首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Sperm incorporation and the formation of the fertilization cone with its associated microvilli were investigated by scanning electron microscopy of eggs denuded of their vitelline layers with dithiothreitol or stripped of their elevating fertilization coats by physical methods. The activity of the elongating microvilli which appear to engulf the entering spermatozoon was recorded in living untreated eggs with time-lapse video microscopy. Following the acrosome reaction, the elongated acrosomal process connects the sperm head to the egg surface. About 15 microvilli adjacent to the attached sperm elongate at a rate of 2.6 μm/min and appear to engulf the sperm head, midpiece, and sperm tail. These elongate microvilli swell to form the fertilization cone (average height, 6.7 ± 2.0 μm) and are resorbed as the sperm tail enters the egg cytoplasm 10 min after insemination. Cytochalasin B, an inhibitor of microfilament motility, completely inhibits the observed egg plasma membrane surface activity in both control and denuded eggs. These results argue for a role of the microfilaments found in the egg cortex and microvilli as necessary for the engulfment of the sperm during incorporation and indicate that cytochalasin interferes with the fertilization process at this site.  相似文献   

2.
During fertilization in Limulus, the spermatozoa first attach to the egg and then undergo an acrosomal reaction. In this reaction, the acrosomal vesicle exocytoses, and a long, preformed acrosomal filament is extruded (and subsequently penetrates the egg chorion). The egg surface component that triggers the acrosome reaction has not yet been solubilized; therefore, previous studies have examined either spontaneous acrosome reactions or acrosome reactions that were triggered by eggs (or insoluble egg fragments), elevated extracellular Ca2+, or Ca2+ ionophores. In this study, we report a new method for initiating acrosome reactions in Limulus sperm. When the Limulus sperm motility-initiating peptide (SMI) is added to sperm in K+-free sea water, greater than 90% acrosome reactions are initiated within 5 min. However, less than 5% acrosome reactions occur either in K+-free sea water lacking SMI or when SMI is added to sperm in either normal sea water or K+- and Ca2+-free sea water. Experiments with K+ ionophores (nigericin and valinomycin), a K+ channel blocking agent (tetraethyl ammonium), an Na+ ionophore (monensin), and reagents that increase the intracellular pH (monensin, nigericin, and NH4Cl) indicate that changes in intracellular K+, Na+, or H+ do not mediate SMI-initiated acrosome reactions. The K+/Ca2+ ratio determines whether or not SMI will initiate acrosome reactions, with greater than 50% acrosome reactions being initiated when this ratio is below 0.3. In that K+ movement does not appear to be the critical event, possibly the K+/Ca2+ ratio either determines the rate of Ca2+ entry or controls the conformation of sperm surface molecules to allow SMI to initiate acrosome reactions in low K+.  相似文献   

3.
Contrary to the widely accepted view that chiton sperm lack acrosomes and that fertilization in this group occurs via a micropyle, we demonstrate here that fertilization in Tonicella lineata occurs by acrosome-mediated sperm-egg fusion. The acrosome is a small vesicle containing two granules located at the tip of the sperm. The eggs have an elaborate hull (=chorion), which is formed into cupules that remain covered by follicle cells until maturity. When dissected ripe eggs were exposed to sperm in vitro, the sperm were attracted only to open cupules, inside which they swam through one of seven channels to the base where they penetrated the hull. The acrosome fired on contact with, or in, the hull, and during passage through it the apical granule was exhausted while the basal granule was exposed. If sperm contacted follicle cells between the cupules the acrosome did not react. The vitelline layer beneath the hull contains pores arranged in a regular pattern. Embedded in the base of each pore is an egg microvillus. Having penetrated the hull the sperm anterior filament located a pore and fused with the tip of the egg microvillus projecting into it. This created a membranous tube, through which the sperm nucleus was injected into the egg. The egg membrane appeared to be raised up into a small fertilization cone around the penetrating sperm, the vitelline layer became slightly elevated, and some cortical granules were released by exocytosis.  相似文献   

