首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Insulin resistance and hypertension have been implicated in the pathogenesis of cardiovascular disease; however, little is known about the roles of insulin and mechanical force in vascular smooth muscle cell (VSMC) remodeling. We investigated the contribution of mechanical stretch to insulin-induced VSMC proliferation. Thymidine incorporation was stimulated by insulin in stretched VSMCs, but not in un-stretched VSMCs. Insulin increased 2-deoxy-glucose incorporation in both stretched and un-stretched VSMCs. Mechanical stretch augmented insulin-induced extracellular signal-regulated kinase (ERK) and Akt phosphorylation. Inhibitors of epidermal growth factor (EGF) receptor tyrosine kinase and Src attenuated insulin-induced ERK and Akt phosphorylation, as well as thymidine incorporation, whereas 2-deoxy-glucose incorporation was not affected by these inhibitors. Moreover, stretch augmented insulin-like growth factor (IGF)-1 receptor expression, although it did not alter the expression of insulin receptor and insulin receptor substrate-1. Insulin-induced ERK and Akt activation, and thymidine incorporation were inhibited by siRNA for the IGF-1 receptor. Mechanical stretch augments insulin-induced VSMC proliferation via upregulation of IGF-1 receptor, and downstream Src/EGF receptor-mediated ERK and Akt activation. Similar to in vitro experiment, IGF-1 receptor expression was also augmented in hypertensive rats. These results provide a basis for clarifying the molecular mechanisms of vascular remodeling in hypertensive patients with hyperinsulinemia.  相似文献   

2.
Retinal progenitor cells (RPCs) hold great potential for the treatment of retinal degenerative diseases. However, their proliferation capacity and differentiation potential towards specific retinal neurons are limited, which limit their future clinical applications. Thus, it is important to improve the RPCs’ ability to proliferate and differentiate. Currently, epidermal growth factor (EGF) is commonly used to stimulate RPC growth in vitro. In this study, we find that betacellulin (BTC), a member of the EGF family, plays important roles in the proliferation and differentiation of RPCs. Our results showed that BTC can significantly promote the proliferation of RPCs more efficiently than EGF. EGF stimulated RPC proliferation through the EGFR/ErbB2‐Erk pathway, while BTC stimulated RPC proliferation more powerfully through the EGFR/ErbB2/ErbB4‐Akt/Erk pathway. Meanwhile, under differentiated conditions, the BTC‐pre‐treated RPCs were preferentially differentiated into retinal neurons, including photoreceptors, one of the most important types of cells for retinal cell replacement therapy, compared to the EGF‐pre‐treated RPCs. In addition, knockdown of endogenous BTC expression can also obviously promote RPC differentiation into retinal neuronal cells. This data demonstrate that BTC plays important roles in promoting RPC proliferation and differentiation into retinal neurons. This study may provide new insights into the study of RPC proliferation and differentiation and make a step towards the application of RPCs in the treatment of retinal degenerative diseases.  相似文献   

3.
Overexpression of epidermal growth factor receptor (EGFR) in certain cancers is well established. There is growing evidence that epidermal growth factor (EGF) activates Akt/protein kinase B (PKB) in a phosphoinositide 3-OH kinase (PI3K)-dependent manner, but it is not yet clear which Akt isoforms are involved in this signal transduction pathway. We investigated the functional regulation of three Akt isoforms, Akt1/PKBalpha, Akt2/PKBbeta, and Akt3/PKBgamma, in esophageal cancer cells where EGFR is frequently overexpressed. Upon EGF simulation, phosphorylation of Akt1 at the Ser-473 residue was remarkably induced. This result was corroborated by in vitro Akt kinase assays using glycogen synthase kinase 3beta as the substrate. PI3K inhibitors, wortmannin or LY294002, significantly blocked the Akt kinase activity induced by EGF. Akt2 activity was evaluated by electrophoretic mobility shift assays. Robust activation of Akt2 by EGF was observed in some cell lines in a PI3K-dependent manner. EGF-induced Akt3 activation was demonstrated by Ser-472 phosphorylation of Akt3 but in a restrictive fashion. In aggregate, EGF-mediated activation of Akt isoforms is overlapping and distinctive. The mechanism by which EGFR recruits the PI3K/Akt pathway was in part differentially regulated at the level of Ras but independent of heterodimerization of EGFR with either ErbB2 or ErbB3 based upon functional dissection of pathways in esophageal cancer cell lines.  相似文献   

