1/2(195 kg N·hm-2无机肥、45 kg N·hm-2有机肥)、N300(300 kg N·hm-2无机肥)和N240(240 kg N·hm-2无机肥)处理下土壤N2O生长季平均通量为(34.16!9.72)、(39.69!10.70)、(27.75!9.57)和(26.31!8.52)μg·m-2·h-1,分别是对照样地的4.09、4.75、3.32、3.15倍.施肥处理下油葵生长季内N2O总累积排放量高达1242.5~796.7 g·hm-2,是对照组的4.67~2.99倍;在整个生长季,有机肥与无机肥配施处理N2O排放速率都维持在较高水平,各月累积排放量间无显著差异;而单施化肥处理N2O排放速率逐渐下降,生长季初期为主要排放阶段,7月累积排放量占总排放量的41.3%~41.8%;不同施肥方式下,有机肥与无机肥配施处理N2O总累积排放量显著高于单施化肥,但相同施肥方式下高氮量处理与减氮优化处理(N300-OM与N240-OM1/2,N300与N240)间差异不显著.受干旱影响,土壤水分是控制油葵田土壤N2O排放的主要环境因素.有机肥与无机肥配施处理下N2O排放速率与NH4+-N含量呈显著正相关,而所有处理下N2O排放速率与土壤NO3--N含量均不相关,表明添加有机肥会持续改善土壤NH4+-N供给进而增加N2O排放.  相似文献   

4.
水肥一体化条件下设施菜地的N2O排放   总被引:5,自引:0,他引:5  
王艳丽  李虎  孙媛  王立刚 《生态学报》2016,36(7):2005-2014
在保证作物产量的前提下,研究减少农田土壤N_2O排放的水肥统筹管理措施对全球温室气体减排具有重要意义。以京郊典型设施菜地为例,设置了农民习惯(FP)、水肥一体化(FPD)、优化水肥一体化(OPTD)和对照(CK)4个处理,采用静态箱-气相色谱法,对果菜-叶菜(黄瓜-芹菜)轮作周期内土壤N_2O排放进行了观测,并分析了氮肥施用量、灌溉方式、土壤温度和湿度等因素对土壤N_2O排放的影响。结果表明:在黄瓜-芹菜种植模式中,各施氮处理除基肥施用后N_2O排放峰持续10—15d外,一般施肥、施肥+灌溉事件后土壤N_2O排放峰均呈现3—5d短而急促的情形。黄瓜生长季N_2O排放通量与土壤湿度(WFPS)之间呈现显著相关的关系;芹菜生长季N_2O排放通量与土壤温度之间呈现显著相关的关系。观测期内FP处理N_2O排放量为(31.00±2.15)kg N/hm~2,FPD处理与之相比N_2O排放量减少了4.2%,而OPTD处理在减少40%化肥氮量的情况下,N_2O累积排放量比FP处理减少了42.7%,且达到显著水平。说明在水肥一体化条件下,合理改变施肥体系是减少N_2O排放的前提,在此基础上进行水肥优化是设施菜地保持产量、减少N_2O排放的重要技术措施。  相似文献   

5.
高寒草甸是青藏高原地区的主要植被类型,目前对其温室气体研究多集中于生长季.本文利用静态箱-气相色谱法,对非生长季高寒草甸温室气体排放特征及其与主要环境因子的关系进行了研究.结果表明:非生长季高寒草甸表现为CO2和N2O的源、CH4的汇.其中非生长季CO2通量平均值为89.33 mg·m-2·h-1,累积排放通量为280.01g· m-2;CH4通量平均值为-11.35 μg·m-2·h-1,累积吸收通量为124.74 mg·m-2;N2O通量平均值为8.02 μg·m-2·h-1,累积排放通量为39.51 mg·m-2.非生长季CO2、CH4和N2O累积排放通量分别占全年的13.33%、53.47%和62.67%.冻融期(2012年4月)CH4累积吸收通量较小,只占非生长季的4.5%;而CO2和N2O累积排放通量较大,分别占非生长季的25.8%和20.8%.非生长季CO2通量与温度(气温、5和10 cm土壤温度)和5 cm土壤湿度均存在显著正相关关系,而CH4和N2O通量仅与5 cm土壤湿度存在显著正相关.研究表明,虽然冻融期CH4累积吸收通量在非生长季累积量中比重较小,但非生长季CH4和N2O累积排放量却占全年累积排放量的1/2以上,在温室气体累积通量评估中不容忽视.  相似文献   