4.
Transmission electron micrograph of a sea urchin (Strongylocentrotus purpuratus) spermatozoon (purple) bound to the tip of an egg microvillus (yellow) by the bindin protein (diffuse purple), which was released during exocytosis of the sperm acrosomal vesicle. Egg microvilli are approximately 0.25 µm in diameter. More on observing these events on the cellular level in a classroom laboratory setting is presented by VD Vacquier (this issue).  相似文献   

5.
Suspensions of Mytilus edulis eggs were fixed with osmium tetroxide at various intervals between 1 and 10 seconds after heavy insemination, and sectioned for electron microscopy to follow the natural process of acrosome reaction in the spermatozoa around the eggs. Sperm suspensions were also fixed after the addition of 10 per cent by volume of M/3 calcium chloride. Within the first second after the acrosome is stimulated to react, an opening appears at its apex, around which the plasma and acrosomal membranes fuse to each other, and the resulting membrane complex is reflected backward, presumably by the swelling of material lining it. At the same time the other material within the now open vesicle disappears, and the rudiment of the acrosomal process, consisting of a short axial rod loosely surrounded by the invaginated part of the acrosomal membrane, is exposed at the anterior side of the sperm head. Within another second this rudiment is extended by elongation of the axial rod and expansion of the surrounding membrane. If the spermatozoon has reacted close to the egg surface, the elongation may be very slight, whereas in suspended spermatozoa the process may reach a length of 13 µ. Possible mechanisms underlying these changes are suggested.  相似文献   

6.
Sperm fertilization reactions of Limulus polyphemus were examined by scanning electron and/or light microscopy. The following were considered: sperm motility, attachment of sperm to egg, acrosome reaction, and penetration of the acrosomal filament. The spermatozoa after semination are non-motile and become active only in close proximity to a defined region surrounding the egg. Egg materials diffusing into this region induce sperm motility and stimulate large numbers of spermatozoa to move towards the egg surface. Each sperm initially attaches by the apical tip and undergoes the acrosome reaction which causes a more permanent secondary attachment by the adhesion of acrosomal contents to the egg surface. The acrosome reaction also initiates the penetration of the acrosomal filament through the egg envelope, an event occurring in 70-80% of the attached spermatozoa (about 10(6). Shortly after this penetration, a secondary reaction occurs which involves a spiralling of the flagellum and an incorporation into the sperm body of the flagellar fibrous components, which then become closely apposed to the sperm nucleus. These sperm fertilization reactions were performed or initiated with 0-34 M CaCl2 in whole eggs, egg sections, excised egg envelopes and/or the outer basement lamina of the egg envelope. The Limulus fertilization system is very valuable since sperm reactions can be examined biochemically, which may lead to a better understanding of the chemical mechanisms involved in sperm-egg interactions in all animal species.  相似文献   

7.
The regulation of acrosomal exocytosis in capacitated bovine spermatozoa by soluble extracts of zonae pellucidae was examined. Kinetic studies demonstrated that zonae pellucidae stimulated synchronous acrosome reactions. The t1/2 of this process was 5-10 min and response was maximal at 20 min. The apparent initial rate of exocytosis in sperm populations was dependent upon the concentration of zona pellucida protein, with an ED50 and a maximally effective dosage of 20 and 50 ng protein/microliter, respectively. Zonae pellucidae caused up to a 48-fold increase in the apparent initial rate and a 3- to 4-fold stimulation in the net occurrence of exocytosis. In contrast, solubilized zonae pellucidae did not induce acrosome reactions in uncapacitated sperm. The development of a capacitated state, as assayed by the ability of sperm to fertilize eggs in vitro, was compared to the expression of zona pellucida-regulated acrosome reactions in a series of kinetic experiments. Both activities were manifest with similar kinetics and displayed identical dependencies toward stimulatory and inhibitory agents in vitro. It is concluded that capacitation is an essential prerequisite for the induction of acrosomal exocytosis in bovine sperm by the zona pellucida.  相似文献   