4.
Insulin-like growth factor-I (IGF-I) plays an important role in proliferation of vascular smooth muscle cells (VSMCs). However, the mechanism that IGF-I induces VSMCs proliferation is not completely understood. In this study, we determined (a) whether and how IGF-I induces transactivation of epidermal growth factor receptor (EGFR) in primary rat aortic VSMCs, (b) the contribution of EGFR to IGF-I-stimulated activation of extracellular signal-regulated kinase (ERK) and cell proliferation, and (c) the role of reactive oxygen species (ROS) in the cellular function. We showed that IGF-I induced phosphorylation of EGFR and ERK1/2 in VSMCs. AG1478, an EGFR inhibitor, inhibited IGF-I-induced phoshorylation of EGFR and ERK1/2. IGF-I stimulated ROS production and Src activation. Antioxidants inhibited IGF-I-induced ROS generation and activation of EGFR, ERK, and Src. Src kinase inhibitor PP1 and Src siRNA blocked IGF-I-induced activation of EGFR and ERK1/2. Inhibition of IGF-I-stimulated EGFR activation inhibited IGF-I-induced VSMC proliferation. These results suggest that (1) IGF-I induces EGFR activation through production of ROS and ROS-mediated Src activation in VSMCs, and (2) EGFR transactivation is required for IGF-I-induced VSMC proliferation.  相似文献   

5.
6.
7.

Background

Our previous research results showed that Type II cGMP dependent protein kinase (PKG II) could block the activation of epidermal growth factor receptor (EGFR) and consequently inhibit the proliferation and the related MAPK/ERK-mediated signal transduction of gastric cancer cell line BGC-823, suggesting that PKG II might inhibit other EGFR-triggered signal transduction pathways and related biological activities of gastric cancer cells. This paper was designed to investigate the potential inhibition of PKG II on EGF/EGFR-induced migration activity and the related signal transduction pathways.

Methodology/Principal Findings

In gastric cancer cell line AGS, expression and activity of PKG II were increased by infecting the cells with adenoviral construct encoding PKG II cDNA (Ad-PKG II) and treating the cells with cGMP analogue 8-pCPT-cGMP. Phosphorylation of proteins was detected by Western Blotting and active small G protein Ras and Rac1 was measured by “Pull-down” method. Cell migration activity was detected with trans-well equipment. Binding between PKG II and EGFR was detected with Co-IP. The results showed EGF stimulated migration of AGS cell and the effect was related to PLCγ1 and ERK-mediated signal transduction pathways. PKG II inhibited EGF-induced migration activity and blocked EGF-initiated signal transduction of PLCγ1 and MAPK/ERK-mediated pathways through preventing EGF-induced Tyr 992 and Tyr 1068 phosphorylation of EGFR. PKG II bound with EGFR and caused threonine phosphorylation of it.

Conclusion/Significance

Our results systemically confirms the inhibition of PKG II on EGF-induced migration and related signal transduction of PLCγ1 and MAPK/ERK-mediated pathways, indicating that PKG II has a fargoing inhibition on EGF/EGFR related signal transduction and biological activities of gastric cancer cells through phosphorylating EGFR and blocking the activation of it.  相似文献   

8.
In vascular smooth muscle cells (VSMCs), angiotensin II (AngII) induces transactivation of the EGF receptor (EGFR) which involves a metalloprotease that stimulates processing of heparin-binding EGF from its precursor. However, the identity and pharmacological sensitivity of the metalloprotease remain unclear. Here, we screened the effects of several metalloprotease inhibitors on AngII-induced EGFR transactivation in VSMCs. We found that an N-phenylsulfonyl-hydroxamic acid derivative [2R-[(4-biphenylsulfonyl)amino]-N-hydroxy-3-phenylpropinamide] (BiPS), previously known as matrix metalloprotease (MMP)-2/9 inhibitor, markedly inhibited AngII-induced EGFR transactivation, whereas the MMP-2 or -9 inhibition by other MMP inhibitors failed to block the transactivation. BiPS markedly inhibited AngII-induced ERK activation and protein synthesis without affecting AngII-induced intracellular Ca2+ elevation. VSMC migration induced by AngII was also inhibited not only by an EGFR inhibitor but also by BiPS. Thus, BiPS is a specific candidate to block AngII-induced EGFR transactivation and subsequent growth and migration of VSMCs, suggesting its potency to prevent vascular remodeling.  相似文献   

