首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Serum specimens from infants 2 to 12 months old vaccinated with the WC3 bovine rotavirus were analyzed to determine the relative concentrations of neutralizing antibody to the VP4 and VP7 proteins of the vaccine virus. To do this, reassortant rotaviruses that contained the WC3 genome segment for only one of these two neutralization proteins were made. The segment for the other neutralization protein in these reassortants was from heterotypic rotaviruses that were serotypically distinct from WC3. Sera were examined from 31 infants who had no evidence of a previous rotavirus infection and the highest postvaccination WC3-neutralizing antibody titers (i.e., 160 to 600) of the 103 subjects administered the vaccine. A reassortant (3/17) that contained both neutralization proteins from the heterotypic rotaviruses, i.e., EDIM (EW strain of mouse rotavirus) VP7 and rhesus rotavirus VP4, was not neutralized by these sera (geometric mean titer [GMT], less than 20). A reassortant (E19) that contained EDIM VP7 and WC3 VP4 was also very poorly neutralized by these antisera (GMT = 20). In contrast, antibody titers to a reassortant (R20) that contained WC3 VP7 and rhesus rotavirus VP4 were higher than those against WC3 (GMTs of 458 and 313, respectively). Thus, VP7 appeared to be the dominant immunogen for production of neutralizing antibody after intestinal infection of previously uninfected infants vaccinated with WC3 bovine rotavirus.  相似文献   

2.
The emergence and rapid spread of novel DS-1-like G1P[8] human rotaviruses in Japan were recently reported. More recently, such intergenogroup reassortant strains were identified in Thailand, implying the ongoing spread of unusual rotavirus strains in Asia. During rotavirus surveillance in Thailand, three DS-1-like intergenogroup reassortant strains having G3P[8] (RVA/Human-wt/THA/SKT-281/2013/G3P[8] and RVA/Human-wt/THA/SKT-289/2013/G3P[8]) and G2P[8] (RVA/Human-wt/THA/LS-04/2013/G2P[8]) genotypes were identified in fecal samples from hospitalized children with acute gastroenteritis. In this study, we sequenced and characterized the complete genomes of strains SKT-281, SKT-289, and LS-04. On whole genomic analysis, all three strains exhibited unique genotype constellations including both genogroup 1 and 2 genes: G3-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strains SKT-281 and SKT-289, and G2-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2 for strain LS-04. Except for the G genotype, the unique genotype constellation of the three strains (P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2) is commonly shared with DS-1-like G1P[8] strains. On phylogenetic analysis, nine of the 11 genes of strains SKT-281 and SKT-289 (VP4, VP6, VP1-3, NSP1-3, and NSP5) appeared to have originated from DS-1-like G1P[8] strains, while the remaining VP7 and NSP4 genes appeared to be of equine and bovine origin, respectively. Thus, strains SKT-281 and SKT-289 appeared to be reassortant strains as to DS-1-like G1P[8], animal-derived human, and/or animal rotaviruses. On the other hand, seven of the 11 genes of strain LS-04 (VP7, VP6, VP1, VP3, and NSP3-5) appeared to have originated from locally circulating DS-1-like G2P[4] human rotaviruses, while three genes (VP4, VP2, and NSP1) were assumed to be derived from DS-1-like G1P[8] strains. Notably, the remaining NSP2 gene of strain LS-04 appeared to be of bovine origin. Thus, strain LS-04 was assumed to be a multiple reassortment strain as to DS-1-like G1P[8], locally circulating DS-1-like G2P[4], bovine-like human, and/or bovine rotaviruses. Overall, the great genomic diversity among the DS-1-like G1P[8] strains seemed to have been generated through reassortment involving human and animal strains. To our knowledge, this is the first report on whole genome-based characterization of DS-1-like intergenogroup reassortant strains having G3P[8] and G2P[8] genotypes that have emerged in Thailand. Our observations will provide important insights into the evolutionary dynamics of emerging DS-1-like G1P[8] strains and related reassortant ones.  相似文献   