6.
控释肥料对稻田氧化亚氮排放的影响   总被引:27,自引:5,他引:22  
李方敏  樊小林  刘芳  汪强 《应用生态学报》2004,15(11):2170-2174
采用静态箱法研究了控释肥料和常规肥料处理对华南赤红壤发育的稻田N2O排放的影响.结果表明,施用控释肥处理与非包膜复合肥处理,在水稻移栽后10d内水层中NH4^+-N和NO3^--N浓度问差异达极显著水平,各处理水层中NO3^--N浓度与2d后或当天N2O排放量间的偏相关系数达极显著水平.包膜型控释肥比未包膜复合肥能极显著地降低稻田N2O的排放量.在施肥后100d内,控释肥的N2O累积排放量仅为未包膜型复合肥料的13.45%~21.26%,是尿素处理的71.17%~112.47%.复合肥处理的N2O排放主要集中在施肥后1~25d和水稻晒田期间,控释肥在此时期的排放量显著降低,尿素处理则延缓并减小了N2O排放峰.控释肥一次施用和尿素分次施用都能减少N2O排放.  相似文献   

7.
成都平原水稻-小麦轮作系统NO排放及其主要影响因素   总被引:1,自引:0,他引:1  
于亚军  王小国  朱波 《生态学报》2015,35(9):2910-2916
应用静态暗箱-化学发光氮氧化物分析法对成都平原水稻-小麦轮作系统进行了1.5个轮作周期的NO排放定位观测,分析了NO排放特征及施氮、土壤温度、土壤湿度和作物参与对NO排放的影响。结果表明:成都平原水稻-小麦轮作系统在不施氮情况下,表现为土壤NO负排放(吸收),而施氮(N150kg/hm2)时NO排放通量为(5.5±3.3)μg m-2 h-1,施氮能显著增加土壤NO排放量,并且其效应在水热条件较好的水稻季更明显。整个观测期NO排放量有56.1%来自水稻季,而2个小麦季和休闲期NO排放量分别占32.5%和11.4%,由于休闲期NO高排放主要是作物收获后的几次翻地引起的,因此,减少休闲期翻地次数可能会有效减少NO排放。土壤温度是影响NO排放的首要环境因素,并且两者呈线性回归关系,土壤湿度对NO排放的影响因土壤湿度本身状况而异,土壤湿度条件较差时,其增加有利于NO排放,而当土壤湿度较好时会抑制NO排放。此外,土壤水热条件还是造成NO负排放(吸收)和作物参与对水稻季和小麦季NO排放贡献有别的重要原因。  相似文献   

8.
施用生物炭和秸秆还田对华北农田CO2、N2O排放的影响   总被引:6,自引:0,他引:6  
刘杏认  张星  张晴雯  李贵春  张庆忠 《生态学报》2017,37(20):6700-6711
以华北农田冬小麦-夏玉米轮作体系连续6a施用生物炭和秸秆还田的土壤为研究对象,于2013年10月—2014年9月,采用静态暗箱-气相色谱法,对CO_2、N_2O通量进行了整个轮作周期的连续观测,探究施用生物炭与秸秆还田对其排放通量的影响。试验共设4个处理:CK(对照)、C1(低量生物炭4.5 t hm~(-2)a~(-1))、C2(高量生物炭9.0 t hm~(-2)a~(-1))和SR(秸秆还田straw return)。结果表明:在整个轮作周期内,各处理CO_2、N_2O通量随时间的变化趋势基本一致。随着生物炭施用量的增加,CO_2排放通量分别增加了0.3%—90.3%(C1)、1.0%—334.2%(C2)和0.4%—156.3%(SR)。其中,C2处理对CO_2累积排放量影响最大,增幅为42.9%。对N_2O而言,C2处理显著降低了N_2O累积排放量,但增加了CO_2和N_2O排放的综合增温潜势,C1和SR处理对N_2O累积排放量及综合增温潜势均没有显著影响。相关分析表明,土壤温度和土壤含水量是影响CO_2通量最主要的因素,两者之间呈极显著的正相关关系;N_2O通量与土壤温度、土壤含水量、NO_3~--N和NH_4~+-N均表现出极显著的正相关关系,而与土壤p H值表现出极显著的负相关关系。由此可见,添加生物炭对于减少氮素的气体损失具有较大的潜力。  相似文献   

