首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
蚯蚓在有机污染土壤生物修复中的作用机理与应用   总被引:2,自引:0,他引:2  
蚯蚓的各类活动能够改善土壤理化性质,提高土壤微生物活性,引入高效降解菌等,直接或间接地促进有机污染物在土壤中的降解和转化。其中蚓触圈是有机污染物降解的热点区域。此外,生物富集也是蚯蚓修复土壤有机污染的重要机理之一。研究表明,蚯蚓能够促进土壤中多种有机污染物的降解,在土壤有机污染生物修复方面具有广阔的应用前景。本文综述了蚯蚓在土壤有机污染生物修复中的作用机理及在修复多环芳烃、多氯联苯、农药等污染土壤方面的应用,指出当前研究存在的不足,并对未来研究进行展望,以期为土壤有机污染生物修复提供参考和依据。  相似文献   

2.
筛选分离降解多环芳烃(PAHs)的优势菌种对开展多环芳烃污染生态系统修复具有重要的现实意义。本研究以焦化厂周围受多环芳烃污染的土壤为菌源,经过富集培养驯化和平板分离,获得11株能降解多环芳烃的菌株。通过形态观察、生理生化特征及16S rRNA序列比对对菌株进行鉴定,筛选出3株PAHs高效降解菌,分别命名为DJ-3、DJ-8、DJ-10。经16S rRNA序列分析鉴定,DJ-3为假单胞菌属、DJ-8为克雷伯氏菌属、DJ-10为芽孢杆菌属。对菌株降解能力的研究表明,3株菌(DJ-3、DJ-8、DJ-10)培养7 d后对混合多环芳烃中菲(200 mg·L-1)、芘(200 mg·L-1)和萘(160 mg·L-1)的降解率分别为48.9%~65.9%、38.9%~43.1%和57.6%~64.9%。3株菌对多环芳烃混合样品(1200 mg·L-1)的降解率分别为49.1%、44.5%、53.9%,远高于其他8株筛选菌,为PAHs高效降解菌株。3种菌株两两之间和三者组合均无拮抗关系。研究结果将为构建高效的多环芳烃降解菌群、提高多环芳烃原位污染土壤的生物修复效果奠定基础。  相似文献   

3.
Li H  Zhou LS  Wang YF  Top EM  Zhang Y  Xu H 《应用生态学报》2011,22(2):526-536
可移动基因元件(mobile genetic elements,MGEs)在环境微生物群落中的水平转移是细菌基因组进化和适应特定环境压力的重要机制.在污染土壤和水体中接种携带具有降解基因MGEs的菌株后,随着MGEs的水平基因转移,可使降解基因转移至具有竞争性的土著微生物中并在其中表达,从而不必考虑供体菌在环境中是否能够长期存活.这种由可移动降解基因元件水平转移介导的生物修复为探索新的生物修复途径提供了可行性.本文重点综述了环境样品中携带降解基因MGEs的多样性及其在促进污染物降解过程中的重要作用,介绍了从环境样品中分离代谢MGEs的方法,并列举了在污染土壤、活性污泥、其他生物反应器等生态系统中MGEs水平转移的几个实例.  相似文献   

4.
低温微生物修复石油烃类污染土壤研究进展   总被引:3,自引:0,他引:3  
Wang SJ  Wang X  Lu GL  Wang QH  Li FS  Guo GL 《应用生态学报》2011,22(4):1082-1088
耐冷菌、嗜冷菌等低温微生物广泛存在于极地、高山以及高纬度等土壤环境中,是石油烃类污染物在低温条件下降解与转化的重要微生物资源.利用低温微生物的独特优势,石油污染土壤的低温生物修复技术的研究成为当前热点领域.本文系统综述了低温石油烃降解菌的分类及冷适机制,低温微生物对不同类型石油烃组分的降解特征和降解机理,低温环境中接种降解菌、添加营养物质和表面活性剂等强化技术在石油污染土壤中生物修复的应用.以及微生物分子生物学技术在低温微生物降解石油烃的研究现状,为拓展我国石油污染土壤生物修复技术提供参考.  相似文献   

5.
多环芳烃污染土壤生物修复研究进展   总被引:1,自引:0,他引:1  
多环芳烃 (Polycyclic aromatic hydrocarbons,PAHs) 是一类广泛分布于环境中的持久性污染物,结构稳定、难以降解,对生态环境和生物具有“三致”毒害性,其环境去除和修复备受关注。绿色、安全、经济的生物修复技术被广泛应用于PAHs污染土壤的修复。本文从土壤中PAHs的来源、迁移、归趋和污染水平总结了目前我国土壤多环芳烃污染的基本状况;归纳了具有PAHs降解作用的微生物、植物种类及机理;比较了微生物修复、植物修复和联合修复3类主要的生物修复技术。指出植物与微生物的互作机理的解析,抗逆菌株、植株的筛选与培育,实际应用的安全和效能评估应成为多环芳烃污染土壤修复领域未来的研究方向。  相似文献   