3.
The emergence and rapid spread of unusual DS-1-like intergenogroup reassortant rotavirus strains have been recently reported in Asia, Australia, and Europe. During rotavirus surveillance in Thailand in 2013–2014, novel DS-1-like intergenogroup reassortant strains having G8P[8] genotypes (i.e., strains KKL-17, PCB-79, PCB-84, PCB-85, PCB-103, SKT-107, SWL-12, NP-130, PCB-656, SKT-457, SSKT-269, and SSL-55) were identified in stool samples from hospitalized children with severe diarrhea. In this study, we determined and characterized the complete genomes of these 12 strains (seven strains, KKL-17, PCB-79, PCB-84, PCB-85, PCB-103, SKT-107, and SWL-12, found in 2013 (2013 strains), and five, NP-130, PCB-656, SKT-457, SSKT-269, and SSL-55, in 2014 (2014 strains)). On full genomic analysis, all 12 strains showed a unique genotype constellation comprising a mixture of genogroup 1 and 2 genes: G8-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. With the exception of the G genotype, the unique genotype constellation of the 12 strains (P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2) was found to be shared with DS-1-like intergenogroup reassortant strains. On phylogenetic analysis, six of the 11 genes of the 2013 strains (VP4, VP2, VP3, NSP1, NSP3, and NSP5) appeared to have originated from DS-1-like intergenogroup reassortant strains, while the remaining four (VP7, VP6, VP1, and NSP2) and one (NSP4) gene appeared to be of bovine and human origin, respectively. Thus, the 2013 strains appeared to be reassortant strains as to DS-1-like intergenogroup reassortant, bovine, bovine-like human, and/or human rotaviruses. On the other hand, five of the 11 genes of the 2014 strains (VP4, VP2, VP3, NSP1, and NSP3) appeared to have originated from DS-1-like intergenogroup reassortant strains, while three (VP7, VP1, and NSP2) and one (NSP4) were assumed to be of bovine and human origin, respectively. Notably, the remaining two genes, VP6 and NSP5, of the 2014 strains appeared to have originated from locally circulating DS-1-like G2P[4] human rotaviruses. Thus, the 2014 strains were assumed to be multiple reassortment strains as to DS-1-like intergenogroup reassortant, bovine, bovine-like human, human, and/or locally circulating DS-1-like G2P[4] human rotaviruses. Overall, the great genomic diversity among the DS-1-like intergenogroup reassortant strains seemed to have been generated through additional reassortment events involving animal and human strains. Moreover, all the 11 genes of three of the 2014 strains, NP-130, PCB-656, and SSL-55, were very closely related to those of Vietnamese DS-1-like G8P[8] strains that emerged in 2014–2015, indicating the derivation of these DS-1-like G8P[8] strains from a common ancestor. To our knowledge, this is the first report on full genome-based characterization of DS-1-like G8P[8] strains that have emerged in Thailand. Our observations will add to our growing understanding of the evolutionary patterns of emerging DS-1-like intergenogroup reassortant strains.  相似文献   

4.
Natural infection by very similar strains of rotavirus during the 1988-1989 rotavirus season in Cincinnati, Ohio, provided complete protection of young children against subsequent rotavirus illnesses for a period of at least 2 years. Using this limited strain variability, we characterized the association between the titers of antibody to either the VP4 or the VP7 neutralization protein and protection against subsequent rotavirus disease. This was done by using reassortants that contained only one of the two rotavirus neutralization proteins of 89-12, a culture-adapted isolate representative of the protective rotavirus strains. The other neutralization protein in these reassortants was derived from a heterologous rotavirus (WC3 or EDIM) to which the infected subjects made little or no neutralizing antibody (titers, < or = 20). The geometric mean titer (GMT) of antibody to 89-12 in convalescent-phase sera from the 21 subjects analyzed was 2,323. The GMT of antibody to a reassortant (strain WC-4) that contained the VP7 protein of 89-12 and VP4 of WC3 was 387. In contrast, the GMT of antibody to a reassortant (strain EDIM-7) that contained the VP4 protein of 89-12 and the VP7 protein of EDIM was 1,078. Thus, the major neutralization response was directed against VP4 rather than VP7, a finding that has important implications for development of appropriate rotavirus vaccines.  相似文献   

5.
The ELISPOT assay is increasingly used for assessing cellular immune responses in clinical trials of HIV-1 or cancer vaccines. However, to date, data from clinical trials do not consistently show that immune responses are correlated with clinical endpoints. This is due in part to the lack of assay standardization and validation across laboratories and therefore, a quality control panel is required to establish competency and comparability amongst different laboratories. In this study peripheral blood mononuclear cells (PBMCs) from healthy individuals were screened and frozen in liquid nitrogen. The recovery and viability of the PBMCs and the frequencies of interferon (IFN)-γ-secreting cells after CEF peptide pool stimulation were detected after various intervals in seven different laboratories. The recovery and viability did not differ significantly after different intervals. Although the frequencies of IFN (interferon)-γ-secreting cells among thawed PBMCs (peripheral blood mononuclear cells) fluctuated after CEF peptide pool stimulation at different intervals, they were not significantly decreased compared with those among fresh PBMCs. However, the viabilities, recoveries and frequencies of IFN-γ-secreting cells differed significantly among the seven laboratories. Our results indicate that cryopreserved PBMCs could be used as a quality control panel for ELISPOT. However, the procedures for ELISPOT need to be standardized amongst different laboratories.  相似文献   