8.
The ultrastructur of spermatozoa and the changes through which they are differentiated during sperm formation in an echiuroid were observed under the electron microscope. Many spermatids are connected to one central cytoplasmic mass and the sperm differentiation proceeds synchronously in one sperm-ball. Dense plate-like structures appear in the cytoplasm of early spermatids and disappear soon. In the process of nuclear condensation, many electron-dense aggregates appear in homogeneously textured chromonema and the aggregates are packed together to form a uniformly dense nucleus. Near the centriole at the opposite side from the central mass, the mitochondria fuse together to form one large middle-piece mitochondrion and the acrosomal vesicle is formed from the Golgi-complex. The differentiating acrosome in the late spermatid moves to the anterior tip of the head. In the completed acrosome, a flocculent substance accumulates in the conspicuously expanded invaginated pocket of the acrosomal vesicle and two kinds of material of different electron density fill the inside of the acrosomal vesicle. The spermatozoa remain connected to the central mass at the lateral side of the head until they become fully mature and are packed into the nephridia before spawning.  相似文献   

9.
Fertilization typically involves membrane fusion between sperm and eggs. In Drosophila, however, sperm enter eggs with membranes intact. Consequently, sperm plasma membrane breakdown (PMBD) and subsequent events of sperm activation occur in the egg cytoplasm. We previously proposed that mutations in the sneaky (snky) gene result in male sterility due to failure in PMBD. Here we support this proposal by demonstrating persistence of a plasma membrane protein around the head of snky sperm after entry into the egg. We further show that snky is expressed in testes and encodes a predicted integral membrane protein with multiple transmembrane domains, a DC-STAMP-like domain, and a variant RING finger. Using a transgene that expresses an active Snky-Green fluorescent protein fusion (Snky-GFP), we show that the protein is localized to the acrosome, a membrane-bound vesicle located at the apical tip of sperm. Snky-GFP also allowed us to follow the fate of the protein and the acrosome during fertilization. In many animals, the acrosome is a secretory vesicle with exocytosis essential for sperm penetration through the egg coats. Surprisingly, we find that the Drosophila acrosome is a paternally inherited structure. We provide evidence that the acrosome induces changes in sperm plasma membrane, exclusive of exocytosis and through the action of the acrosomal membrane protein Snky. Existence of testis-expressed Snky-like genes in many animals, including humans, suggests conserved protein function. We relate the characteristics of Drosophila Snky, acrosome function and sperm PMBD to membrane fusion events that occur in other systems.  相似文献   

10.
In the previous paper the structure of the acrosomal region of the spermatozoon was described. The present paper describes the changes which this region undergoes during passage through the vitelline membrane. The material used consisted of moderately polyspermic eggs of Hydroides hexagonus, osmium-fixed usually 9 seconds after insemination. There are essentially four major changes in the acrosome during passage of the sperm head through the vitelline membrane. First, the acrosome breaks open apically by a kind of dehiscence which results in the formation of a well defined orifice. Around the lips of the orifice the edges of the plasma and acrosomal membranes are then found to be fused to form a continuous membranous sheet. Second, the walls of the acrosomal vesicle are completely everted, and this appears to be the means by which the apex of the sperm head is moved through the vitelline membrane. The lip of the orifice comes to lie deeper and deeper within the vitelline membrane. At the same time the lip itself is made up of constantly changing material as first the material of the outer zone and then that of the intermediate zone everts. One is reminded of the lip of an amphibian blastopore, which during gastrulation maintains its morphological identity as a lip but is nevertheless made up of constantly changing cells, with constantly changing outline and even constantly changing position. Third, the large acrosomal granule rapidly disappears. This disappearance is closely correlated with a corresponding disappearance of a part of the principal material of the vitelline membrane from before it, and the suggestion is made that the acrosomal granule is the source of the lysin which dissolves this part of the vitelline membrane. Fourth, in the inner zone the fifteen or so short tubular invaginations of the acrosomal membrane, present in the normal unreacted spermatozoon, lengthen considerably to become a tuft of acrosomal tubules. These tubules are the first structures of the advancing sperm head to touch the plasma membrane of the egg. It is notable that the surface of the acrosomal tubules which once faced into the closed acrosomal cavity becomes the first part of the sperm plasma membrane to meet the plasma membrane of the egg. The acrosomal tubules of Hydroides, which arise simply by lengthening of already existing shorter tubules, are considered to represent the acrosome filaments of other species.  相似文献   