6.
漆酶因可氧化许多种有机污染物,在土壤污染修复方面的应用潜力受到广泛重视。筛选具有较高漆酶活性的土壤真菌,可以为污染土壤修复提供生物资源。通过培养基中愈创木酚颜色反应,从土壤中筛选获得1株真菌菌株F-5。18S rRNA基因序列显示该菌株属于巨座壳科(Family Magnaporthaceae)。单因素试验和正交试验结果显示,蔗糖和蛋白胨分别是最有利于该菌产漆酶的碳源和氮源。在适当培养条件下,真菌F-5培养液酶活性可达4033U/L,表现出该菌具有较强的产漆酶能力。在多环芳烃(PAHs)污染土壤的生物修复中,真菌F-5可使土壤中苯并(a)芘、二苯并(a,h)蒽等高环、高毒性多环芳烃降解,并使土壤多环芳烃毒性当量大幅降低。因此,真菌F-5适合修复PAHs污染土壤。  相似文献   

7.
生物强化和生物刺激等绿色技术以其经济有效、生态友好的特性,已逐渐成为治理土壤重金属和有机污染的利器。多种细菌、真菌及混合菌群可与物理化学修复手段灵活组合,针对性开展土壤有机污染、重金属污染及复合污染修复。总结近5年代表性研究结果,讨论处理菌株的多来源筛选,其转化/降解不同类型污染物的潜力,着重其在多尺度土壤治理案例中的应用,包括实验室、温室和场地条件下的修复表现。微生物修复的复杂性不仅由于菌的生理和代谢特性差异,还表现在影响因素众多,包括非生物因素,如p H、温度、土壤类型、污染物浓度、水和有机质含量,外加碳源和氮源等生物因素,如接种量,外加菌株和原地土著菌互作,接种物存活等。指出今后联合修复思路和加强分子方法应用的研究方向。  相似文献   

8.
一株氯嘧磺隆降解菌分离鉴定及降解条件优化   总被引:1,自引:0,他引:1  
为解决氯嘧磺隆残留对土壤、水体污染及后茬敏感作物药害问题,为污染土壤微生物修复提供降解菌种资源,文中采用富集培养、逐级驯化等方法,从氯嘧磺隆污染土壤中分离到1株高效氯嘧磺隆降解菌T9DB-01,经形态特征、生理生化及16S rDNA序列分析,鉴定为假单胞菌Pseudomonas sp.。采用单因素实验探究温度、pH值、底物浓度、装液量和接种量对菌株T9DB-01降解氯嘧磺隆的影响,采用正交试验及验证,优化菌株T9DB-01对氯嘧磺隆降解条件。结果表明,在30℃,pH 8.0,底物浓度200 mg/L,装液量100 mL/250 mL,接种量4%的条件下,5 d后降解率达到93.7%。该降解菌株对氯嘧磺隆污染土壤原位生物修复具有一定的应用潜力。  相似文献   

9.
通过富集培养及平板升华法从本溪钢铁公司周边多环芳烃(PAHs)污染土壤中分离出7株PAHs降解菌。以芘和苯并[a]芘为底物进行摇瓶降解实验,结果表明:G1、G2和G3菌株对高环PAHs芘和苯并[a]芘均具有较强的降解能力。进一步研究此3株菌及混合菌对原状污染土壤中PAHs的降解能力,发现80 d时对总PAHs的降解顺序依次为:混合菌G2G1G3,其中混合菌对PAHs降解率较单菌分别提高了9.17%、11.49%和16.11%;4个处理对4~6环PAHs的降解率较对照组相比提高的倍数随着环数增加而增大;总PAHs的降解率与脱氢酶的活性呈正相关。电场影响G1、G2和G3菌株对PAHs降解,在1.0 V·cm~(-1)电场条件下,4环、5环及6环PAHs降解率较单纯微生物修复提高12.13%、13.35%和14.52%,说明3株菌具有较强的电场适应能力,可在高环PAHs污染土壤的电动-微生物修复中应用。形态学观察及16S rRNA序列比对分析表明,G1、G2、G3菌株分别为鞘氨醇单胞菌属(Sphingomonas sp.)、苍白杆菌属(Ochrobactrum sp.)和无色杆菌属(Achromobacter sp.)。  相似文献   