6.
Genomic segment 4 of the porcine Gottfried strain (serotype 4) of porcine rotavirus, which encodes the outer capsid protein VP4, was sequences, and its deduced amino acid sequence was analyzed. Amino acid homology of the porcine rotavirus VP4 to the corresponding protein of asymptomatic or symptomatic human rotaviruses representing serotypes 1 to 4 ranged from 87.1 to 88.1% for asymptomatic strains and from 77.5 to 77.8% for symptomatic strains. Amino acid homology of the Gottfried strain to simian rhesus rotavirus, simian SA11 virus, bovine Nebraska calf diarrhea virus, and porcine OSU strains ranged from 71.5 to 74.3%. Antigenic similarities of VP4 epitopes between the Gottfried strain and human rotaviruses were detected by a plaque reduction neutralization test with hyperimmune antisera produced against the Gottfried strain or a Gottfried (10 genes) x human DS-1 rotavirus (VP7 gene) reassortant which exhibited serotype 2 neutralization specificity. In addition, a panel of six anti-VP4 monoclonal antibodies capable of neutralizing human rotaviruses belonging to serotype 1, 3, or 4 was able to neutralize the Gottfried strain. These observations suggest that the VP4 outer capsid protein of the Gottfried rotavirus is more closely related to human rotaviruses than to animal rotaviruses.  相似文献   

7.
Gene 1 (which encodes the viral RNA-dependent RNA polymerase, VP1) of an atypical human reassortant rotavirus strain, E210 (serotype G2P1B), is unrelated to genes 1 of standard human rotaviruses. To ascertain the origin of this gene, we determined a partial sequence and found that it exhibited greatest identity to gene 1 of a Taiwanese isolate, TE83, which is representative of G2 strains that caused an epidemic of gastroenteritis in 1993. Limited sequence identity to genes 1 of standard human and animal viruses was observed. This was confirmed by phylogenetic analysis. However, hybridization analysis using an E210 gene 1-specific probe indicated that a related gene was found among other Australian G2 isolates and in a Japanese strain isolated in the 1970s.  相似文献   

8.
An unusual rotavirus strain, SKT-27, with the G6P[14] genotypes (RVA/Human-wt/THA/SKT-27/2012/G6P[14]), was identified in a stool specimen from a hospitalized child aged eight months with severe diarrhea. In this study, we sequenced and characterized the complete genome of strain SKT-27. On whole genomic analysis, strain SKT-27 was found to have a unique genotype constellation: G6-P[14]-I2-R2-C2-M2-A3-N2-T6-E2-H3. The non-G/P genotype constellation of this strain (I2-R2-C2-M2-A3-N2-T6-E2-H3) is commonly shared with rotavirus strains from artiodactyls such as cattle. Phylogenetic analysis indicated that nine of the 11 genes of strain SKT-27 (VP7, VP4, VP6, VP2-3, NSP1, NSP3-5) appeared to be of artiodactyl (likely bovine) origin, while the remaining VP1 and NSP2 genes were assumed to be of human origin. Thus, strain SKT-27 was found to have a bovine rotavirus genetic backbone, and thus is likely to be of bovine origin. Furthermore, strain SKT-27 appeared to be derived through interspecies transmission and reassortment events involving bovine and human rotavirus strains. Of note is that the VP7 gene of strain SKT-27 was located in G6 lineage-5 together with those of bovine rotavirus strains, away from the clusters comprising other G6P[14] strains in G6 lineages-2/6, suggesting the occurrence of independent bovine-to-human interspecies transmission events. To our knowledge, this is the first report on full genome-based characterization of human G6P[14] strains that have emerged in Southeast Asia. Our observations will provide important insights into the origin of G6P[14] strains, and into dynamic interactions between human and bovine rotavirus strains.  相似文献   