9.
10.
Bainiku-ekisu, the fruit-juice concentrate of the Oriental plum (Prunus mume) has recently been shown to improve human blood fluidity. We have shown that angiotensin II (AngII) stimulates growth of vascular smooth muscle cells (VSMCs) through epidermal growth factor (EGF) receptor transactivation that involves reactive oxygen species (ROS) production. To better understanding the possible cardiovascular protective effect of Bainiku-ekisu, we have studied whether Bainiku-ekisu inhibits AngII-induced growth promoting signals in VSMCs. Bainiku-ekisu markedly inhibited AngII-induced EGF receptor transactivation. H(2)O(2)-induced EGF receptor transactivation was also inhibited by Bainiku-ekisu. Thus, Bainiku-ekisu markedly inhibited AngII-induced extracellular signal-regulated kinase (ERK) activation. However, EGF-induced ERK activation was not affected by Bainiku-ekisu. AngII stimulated leucine uptake in VSMCs that was significantly inhibited by Bainiku-ekisu. Also, Bainiku-ekisu possesses a potent antioxidant activity. Since the activation of EGF receptor, ERK and the production of ROS play central roles in mediating AngII-induced vascular remodeling, these data suggest that Bainiku-ekisu could exert a powerful cardiovascular protective effect with regard to cardiovascular diseases.  相似文献   

11.
The aryl hydrocarbon receptor (AhR) mediates many toxic effects of environmental pollutants. AhR also interacts with multiple growth factor-driven signaling pathways. In the course of examining effects of growth factors on proliferation of human colon cancer cells, we identified cross talk between AhR and the epidermal growth factor receptor (EGFR). In the present work, we explored underlying signal transduction mechanisms and functional consequences of this interaction. With the use of two human colon cancer cell lines, H508 and SNU-C4, we examined the effects of AhR ligands including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on cell proliferation and activation of EGFR, ERK1/2, and Src kinases. In colon cancer cells, 5-day incubation with TCDD stimulated a twofold dose-dependent increase in cell proliferation that was detectable with 1 nM and maximal with 30 nM TCDD. TCDD induced dose- and time-dependent phosphorylation of EGFR (Tyr845) and ERK1/2; maximal phosphorylation was observed 5 to 10 min after addition of 30 nM TCDD. Both TCDD-induced ERK1/2 phosphorylation and cell proliferation were abolished by AhR small interfering RNA, AhR-specific inhibitor CH223191, Src kinase inhibitor PP2, neutralizing antibodies against matrix metalloproteinase 7, heparin-binding-EGF-like growth factor and EGFR, EGFR inhibitors (AG1478 and PD168393), and MEK1 inhibitor PD98059. Coimmunoprecipitation experiments revealed that AhR forms a protein complex with Src and regulates Src activity by phosphorylating Src (Tyr416) and dephosphorylating Src (Tyr527). These data support novel observations that, in human colon cancer cells, Src-mediated cross talk between aryl hydrocarbon and EGFR results in ERK1/2 activation, thereby stimulating cell proliferation.  相似文献   

12.
Streptolysin O (SLO) is a protein cytotoxin derived from Group A beta-hemolytic streptococci that associates with membranes and permeabilizes cells. Oxidation inactivates SLO, eliminating the characteristic hemolytic and cytotoxic activities. However, oxidized SLO produces beneficial therapeutic effects in vivo on scleroderma, scar formation and wound healing. Here we report that oxidized SLO also significantly inhibited invasion by human metastatic breast cancer MDA-MB-231 cells through Matrigel in an in vitro model of metastatic disease. This dose-dependent response corresponded to selective SLO activation of epidermal growth factor receptor (EGFR) ErbB1. SLO and EGF were equally selective in activation of EGFR, but EGF elicited larger relative increases in phosphorylation at various sites, especially pronounced for Tyr845. Addition of SLO did not affect either ERK1/2 or Akt kinases and altered the expression of only 10 of 84 metastasis-related genes in MDA-MB-231 cells. Neither SLO nor EGF promoted growth of several human breast cancer cell lines. Knockdown of EGFR by siRNA ablated the inhibitory effect of SLO on cancer cell invasion, showing SLO selectively activated ErbB1 kinase to reduce invasion without increasing cell growth. The results suggest SLO might have promise as a new therapy to inhibit metastasis.  相似文献   