10.
2,4-二氯苯酚在土壤与河流底泥中降解动力学   总被引:1,自引:0,他引:1  
以南京化学工业园内四柳河沿岸土壤与河流底泥为研究对象,通过土壤灭菌、温度与污染物初始浓度调控,研究了2,4-二氯苯酚在土壤与河流底泥中降解动力学及其影响因子。结果表明:微生物对2,4-二氯苯酚降解起主导作用,在45d内,非灭菌土壤和河流底泥的降解率分别是灭菌条件下的1.5~3倍、1.4~2.8倍,土壤和河流底泥中的2,4-二氯苯酚微生物降解量分别为0.128~0.599和0.113~0.718mg·kg-1,非灭菌处理半衰期时间短于灭菌处理;(10±1)℃~(30±1)℃范围内,随着温度的增高,2,4-二氯苯酚降解加快,在(30±1)℃土壤与河流底泥中残留量最小,分别为0.305和0.203mg·kg-1,半衰期也最短;土壤与河流底泥中的2,4-二氯苯酚均在其浓度为0.5mg·kg-1时降解最快,随着初始浓度的增加,2,4-二氯苯酚降解速度呈现递减趋势,半衰期增长。  相似文献   

11.
A bacterial strain, designated as CTN-11, capable of degrading chlorothalonil (CTN), was isolated from a chlorothalonil-contaminated soil in China. Based on the morphological, biochemical characteristics and comparative analysis of the 16S rRNA genes, strain CTN-11 was identified as Ochrobactrum sp. Strain CTN-11 could degrade 50 mg l−1 CTN to a non-detectable level within 48 h, and efficiently degrade CTN in a relatively broad range of temperatures from 20 to 40°C and initial pH values from 6.0 to 9.0. The new isolate differed from those previously reported CTN co-metabolic degraders by transforming CTN in the absence of other carbon sources. A glutathione S-transferase (GST) coding gene, which showed 88% sequence similarity with that from Ochrobactrum anthropi SH35B, was cloned from strain CTN-11. However, the gene was not functionally expressed in the presence of glutathione, indicating that CTN was not reductively dechlorinated by thiolytic substitution catalyzed by GST in strain CTN-11. The metabolite hydroxyl-trichloroisophthalonitrile (CTN-OH) produced during CTN anaerobic degradation was identified based on tandem MS/MS, confirming that hydrolytic dechlorination was involved in the CTN degradation. The removal of CTN by strain CTN-11 in sterile and non-sterile soils was also studied. In both soil samples, 50 mg kg−1 CTN could be degraded to an undetectable level within 3 days. This study highlights an important potential use of strain CTN-11 for the cleanup of CTN-contaminated sites and presents a hydrolytic dechlorination reaction of CTN by a pure culture.  相似文献   

12.
Pseudomonas pseudoalcaligenes POB310(pPOB) and Pseudomonas sp. strains B13-D5(pD30.9) and B13-ST1(pPOB) were introduced into soil microcosms containing 3-phenoxybenzoic acid (3-POB) in order to evaluate and compare bacterial survival, degradation of 3-POB, and transfer of plasmids to a recipient bacterium. Strain POB310 was isolated for its ability to use 3-POB as a growth substrate; degradation is initiated by POB-dioxygenase, an enzyme encoded on pPOB. Strain B13-D5 contains pD30.9, a cloning vector harboring the genes encoding POB-dioxygenase; strain B13-ST1 contains pPOB. Degradation of 3-POB in soil by strain POB310 was incomplete, and bacterial densities decreased even under the most favorable conditions (100 ppm of 3-POB, supplementation with P and N, and soil water-holding capacity of 90%). Strains B13-D5 and B13-ST1 degraded 3-POB (10 to 100 ppm) to concentrations of <50 ppb with concomitant increases in density from 10(6) to 10(8) CFU/g (dry weight) of soil. Thus, in contrast to strain POB310, the modified strains had the following two features that are important for in situ bioremediation: survival in soil and growth concurrent with removal of an environmental contaminant. Strains B13-D5 and B13-ST1 also completely degraded 3-POB when the inoculum was only 30 CFU/g (dry weight) of soil. This suggests that in situ bioremediation may be effected, in some cases, with low densities of introduced bacteria. In pure culture, transfer of pPOB from strains POB310 and B13-ST1 to Pseudomonas sp. strain B13 occurred at frequencies of 5 x 10(-7) and 10(-1) transconjugant per donor, respectively. Transfer of pPOB from strain B13-ST1 to strain B13 was observed in autoclaved soil but not in nonautoclaved soil; formation of transconjugant bacteria was more rapid in soil containing clay and organic matter than in sandy soil. Transfer of pPOB from strain POB310 to strain B13 in soil was never observed.  相似文献   