9.
轮作制度对水稻生长季节稻田氧化亚氮排放的影响   总被引:10,自引:3,他引:7  
通过盆栽试验(3次重复),研究了3种主要轮作制度对稻田水稻生长季节N2O排放的影响。结果表明,在水稻-小麦轮作中,水稻生长季节稻田N2O-N的排放量为4.2kg·hm-2,显著大于双季稻-小麦轮作中早稻的排放量2.2kg·hm-2;但两者的季节平均排放通量无明显差异,分别为117和118μg·m-2·h-1。同时,两者都显著大于双季稻-小麦中的晚稻和持续淹水体系中的水稻生长季节稻田N20的平均排放通量,分别为67.0和42.1μg·m-2·h-1,在前作为旱作小麦的2种水稻生长季节中,大于91%的稻田N2O排放量都集中在水稻生长前半期;在前作为水稻的晚稻生长季节中,稻田N2O排放量的91%集中在中期烤田及收获前水分落干阶段,轮作制度和前作水分状况极大地影响稻田N2O的排放。  相似文献   

10.
三种控释肥在赤红壤中的氧化亚氮排放   总被引:7,自引:2,他引:5  
Du YQ  Zheng LX  Fan XL 《应用生态学报》2011,22(9):2370-2376
采用静态箱收集和对比法,研究了无作物种植条件下包膜与否对高氮、均衡及高钾3种氮磷钾配比复合肥在华南赤红壤发育的菜园土中氧化亚氮(N2O)排放情况.结果表明:肥料氮磷钾配比不同,N2O排放量差异显著,3种类型复合肥N2O累积排放量表现为均衡型≥高氮型>高钾型;同一类型复合肥,包膜控释能显著降低N2O排放量,包膜控释高氮、均衡及高钾型复合肥N2O排放总量分别为不包膜复合肥N2O排放量的34.4%、30.5%和89.3%;与不包膜相比,复合肥包膜能降低肥料在土壤中的N2O日排放通量,滞后和削减N2O排放高峰,减少土壤氮素损失以及由N2O排放造成的全球增温潜势.  相似文献   

11.
成都平原水稻-油菜轮作系统氧化亚氮排放   总被引:16,自引:0,他引:16  
2005年6月—2006年6月利用静态箱/气相色谱法对成都平原水稻 油菜轮作系统氧化亚氮(N2O)排放进行定位观测, 研究了该系统N2O排放特征及土壤水热状况、氮肥施用、作物参与对N2O排放的影响. 结果表明: 成都平原水稻-油菜轮作系统N2O排放总量为(8.3±2.8)kg·hm-2·a-1, 水稻季、油菜季和休闲期对整个轮作周期N2O排放总量的贡献分别为30%、65%和5%. 水稻季N2O平均排放速率表现为排灌交替期最大, 持续淹水期和排水晒田期相当;氮肥施用是N2O排放高峰出现的主要驱动力;土壤表层含水量偏低是旱季出现土壤N2O吸收现象的主要原因. 土壤水分、土壤温度、施用氮肥和作物参与均在不同程度上影响N2O排放, 土壤水分是影响N2O排放的关键因子, 避免水稻季土壤频繁干湿交替或控制旱季土壤水分(表层土壤含水孔隙率介于50%~70%)可有效抑制N2O排放.  相似文献   

12.
蔬菜地大量施用氮肥可以引起土壤硝态氮积累,导致土壤退化,快速消除土壤积累的硝态氮,可以提高蔬菜地土壤质量,延长其使用时间.在硝态氮(360 mg N·kg-1)积累的蔬菜地土壤中,分别加入0、2500、5000和7500 kg C·hm-2黑麦草(记为CK、C2500、C5000和C7500),淹水条件下,30 ℃恒温室内培养240 h,研究土壤硝态氮含量及氮素气体排放量变化.结果表明:培养结束时,CK处理中土壤硝态氮含量高达310 mg N·kg-1,添加黑麦草能有效地消除土壤中积累的硝态氮,C2500、C5000和C7500处理中土壤硝态氮含量降低至10 mg N·kg-1以下需要的时间分别为240、48和24 h.添加黑麦草显著提高了土壤pH,降低了土壤电导率,其变化幅度随黑麦草添加量的增加而增大.添加黑麦草处理的土壤N2O和N2累积排放量为270~378 mg N·kg-1,N2O/N2为0.6~1.5.淹水条件下添加黑麦草可快速消除蔬菜地土壤积累的硝态氮,但应充分重视N2O在这一过程中的大量排放.  相似文献   