13.
14.
表皮生长因子受体与肺脏发育的关系   总被引:1,自引:0,他引:1  
Li HJ  Liu Y  Hao HS  DU WH  Zhao XM  Wang D  Qin T  Ma YJ  Zhu HB 《遗传》2012,34(1):27-32
表皮生长因子受体(Epidermal growth factor receptor,EGFR)是一种跨膜蛋白受体,是ErbB家族成员之一,具有酪氨酸激酶活性。EGFR与相应的配体结合引起EGFR形成同源或异源二聚体启动胞内信号转导,激活下游多种信号转导途径,产生生物学效应,RAS/RAF/MEK/ERK通路与细胞增殖、分化和凋亡有关;PI3K/PDK1/AKT通路与细胞的迁移和粘附有关。EGFR能促进肺泡II型上皮细胞的成熟和肺表面活性物质的合成、分泌。EGFR对哺乳动物肺脏的作用呈现时空效应及剂量依赖效应,EGFR的下调表达则会引起肺脏发育不成熟;而EGFR过度表达促进肺肿瘤细胞的增殖、侵袭和转移。文章综述了EGFR及其调节信号通路的研究进展,以及EGFR与动物肺脏发育不成熟和肺癌之间的关系。  相似文献   

15.
Herstatin is an autoinhibitor of the ErbB family consisting of subdomains I and II of the human epidermal growth factor receptor 2 (ErbB-2) extracellular domain and a novel C-terminal domain encoded by an intron. Herstatin binds to human epidermal growth factor receptor 2 and to the epidermal growth factor receptor (EGFR), blocking receptor oligomerization and tyrosine phosphorylation. In this study, we characterized several early steps in EGFR activation and investigated downstream signaling events induced by epidermal growth factor (EGF) and by transforming growth factor alpha (TGF-alpha) in NIH3T3 cell lines expressing EGFR with and without herstatin. Herstatin expression decreased EGF-induced EGFR tyrosine phosphorylation and delayed receptor down-regulation despite receptor occupancy by ligand with normal binding affinity. Akt stimulation by EGF and TGF-alpha, but not by fibroblast growth factor 2, was almost completely blocked in the presence of herstatin. Surprisingly, EGF and TGF-alpha induced full activation of MAPK in duration and intensity and stimulated association of the EGFR with Shc and Grb2. Although MAPK was fully stimulated, herstatin expression prevented TGF-alpha-induced DNA synthesis and EGF-induced proliferation. The herstatin-mediated uncoupling of MAPK from Akt activation was also observed in Chinese hamster ovary cells co-transfected with EGFR and herstatin. These findings show that herstatin expression alters EGF and TGF-alpha signaling profiles, culminating in inhibition of proliferation.  相似文献   

16.
In cultured vascular smooth muscle cells, the angiotensin II (AngII) type-1 (AT(1)) receptor generates growth-promoting signals via the epidermal growth factor (EGF) receptor system. This 'transactivation' mechanism now appears to be utilized by a variety of G-protein-coupled receptors in many cells. The AngII-induced EGF receptor transactivation leads to activation of downstream signaling molecules including Ras, ERK, c-fos, Akt/protein kinase B, and p70 S6 kinase. We propose three possible mechanisms may be involved in the transactivation, (i) an upstream tyrosine kinase, (ii) reactive oxygen species, and (iii) a juxtacrine activation of the EGF receptor ligand. Whether the EGF receptor signal transduction induced by AngII plays an essential role in cardiovascular remodeling remains to be investigated.  相似文献   

17.
The epidermal growth factor (EGF) family of tyrosine kinase receptors (ErbB1, -2, -3, and -4) and their ligands are involved in cell differentiation, proliferation, migration, and carcinogenesis. However, it has proven difficult to link a given ErbB receptor to a specific biological process since most cells express multiple ErbB members that heterodimerize, leading to receptor cross-activation. In this study, we utilize carcinoma cells depleted of ErbB2, but not other ErbB receptor members, to specifically examine the role of ErbB2 in carcinoma cell migration and invasion. Cells stimulated with EGF-related peptides show increased invasion of the extracellular matrix, whereas cells devoid of functional ErbB2 receptors do not. ErbB2 facilitates cell invasion through extracellular regulated kinase (ERK) activation and coupling of the adaptor proteins, p130CAS and c-CrkII, which regulate the actin-myosin cytoskeleton of migratory cells. Overexpression of ErbB2 in cells devoid of other ErbB receptor members is sufficient to promote ERK activation and CAS/Crk coupling, leading to cell migration. Thus, ErbB2 serves as a critical component that couples ErbB receptor tyrosine kinases to the migration/invasion machinery of carcinoma cells.  相似文献   