13.
Burkholderia sp. GB-01 strain was used to study different factors affecting its growth for inoculum production and then evaluated for abamectin degradation in soil for optimization under various conditions. The efficiency of abamectin degradation in soil by strain GB-01 was seen to be dependent on soil pH, temperature, initial abamectin concentration, and inoculum size along with inoculation frequency. Induction studies showed that abamectin depletion was faster when degrading cells were induced by pre-exposure to abamectin. Experiments performed with varying concentrations (2–160 mg Kg−1) of abamectin-spiked soils showed that strain GB-01 could effectively degrade abamectin over the range of 2–40 mg Kg−1. The doses used were higher than the recommended dose for an agricultural application of abamectin, taking in account the over-use or spill situations. A cell density of approximately 108 viable cells g−1 dry weight of soil was found to be suitable for bioremediation over a temperature range of 30–35°C and soil pH 7.5–8.5. This is the first report on bacterial degradation of abamectin in soil by a Burkholderia species, and our results indicated that this bacterium may be useful for efficient removal of abamectin from contaminated soils.  相似文献   

14.
p-Nitrophenol (PNP), a toxic nitroaromatic compound, can build up in soils due to extensive usage of nitrophenolic pesticides and hence needs to be removed. Arthrobacter protophormiae RKJ100, a PNP-degrading organism, was used in this work to study factors affecting its growth, and then evaluated for its capacity to degrade PNP in soil microcosms. Molasses (10%) treated with 0.1% potassium hexacyanoferrate was found to be a suitable and cheap carbon source for inoculum preparation. Induction studies showed that PNP depletion was quicker when cells were induced by pre-exposure to PNP. The efficiency of PNP degradation in soil by strain RKJ100 was seen to be dependent on pH, temperature, initial PNP concentration and inoculum size. Microcosm studies performed with varying concentrations (1.4–210 ppm) of PNP-spiked soils showed that strain RKJ100 could effectively degrade PNP over the range 1.4–140 ppm. A cell density of 2×108 colony forming units/g soil was found to be suitable for PNP degradation over a temperature range of 20–40°C and at a slightly alkaline pH (7.5). Our results indicate that strain RKJ100 has potential for use in in situ bioremediation of PNP-contaminated sites. This is a model study that could be used for decontamination of sites contaminated also with other compounds.  相似文献   

15.
Fenitrothion, a toxic organophosphorus pesticide, can build up the concentration of nitrophenolic compound in soils and hence needs to be removed. Burkholderia sp. FDS-1, a fenitrothion-degrading strain, was used in this work to study factors affecting its growth, and then evaluated for its capacity to degrade fenitrothion in soil microcosms. Minimal salt medium containing 1% (w/v) glucose was found to be a suitable carbon source for inoculum preparation. Various factors, including soil pH, temperature, initial fenitrothion concentration, and inoculum size influenced the degradation of fenitrothion. Microcosm studies performed with varying concentrations (1–200 mg kg−1) of fenitrothion-spiked soils showed that strain FDS-1 could effectively degrade fenitrothion in the range of 1–50 mg kg−1 soil. The addition of Burkholderia sp. FDS-1 at 2×106 colony forming units g−1 soil was found to be suitable for fenitrothion degradation over a temperature range of 20–40 °C and at a slight alkaline pH (7.5). The results indicate that strain FDS-1 has potential for use in bioremediation of fenitrothion and its metabolite-contaminated sites. This is a model study that could be used for decontamination of sites contaminated with other compounds.  相似文献   

16.
A method for bioremediation of chlorinated dibenzo-p-dioxins (CDDs) and dibenzofurans (CDFs) by a carbazole-utilizing bacterium, Pseudomonas sp. strain CA10, was developed. CA10 cells transferred to carbon- and nitrogen-free mineral medium supplemented with 1 mg carbazole (CAR)/ml grew rapidly during the first 2 days; and the cells at the end of this rapid growth period showed the highest 2,3-dichlorodibenzo-p-dioxin (2,3-Cl2DD)-degrading activity. The CA10 cells pregrown for 2 days efficiently degraded 2,3-Cl2DD in aqueous solution at either 1 ppm or 10 ppm. The effect of inoculum density on the efficiency of 2,3-Cl2DD degradation was investigated in a soil slurry microcosm [ratio of soil:water = 1:5 (w/v)]. The results showed that a single inoculation with CA10 cells at densities of 10(7) CFU/g soil and 10(9) CFU/g soil degraded 46% and 80% of 2,3-Cl2DD, respectively, during the 7-day incubation. The rate of degradation of each CDD congener, 2-ClDD, 2,3-Cl2DD, and 1,2,3-Cl3DD (1 ppm each) by strain CA10 in the soil slurry system was not significantly influenced by the coexistence of the other congeners. Using this soil slurry system, we tried an experimental bioremediation of the actual dioxin-contaminated soil, which contained mainly tetra- to octochlorinated dioxins. Although the degradation rate of total CDD and CDF congeners by a single inoculation with CA10 cells was 8.3% after a 7-day incubation, it was shown that strain CA10 had a potential to degrade tetra- to hepta-chlorinated congeners including the most toxic compound, 2,3,7,8-tetrachlorinated dibenzo-p-dioxin.  相似文献   