11.
Animal sperm show remarkable diversity in both morphology and molecular composition. Here we provide the first report of intense intrinsic fluorescence in an animal sperm. The sperm from a semi‐aquatic insect, the water strider, Aquarius remigis, contains an intrinsically fluorescent molecule with properties consistent with those of flavin adenine dinucleotide (FAD), which appears first in the acrosomal vesicle of round spermatids and persists in the acrosome throughout spermiogenesis. Fluorescence recovery after photobleaching reveals that the fluorescent molecule exhibits unrestricted mobility in the acrosomal vesicle of round spermatids but is completely immobile in the acrosome of mature sperm. Fluorescence polarization microscopy shows a net alignment of the fluorescent molecules in the acrosome of the mature sperm but not in the acrosomal vesicle of round spermatids. These results suggest that acrosomal molecules are rearranged in the elongating acrosome and FAD is incorporated into the acrosomal matrix during its formation. Further, we followed the fate of the acrosomal matrix in fertilization utilizing the intrinsic fluorescence. The fluorescent acrosomal matrix was observed inside the fertilized egg and remained structurally intact even after gastrulation started. This observation suggests that FAD is not released from the acrosomal matrix during the fertilization process or early development and supports an idea that FAD is involved in the formation of the acrosomal matrix. The intrinsic fluorescence of the A. remigis acrosome will be a useful marker for following spermatogenesis and fertilization. J. Cell. Physiol. 226: 999–1006, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
东方扁虾精子的超微结构   总被引:1,自引:0,他引:1  
利用电镜研究了东方扁虾(Thenus orientalis)精子的形态和结构。精子由核、膜复合物区和顶体区3部分组成。核内含非浓缩的染色质、微管及细纤维丝,外被核膜;5~6条辐射臂自核部位伸出,臂内充满微管。膜复合物区位于核与顶体之间,由许多膜片层结构及其衍生的囊泡共同组成。顶体区由顶体囊和围顶体物质组成,顶体结构复杂,由顶体帽、内顶体物质和外顶体物质等构成;围顶体物质呈细颗粒状,主要分布于顶体囊  相似文献   

13.
This study examines the gonad condition and gamete morphology of the Arctic deep-sea holothurian Molpadia borealis M. Sars, 1859 (Molpadiidae) collected from the Kara Sea in September 2006. The intensive process of gametogenesis observed in the holothurian gonads was close to completion, suggesting upcoming spawning. The sperm ultrastructure in M. borealis is similar to that in most Holothuroidea. This species has classic flagellated sperm, echinosperm, which are typical of animals with external insemination. The sperm head has a 2.5-??m spherical nucleus with a proximal acrosome consisting of a spherical acrosomal vesicle surrounded by periacrosomal material. A single circular mitochondrion located in the sperm mid-piece surrounds the proximal and distal centrioles, which are arranged at an obtuse angle to each other. The eggs of M. borealis are approximately 300 ??m in diameter. This suggests indirect development with a planktotrophic larva. This type of development of M. borealis is probably related to life in high latitudes in the deep sea.  相似文献   

14.
The equatorial segment of the acrosome underlies the domain of the sperm that fuses with the egg membrane during fertilization. Equatorial segment protein (ESP), a novel 349-amino acid concanavalin-A-binding protein encoded by a two-exon gene (SP-ESP) located on chromosome 15 at q22, has been localized to the equatorial segment of ejaculated human sperm. Light microscopic immunofluorescent observations revealed that during acrosome biogenesis ESP first appears in the nascent acrosomal vesicle in early round spermatids and subsequently segregates to the periphery of the expanding acrosomal vesicle, thereby defining a peripheral equatorial segment compartment within flattened acrosomal vesicles and in the acrosomes of early and late cap phase, elongating, and mature spermatids. Electron microscopic examination revealed that ESP segregates to an electron-lucent subdomain of the condensing acrosomal matrix in Golgi phase round spermatids and persists in a similar electron-lucent subdomain within cap phase spermatids. Subsequently, ESP was localized to electron-dense regions of the equatorial segment and the expanded equatorial bulb in elongating spermatids and mature sperm. ESP is the earliest known protein to be recognized as a marker for the specification of the equatorial segment, and it allows this region to be traced through all phases of acrosomal biogenesis. Based on these observations, we propose a new model of acrosome biogenesis in which the equatorial segment is defined as a discrete domain within the acrosomal vesicle as early as the Golgi phase of acrosome biogenesis.  相似文献   