13.
采用静态箱-气相色谱法对菜地、旱地、林地、果园、水改旱土壤N2O排放特征及其相关影响因子进行研究.结果表明:不同土地利用方式下土壤N2O的排放通量在-21~435 μg·m-2·h-1之间变化,N2O年排放总量为菜地>果园>旱地>水改旱>林地,分别为447.14、313.57、167.00、124.87和7.24 mg·m-2.土壤N2O排放通量呈现明显的季节性变化,以春夏季最高,秋季次之,冬季最低,并与对应的大气及土壤温度的变化趋势基本一致.N2O排放通量与5 cm土壤温度及土壤硝态氮含量呈显著或极显著正相关,与土壤水分及土壤铵态氮含量无明显相关关系.  相似文献   

14.
水网平原地区不同种植类型农田氮磷流失特征   总被引:5,自引:1,他引:4  
章明奎  王阳  黄超 《应用生态学报》2011,22(12):3211-3220
采用田间径流小区定位研究方法,在浙江省绍兴县选择27块农田,研究了自然降雨条件下水网平原地区7种种植类型农田N、P的径流流失特征、负荷及影响因素.结果表明: 农田径流总P(TP)、水溶态P(DP)和颗粒态P(PP)的年流失量平均分别为4.75、0.74和4.01 kg·hm-2;PP占TP的比例高于DP.径流总N(TN)、水溶态总N(DTN)、水溶态有机N(DON)、NH4+-N和NO3--N的年流失量平均分别为21.87、17.19、0.61、3.63和12.95 kg·hm-2;流失的DTN各组分以NO3--N为主,其次为NH4+-N,DON的比例较低.不同种植类型农田径流TN、DTN、DON和NO3--N的流失量由低至高依次为:休闲地<苗木地<单季晚稻农田<双季稻农田<油菜(或小麦)-单季水稻农田<小麦-早稻-晚稻农田<蔬菜地,而径流TP和PP的流失量依次为:休闲地<苗木地<单季晚稻、双季稻农田<小麦-早稻-晚稻农田<油菜(或小麦)-单季水稻农田<蔬菜地,不同种植类型间的DP流失量差异较小.N、P流失主要发生在作物生产期间,TN和TP的流失比例随作物复种指数的提高而增加.TN、DTN和NO3--N流失量主要与N肥施用量有关,土壤中NO3--N含量对TN和DTN流失量也有明显影响;农田DON的流失除与N肥施用量有关外,还受土壤全N和有机质积累的影响;NH4+-N的流失量主要与土壤NH4+-N水平有关,受N肥施用量的影响不明显;径流TP和PP的流失量受P肥施用量、土壤P积累的共同影响,而DP的流失与施P量关系不大,但与土壤全P和有效P都存在显著相关关系.  相似文献   

15.
晋南旱地麦田夏闲期土壤水分和养分变化特征   总被引:3,自引:0,他引:3  
2009-2011年在晋南旱地冬小麦种植区,研究了传统施肥(CF)、推荐施肥(RF)及垄膜沟播(RFFP)处理结合秸秆覆盖措施对夏闲期(6-9月)2 m土层土壤水分、NO3--N,以及0~40 cm土层速效磷、速效钾含量的影响.结果表明: 夏闲期降水可补充旱地麦田2 m土层土壤在冬小麦生长季所消耗的水分,其中94%以上蓄水量集中在0~140 cm土层,休闲效率为6%~27%.夏闲期降水易引起NO3--N下移;357~400 mm的降水量可使NO3--N淋移到100 cm土层,积累峰值在20~40 cm土层.夏闲期秸秆覆盖或地膜与秸秆配合覆盖可有效提高0~40 cm土层速效磷和速效钾含量,3个夏闲期累计增加量分别为17%~45%和36%~49%.不同处理间以垄膜沟播+沟内覆盖秸秆的二元覆盖模式蓄水培肥效果最佳,3个夏闲期2 m土层土壤累计蓄水215 mm,累计矿化氮90 kg·hm-2,耕层土壤速效磷和速效钾含量分别累计增加2.7和83 mg·kg-1,显著高于推荐施肥和传统施肥处理.推荐施肥和传统施肥处理对土壤水分、养分变化的影响无显著差异.  相似文献   

