首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Aux/IAA proteins contain a potent transcriptional repression domain   总被引:21,自引:0,他引:21       下载免费PDF全文
  相似文献   

6.
7.
8.
9.
Auxin: regulation, action, and interaction   总被引:48,自引:0,他引:48  
  相似文献   

10.
Auxin action in a cell-free system   总被引:24,自引:0,他引:24  
  相似文献   

11.
The role of regulated protein degradation in auxin response   总被引:11,自引:0,他引:11  
  相似文献   

12.
13.
Combinatorial interactions of AUXIN RESPONSE FACTORs (ARFs) and auxin/indole acetic acid (Aux/IAA) proteins through their common domains III and IV regulate auxin responses, but insight into the functions of individual proteins is still limited. As a new tool to explore this regulatory network, we generated a gain-of-function ARF genotype by eliminating domains III and IV from the functionally well-characterized ARF MONOPTEROS(MP)/ARF5. This truncated version of MP, termed MPΔ, conferred complementing MP activity, but also displayed a number of semi-dominant traits affecting auxin signaling and organ patterning. In MPΔ, the expression levels of many auxin-inducible genes, as well as rooting properties and vascular tissue abundance, were enhanced. Lateral organs were narrow, pointed and filled with parallel veins. This effect was epistatic over the vascular hypotrophy imposed by certain Aux/IAA mutations. Further, in MPΔ leaves, failure to turn off the procambium-selecting gene PIN1 led to the early establishment of oversized central procambial domains and very limited subsequent lateral growth of the leaf lamina. We conclude that MPΔ can selectively uncouple a single ARF from regulation by Aux/IAA proteins and can be used as a genetic tool to probe auxin pathways and explore leaf development.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Auxin is involved in a wide spectrum of physiological processes in plants, including responses controlled by the blue light photoreceptors phototropins: phototropic bending and stomatal movement. However, the role of auxin in phototropin‐mediated chloroplast movements has never been studied. To address this question we searched for potential interactions between auxin and the chloroplast movement signaling pathway using different experimental approaches and two model plants, Arabidopsis thaliana and Nicotiana tabacum. We observed that the disturbance of auxin homeostasis by shoot decapitation caused a decrease in chloroplast movement parameters, which could be rescued by exogenous auxin application. In several cases, the impairment of polar auxin transport, by chemical inhibitors or in auxin carrier mutants, had a similar negative effect on chloroplast movements. This inhibition was not correlated with changes in auxin levels. Chloroplast relocations were also affected by the antiauxin p‐chlorophenoxyisobutyric acid and mutations in genes encoding some of the elements of the SCFTIR1‐Aux/IAA auxin receptor complex. The observed changes in chloroplast movement parameters are not prominent, which points to a modulatory role of auxin in this process. Taken together, the obtained results suggest that auxin acts indirectly to regulate chloroplast movements, presumably by regulating gene expression via the SCFTIR1‐Aux/IAA‐ARF pathway. Auxin does not seem to be involved in controlling the expression of phototropins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号