15.
Ultrastructural changes during spermiogenesis in the flatworm, Notoplana japonica were studied with special attention to organizing process of an acrosome and flagella. During spermiogenesis, the G olgi complex develops conspicuously but it fails to organize the structure of an acrosomal vesicle. Consequently, no acrosome is formed at the apex of the sperm. As a substitute for an acrosomal structure, the slender process at the tip of the mature sperm is prominently occupied with glycogen granules.
The axoneme of the flagellum is formed from the basal body in the protrusion which is juxtaposed to the nucleus of the early spermatid. Two flagella associated with an electron-dense structure (EDS) extend superficially from the spermatid body in opposite directions. Progressively, they take an acute angle to each other and finally run alongside the sperm body. The axoneme consits of nine peripheral doublets with arms, a central cylinder containing an electron dense core, a less dense intermediate zone and fine spokes between the cylinder and doublets.  相似文献   

16.
Adult female golden hamsters were induced to superovulate. When they were mated several hours prior to ovulation or artificially inseminated about the time of ovulation, nearly 100% of their eggs were subsequently fertilized monospermically. During the progression of fertilization when the eggs were still surrounded by compact cumulus oophorus, the contents of the ampullary region of the oviducts were collected and spermatozoa moving in the ampullary fluid, within the cumulus and on/in the zonae pellucidae of unfertilized eggs, were examined by light and electron microscopy to evaluate the status of their acrosomal caps. Most spermatozoa swimming in the ampullary fluid had apparently intact acrosomal caps, while the vast majority moving within the cumulus had distinctly modified acrosomal caps. Most spermatozoa that had passed through the cumulus and reached the zona surfaces had remnants of their acrosomal caps (“acrosomal ghosts”). When the ghosts were present around the sperm heads on the zona, the heads pivoted about a point roughly corresponding to the places where the ghosts were located. The ghosts seemed to firmly attach to the zona surfaces, then were split open by the sperm heads and left behind as the sperm heads advanced into the zona. A few spermatozoa on the zona surfaces had no acrosomal ghosts (at least not detectable by light microscopy). In this case, the sperm head pivoted about either the inner acrosomal membrane or the equatorial segment of the acrosome. In no instance were spermatozoa with intact acrosomal caps found on zona surfaces. We infer from these observations that most spermatozoa in vivo initiate their acrosome reactions while they are advancing through the cumulus. When they arrive at the zona surfaces, acrosomal ghosts are generally present on the sperm heads. These ghosts appear to hold sperm heads to zona surfaces as well as to restrict the direction of advancement of sperm head through the zona. In a minority of cases, ghostless spermatozoa reach the zona surfaces. As these spermatozoa appear to be able to penetrate the zona successfully, structures other than the acrosomal ghost (ie, the inner acrosomal membrane and the plasma membrane over the equatorial segment of the acrosome) may also attach to zona surfaces before spermatozoa penetrate into the zona.  相似文献   

17.
We previously targeted EGFP (a mutant of green fluorescent protein) to the lumen of the mouse sperm acrosome and reported the time course of EGFP release during the acrosome reaction. In the study reported here, we estimated the pH within the mouse sperm acrosome utilizing the pH-dependent nature of EGFP fluorescence. The average intra-acrosomal pH was estimated to be 5.3 +/- 0.1 immediately after sperm preparation, gradually increasing to 6.2 +/- 0.3 during 120 min of incubation in TYH media suitable for capacitation. Spontaneous acrosome reactions were noted to increase concomitantly with acrosomal alkalinization during incubation. We also demonstrated that acrosomal antigens detected by monoclonal antibodies MN7 and MC41 did not dissolve following the acrosome reaction in pH 5.3 media, but dissolved at pH 6.2. These data suggest that acrosomal alkalinization during incubation conducive for sperm capacitation may function to alter acrosomal contents and prepare them for release during the acrosome reaction.  相似文献   