9.
The hemagglutinin protein (HA) of the influenza virus family is a major antigen for protective immunity. Thus, it is a relevant target for developing vaccines. Here, we describe a human CD4(+) T cell epitope in the influenza virus HA that lies in the fusion peptide of the HA. This epitope is well conserved in all 16 subtypes of the HA protein of influenza A virus and the HA protein of influenza B virus. By stimulating peripheral blood mononuclear cells (PBMCs) from a healthy adult donor with peptides covering the entire HA protein based on the sequence of A/Japan/305/1957 (H2N2), we generated a T cell line specific to this epitope. This CD4(+) T cell line recognizes target cells infected with influenza A virus seasonal H1N1 and H3N2 strains, a reassortant H2N1 strain, the 2009 pandemic H1N1 strain, and influenza B virus in cytotoxicity assays and intracellular-cytokine-staining assays. It also lysed target cells infected with avian H5N1 virus. We screened healthy adult PBMCs for T cell responses specific to this epitope and found individuals who had ex vivo gamma interferon (IFN-γ) responses to the peptide epitope in enzyme-linked immunospot (ELISPOT) assays. Almost all donors who responded to the epitope had the HLA-DRB1*09 allele, a relatively common HLA allele. Although natural infection or standard vaccination may not induce strong T and B cell responses to this highly conserved epitope in the fusion peptide, it may be possible to develop a vaccination strategy to induce these CD4(+) T cells, which are cross-reactive to both influenza A and B viruses.  相似文献   

10.
Naturally occurring bovine-human reassortant rotaviruses with a P[11] VP4 genotype exhibit a tropism for neonates. Interaction of the VP8* domain of the spike protein VP4 with sialic acid was thought to be the key mediator for rotavirus infectivity. However, recent studies have indicated a role for nonsialylated glycoconjugates, including histo-blood group antigens (HBGAs), in the infectivity of human rotaviruses. We sought to determine if the bovine rotavirus-derived VP8* of a reassortant neonatal G10P[11] virus interacts with hitherto uncharacterized glycans. In an array screen of >600 glycans, VP8* P[11] showed specific binding to glycans with the Galβ1-4GlcNAc motif, which forms the core structure of type II glycans and is the precursor of H type II HBGA. The specificity of glycan binding was confirmed through hemagglutination assays; GST-VP8* P[11] hemagglutinates type O, A, and B red blood cells as well as pooled umbilical cord blood erythrocytes. Further, G10P[11] infectivity was significantly enhanced by the expression of H type II HBGA in CHO cells. The bovine-origin VP4 was confirmed to be essential for this increased infectivity, using laboratory-derived reassortant viruses generated from sialic acid binding rotavirus SA11-4F and a bovine G10P[11] rotavirus, B223. The binding to a core glycan unit has not been reported for any rotavirus VP4. Core glycan synthesis is constitutive in most cell types, and modification of these glycans is thought to be developmentally regulated. These studies provide the first molecular basis for understanding neonatal rotavirus infections, indicating that glycan modification during neonatal development may mediate the age-restricted infectivity of neonatal viruses.  相似文献   

11.
在中国卢龙县发现G5型人A组轮状病毒   总被引:4,自引:1,他引:3  
轮状病毒是引起我国儿童重症腹泻的主要病原。按照WHO轮状病毒监测方案,对2003年间河北省卢龙县开展了以医院和社区为基础的小于5岁儿童轮状病毒腹泻的监测,发现一株新型轮状病毒。该病毒用传统分型引物(G1、G2、G3、G4)扩增不出条带,对其VP7基因全序列测定和分析后确定该毒株为G5型。这是我们在亚洲首次发现的人类G5型轮状病毒。该毒株与猪的G5型C134毒株核苷酸和氨基酸序列同源性分别为88·6%和95·4%,与非洲发现的人的G5型毒株MRC3105核苷酸和氨基酸的同源性为89·9%和94%,与巴西发现的IAL-28毒株核苷酸和氨基酸的同源性为87·2%和93·3%。系统发生树分析表明:卢龙毒株LL36755与其他已经报告的两种猪和一种人类的G5型毒株可能具有相同的起源。这是人轮状病毒G5型首次在亚洲国家发现,而且该毒株可能是由人类轮状病毒与动物轮状病毒毒株自然重组产生。  相似文献   

12.
13.
We examined 41 human and animal rotavirus strains representative of all known P genotypes for their dependency on cellular N-acetylneuraminic (sialic) acid (SA) residues for infectivity. Our results showed that all rotaviruses studied, whether of animal or human origin, belonging to P genotypes [1], [2], [3], and [7] depended on SA residues on the cell surface for efficient infectivity but that all human and animal rotavirus strains representative of the remaining known P genotypes were SA independent. The SA residue requirement for efficient infectivity did not change for reassortant rotavirus strains with altered VP4-VP7 combinations. The initial interaction of rotavirus strains with SA residues on the cell surface correlated with VP4 genotype specificity, not with species of origin or VP7 G serotype specificity (P = 0.001; r2 = 1.00, Pearson's correlation coefficient). In addition to being a requirement for infectivity, the presence of SA residues on the cell surface is a requirement for efficient growth in cell culture; recognition of the association of specific P genotypes with the binding of rotavirus to SA residues will facilitate our understanding of the molecular basis of the early events of rotavirus-cell interactions in cell culture models and of pathogenicity in vivo.  相似文献   