16.
To quantify the effects of soil temperature (Tsoil), and relative soil water content (RSWC) on soil N2O emission we measured N2O soil efflux with a closed dynamic chamber in situ in the field and from soil cores in a controlled climate chamber experiment. Additionally we analysed the effect of soil acidity, ammonium, and nitrate concentration in the field. The analysis was performed on three meadows, two bare soils and in one forest. We identified soil water content, soil temperature, soil nitrogen content, and pH as the main parameters influencing soil N2O emission. The response of N2O emission to soil temperature and relative soil water content was analysed for the field and climate chamber measurements. A non-linear regression model (DenNit) was developed for the field data to describe soil N2O efflux as a function of soil temperature, soil moisture, pH value, and ammonium and nitrate concentration. The model could explain 81% of the variability in soil N2O emission of all individual field measurements, except for data with short-term soil water changes, namely during and up to 2 h after rain stopped. We validated the model with an independent dataset. For this additional meadow site 73% of the flux variation could be explained with the model.  相似文献   

17.
应用C2H2抑制原状土柱培育法研究了三江平原典型小叶章湿地土壤N2O排放速率及反硝化速率的变化,分析了它们与环境因子的关系,并估算了N2O排放量及反硝化损失量.结果表明:草甸沼泽土和腐殖质沼泽土N2O排放速率的变化基本一致,其范围分别为0.020~0.089 kg N·hm-2·d-1和0.012~0.033 kg N·hm-2·d-1,前者的N2O排放速率均明显高于后者(平均为1.79±1.07倍),且其差异达到显著水平(P<0.05);二者反硝化速率的变化并不一致,其范围分别为0.024~0.127 kg N·hm-2·d-1和0.021~0.043 kg N·hm-2·d-1,前者的反硝化速率一般也要高于后者(平均为1.67±1.56倍),但其差异并未达到显著水平(P>0.05);硝化作用在前者N2O排放和氮素损失过程中发挥了重要作用,而反硝化作用则是导致后者N2O排放和氮素损失的重要过程;氮素物质基础不是影响二者硝化-反硝化作用的重要因素;温度对前者硝化 反硝化作用的影响比后者更为明显,其反硝化速率与5、10和15 cm地温均呈显著正相关(P<0.05);二者所处湿地水分条件的差异是导致其N2O排放速率及反硝化速率差异的重要原因.生长季内,前者的N2O排放量和反硝化损失量分别为5.216 kg N·hm-2和6.166 kg N·hm-2,而后者分别为3.196 kg N·hm-2和4.407 kg N·hm-2;在二者的反硝化产物中,N2O/N2的比率最高,分别为5.49和3.76,表明N2在后者反硝化产物中所占的比例明显高于前者,说明季节积水条件会导致N2O/N2比例降低.  相似文献   

18.
华北平原冬小麦/夏玉米轮作体系土壤硝态氮的适宜含量   总被引:19,自引:0,他引:19  
采用冬小麦季不同施氮处理(夏玉米季不施氮)研究了华北平原冬小麦/夏玉米轮作体系夏玉米季土壤硝态氮的适宜含量.结果表明:在播前土壤无机氮含量较高的条件下,冬小麦季施用150kgN.hm-2即可满足冬小麦/夏玉米两季作物的氮素需求;各氮肥处理在冬小麦季的氮肥施用当季的利用率仅为11%~23%,在夏玉米季氮肥残效利用率则高达30%~52%.当夏玉米播前0~90cm土层硝态氮含量达到82kg.hm-2时,无需施氮即可保证夏玉米十叶期的生长,达到151kg.hm-2时,无需施氮即可保证整个生育期的生长.夏玉米十叶期和收获后0~90cm土层硝态氮含量低于46和65kg.hm-2时,则影响作物正常生长.综合考虑产量和环境效应,冬小麦/夏玉米轮作体系中0~90cm土层硝态氮含量应控制在65~151kg.hm-2之间.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号