18.
Summary

In our study of spermiogenesis in the lined chiton Tonicella lineata, we traced the formation and migration of small Golgi vesicles to the apex of the sperm, where they fused to form an apical granule. This apical granule and other Golgi secretions tested positively for acid phosphatase. In preliminary experiments on fertilization, sperm swam inside open hull (chorion) cupules down to the surface of the egg and penetrated it. No micropyle was observed. Serial 1μm sections of eggs fixed during fertilization demonstrated that the sperm nucleus had penetrated not only the hull but also the vitelline and oocyte membranes. Serial thin sections showed that the tip of the anterior filament of the sperm had fused with a single microvillus of the oocyte membrane, creating a membranous tube through which the nucleus had entered the egg cortex. We suggest that the apical granule of chiton sperm is an acrosome that enables the nucleus to penetrate the egg membranes.  相似文献   

19.
锯缘青蟹精子超微结构的研究   总被引:20,自引:4,他引:20  
利用光镜和电镜观察了锯缘青蟹成熟精子的形态和超微结构。精子呈陀螺形,无鞭毛,在较宽的一端环生着10余辐射臂。精子由球状的顶体、核杯以及核衍生的辐射臂三部分组成。顶体包括顶体管和顶体囊,后者包绕在顶体管的中央管周围,并可分为头帽带,内层和外层区。顶体被杯状的核包裹,仅头帽露于精子表面。成熟的精子中,位于核杯和顶体管之间的核膜出现局部断续或消失,中心粒和一些胞器出现的核杯腔中。  相似文献   

20.
Mammalian sperm must be acrosome reacted before penetrating the zona pellucida. In some species the sperm undergo the acrosome reaction before binding to the zona pellucida and in other species only acrosome intact sperm can initiate binding to the zona. In this study we addressed the question of acrosomal status and sperm-zona binding with human gametes. Sperm acrosome reactions were induced by treatment with human follicular fluid or N-(6-amino-hexyl)-5-chloro-naphthalene sulfonamide (W-7). The sperm suspensions, containing various percentages of acrosome-reacted sperm, were then incubated with human oocytes for 1 min. The acrosomal status of the sperm population bound to the zona was similar to the acrosomal status of the population of sperm in suspension (R2 = 0.77), regardless of the treatment to induce acrosome reactions. Our interpretation of these results is that both acrosome intact and acrosome-reacted human sperm can initiate binding to the zona pellucida. However, we reported earlier (N. L. Cross, P. Morales, J. W. Overstreet, and F. W. Hanson, 1988, Biol. Reprod. 38, 235-244) that the human zona pellucida is able to induce acrosome reactions. Thus, to exclude the possibility that sperm had undergone the acrosome reaction on the zona within 1 min of binding, sperm were suspended in a nominally calcium-free Tyrode's medium (0 Ca-mTyr) before incubation with oocytes (this medium was supplemented with SrCl2 and spermine to support sperm motility and zona binding). In 0 Ca-mTyr, the proportion of acrosome-reacted sperm on the zona was still highly correlated with the proportion of reacted sperm in suspension, indicating that the sperm were reacted before binding. Evidence that 0 Ca-mTyr effectively inhibited acrosome reactions induced by the zona pellucida was derived from experiments in which sperm were treated with human follicular fluid or control medium and the suspensions were diluted with either 0 Ca-mTyr or control medium.4+ Human oocytes were added for 1 min (pulse) at which time some oocytes were fixed and other oocytes were transferred to sperm-free medium and incubated for 35 min (chase) before fixation. Sperm diluted in control medium, pretreated with either human follicular fluid or control medium, showed a similar increase (40%) in the percentage of acrosome reactions among the zona-bound sperm after the chase. Sperm diluted in 0 Ca-mTyr did not show an increase in the percentage of acrosome-reacted sperm on the zona pellucida after the chase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号