17.
For bioremediation of toxic endosulfan, endosulfan degradation bacteria, which do not form toxic endosulfan sulfate, were isolated from various soil samples using endosulfan as sole carbon and energy source. Among the 40 isolated bacteria, strain KE-1, which was identified as Klebsiella pneumoniae by physiological and 16S rDNA sequence analysis, showed superior endosulfan degradation activity. Analysis of culture pH, growth, free sulfate and endosulfan and its metabolites demonstrated that KE-1 biologically degrades 8.72 microg endosulfan ml(-1) day(-1) when incubated with 93.9 microg ml(-1) endosulfan for 10 days without formation of toxic endosulfan sulfate. Our results suggest that K. pneumoniae KE-1 degraded endosulfan by a non-oxidative pathway and that strain KE-1 has potential as a biocatalyst for endosulfan bioremediation.  相似文献   

18.
【背景】炔草酯可以高效防除麦田恶性杂草,但炔草酯的生产和使用也对环境造成了破坏,对动物和人类健康造成了威胁。【目的】分离筛选炔草酯高效降解菌株,研究其降解特性,为炔草酯污染生物修复提供优良菌种资源。【方法】采集农药厂活性污泥样品,通过富集培养和含有炔草酯的LB培养基进行炔草酯降解菌株的分离,通过形态和生理生化特性以及16S rRNA基因序列分析确定其分类学地位,通过单因素试验从温度、pH、接种量和底物浓度等方面考察菌株对炔草酯的降解特性,并利用UPLC-MS分析降解产物。【结果】筛选出一株炔草酯高效降解菌株WP68,经鉴定为鞘氨醇盒菌(Sphingopyxis sp.),该菌株在37°C和pH值为8.0时,10 h内可将200 mg/L的炔草酯降解98.26%。利用UPLC-MS鉴定菌株WP68降解炔草酯的产物为炔草酸。确定了该菌株降解炔草酯的最适温度、pH值、接种量、底物浓度分别是37°C、8.0、5%、200mg/L。菌株WP68还能降解氰氟草酯和精喹禾灵。【结论】Sphingopyxis sp. WP68对炔草酯有较强的降解能力和较高耐受性,在炔草酯污染土壤修复中具有潜在的应用前景。  相似文献   

19.
Aim: To determine optimal environmental conditions for achieving biodegradation of α‐ and β‐endosulfan in soil slurries following inoculation with an endosulfan degrading strain of Pseudomonas aeruginosa. Methods and Results: Parameters that were investigated included soil texture, soil slurry: water ratios, initial inoculum size, pH, incubation temperature, aeration, and the use of exogenous sources of organic and amino acids. The results showed that endosulfan degradation was most effectively achieved at an initial inoculum size of 600 μl (OD = 0·86), incubation temperature of 30°C, in aerated slurries at pH 8, in loam soil. Under these conditions, the bacterium removed more than 85% of spiked α‐ and β‐endosulfan (100 mg l?1) after 16 days. Abiotic degradation in noninoculated control medium within same incubation period was about 16%. Biodegradation of endosulfan varied in different textured soils, being more rapid in course textured soil than in fine textured soil. Increasing the soil contents in the slurry above 15% resulted in less biodegradation of endosulfan. Exogenous application of organic acids (citric acid and acetic acid) and amino acids (l ‐methionine and l ‐cystein) had stimulatory and inhibitory effects, respectively, on biodegradation of endosulfan. Conclusion: The results of this study demonstrated that biodegradation of endosulfan by Ps. aeruginosa in soil sediments enhanced significantly under optimized environmental conditions. Significance and Impact of the Study: Endosulfan is a commonly used pesticide that can contaminate soil, wetlands and groundwater. Our study demonstrates that bioaugmentation of contaminated soils with an endosulfan degrading bacterium under optimized conditions provides an effective bioremediation strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号