18.
Oxidized low-density lipoprotein (OxLDL) is a risk factor in atherosclerosis and stimulates multiple signaling pathways, including activation of phosphatidylinositol 3-kinase (PI3-K)/Akt and p42/p44 mitogen-activated protein kinase (MAPK), which are involved in mitogenesis of vascular smooth muscle cells (VSMCs). We therefore investigated the relationship between PI3-K/Akt and p42/p44 MAPK activation and cell proliferation induced by OxLDL. OxLDL stimulated Akt phosphorylation in a time- and concentration-dependent manner, as determined by Western blot analysis. Phosphorylation of Akt stimulated by OxLDL and epidermal growth factor (EGF) was attenuated by inhibitors of PI3-K (wortmannin and LY294002) and intracellular Ca2+ chelator (BAPTA/AM) plus EDTA. Pretreatment of VSMCs with pertussis toxin, cholera toxin, and forskolin for 24 h also attenuated the OxLDL-stimulated Akt phosphorylation. In addition, pretreatment of VSMCs with wortmannin or LY294002 inhibited OxLDL-stimulated p42/p44 MAPK phosphorylation and [3H]thymidine incorporation. Furthermore, treatment with U0126, an inhibitor of MAPK kinase (MEK)1/2, attenuated the p42/p44 MAPK phosphorylation, but had no effect on Akt activation in response to OxLDL and EGF. Overexpression of p85-DN or Akt-DN mutants attenuated MEK1/2 and p42/p44 MAPK phosphorylation stimulated by OxLDL and EGF. These results suggest that the mitogenic effect of OxLDL is, at least in part, mediated through activation of PI3-K/Akt/MEK/MAPK pathway in VSMCs.  相似文献   

19.
Prostaglandins (PGs) such as PGE2 enhance proliferation in many cells, apparently through several distinct mechanisms, including transactivation of the epidermal growth factor (EGF) receptor (EGFR) as well as EGFR-independent pathways. In this study we found that in primary cultures of rat hepatocytes PGE2 did not induce phosphorylation of the EGFR, and the EGFR tyrosine kinase blockers gefitinib and AG1478 did not affect PGE2-stimulated phosphorylation of ERK1/2. In contrast, PGE2 elicited EGFR phosphorylation and EGFR tyrosine kinase inhibitor-sensitive ERK phosphorylation in MH1C1 hepatoma cells. These findings suggest that PGE2 elicits EGFR transactivation in MH1C1 cells but not in hepatocytes. Treatment of the hepatocytes with PGE2 at 3 h after plating amplified the stimulatory effect on DNA synthesis of EGF administered at 24 h and advanced and augmented the cyclin D1 expression in response to EGF in hepatocytes. The pretreatment of the hepatocytes with PGE2 resulted in an increase in the magnitude of EGF-stimulated Akt phosphorylation and ERK1/2 phosphorylation and kinase activity, including an extended duration of the responses, particularly of ERK, to EGF in PGE2-treated cells. Pertussis toxin abolished the ability of PGE2 to enhance the Akt and ERK responses to EGF. The results suggest that in hepatocytes, unlike MH1C1 hepatoma cells, PGE2 does not transactivate the EGFR, but instead acts in synergism with EGF by modulating mitogenic mechanisms downstream of the EGFR. These effects seem to be at least in part G(i) protein-mediated and include upregulation of signaling in the PI3K/Akt and the Ras/ERK pathways.  相似文献   

20.
We hypothesized that glucose-mediated alterations in vascular smooth muscle cell signal transduction contribute to diabetic complications. We found enhanced AngII activation of Akt and extracellular ERK1/2 in vascular smooth muscle cells incubated with high glucose (27.5 mM) compared with low glucose (5.5 mM). Because AngII-mediated transactivation of the epidermal growth factor receptor (EGFR) is important in Akt and ERK1/2 activation, we studied the effects of glucose on EGFR function. The EGFR in cells cultured for 48 h in low glucose was smaller (145 kDa) than the EGFR in cells cultured with high glucose (170 kDa). The shift from the 170-kDa isoform to the 145-kDa isoform was reversible and dependent upon glucose concentration with EC50 approximately 1 mM. N-Glycosylation was responsible because peptide N-glycosidase F treatment of isolated 170-kDa EGFR yielded a single band at 145 kDa. Cell surface biotinylation showed that the 145-kDa EGFR was present on plasma membrane. AngII and other G-protein-coupled receptor ligands known to transactivate EGFR phosphorylated the 170-kDa EGFR but not the 145-kDa EGFR, whereas EGF, heparin-binding EGF-like growth factor, and transforming growth factor-alpha phosphorylated both receptors. Subcellular fractionation showed that the 145-kDa receptor localized to a different plasma membrane domain than the 170-kDa receptor. These results establish a novel mechanism by which glucose-dependent EGFR N-glycosylation modulates AngII signal transduction and suggest a potential mechanism for pathogenic effects of AngII in diabetic vasculopathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号