14.
A safe and effective group A rotavirus vaccine that could prevent severe diarrhea or ameliorate its symptoms in infants and young children is urgently needed in both developing and developed countries. Rotavirus VP7 serotypes G1, G2, G3, and G4 have been well established to be of epidemiologic importance worldwide. Recently, serotype G9 has emerged as the fifth globally common type of rotavirus of clinical importance. Sequence analysis of the VP7 gene of various G9 isolates has demonstrated the existence of at least three phylogenetic lineages. The goal of our study was to determine the relationship of the phylogenetic lineages to the neutralization specificity of various G9 strains. We generated eight single VP7 gene substitution reassortants, each of which bore a single VP7 gene encoding G9 specificity of one of the eight G9 strains (two lineage 1, one lineage 2 and five lineage 3 strains) and the remaining 10 genes of bovine rotavirus strain UK, and two hyperimmune guinea pig antisera to each reassortant, and we then analyzed VP7 neutralization characteristics of the eight G9 strains as well as an additional G9 strain belonging to lineage 1; the nine strains were isolated in five countries. Antisera to lineage 1 viruses neutralized lineage 2 and 3 strains to at least within eightfold of the homotypic lineage viruses. Antisera to lineage 2 virus neutralized lineage 3 viruses to at least twofold of the homotypic lineage 2 virus; however, neutralization of lineage 1 viruses was fourfold (F45 and AU32) to 16- to 64-fold (WI61) less efficient. Antisera to lineage 3 viruses neutralized the lineage 2 strain 16- to 64-fold less efficiently, the lineage 1 strains F45 and AU32 8- to 128-fold less efficiently, and WI61 (prototype G9 strain) 128- to 1024-fold less efficiently than the homotypic lineage 3 viruses. These findings may have important implications for the development of G9 rotavirus vaccine candidates, as the strain with the broadest reactivity (i.e., a prime strain) would certainly be the ideal strain for inclusion in a vaccine.  相似文献   

15.
A rare human G10P[8] rotavirus with a reassortment between bovine and human viruses was detected from a patient with acute gastroenteritis in Vietnam. Genetic analysis using complete coding sequences of all segments showed a genomic constellation of this virus of G10-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. Its VP7 region was genetically related to that of a bovine rotavirus derived from Australia (strain VICG10.01), whereas all other genes were identical to those of a human rotavirus derived from Australia (strain Victoria/CK00047). These results indicate a possibility that the reassortment of the rotavirus was caused by immune escape in Australia and the rotavirus was carried to Vietnam. Additionally, this finding will help further understanding the evolution of rotaviruses circulating in Vietnam.  相似文献   

16.
Three cDNA clones comprising the VP8 subunit of the VP4 of human rotavirus strain KU (VP7 serotype G1; VP4 serotype P1A) G1 were constructed. The corresponding encoded peptides were designated according to their locations in the VP8 subunit as A (amino acids 1 to 102), B (amino acids 84 to 180), and C (amino acids 150 to 246 plus amino acids 247 to 251 from VP5). In addition, cDNA clones encoding peptide B of the VP8 subunit of the VP4 gene from human rotavirus strains DS-1 (G2; P1B) and 1076 (G2; P2) were also constructed. These DNA fragments were inserted into plasmid pGEMEX-1 and expressed in Escherichia coli. Western immunoblot analysis using antisera to rotavirus strains KU (P1A), Wa (P1A), DS-1 (P1B), 1076 (P2), and M37 (P2) demonstrated that peptides A and C cross-reacted with heterotypic human rotavirus VP4 antisera, suggesting that these two peptides represent conserved epitopes in the VP8 subunit. In contrast, peptide B appears to be involved in the VP4 serotype and subtype specificities, because it reacted only with the corresponding serotype- and subtype-specific antiserum. Antiserum raised against peptide A, B, or C of strain KU contained a lower level of neutralizing activity than did that induced by the entire VP8 subunit. In addition, the serotype-specific neutralizing activity of anti-KU VP8 serum was ablated after adsorption with the KU VP8 protein but not with a mixture of peptides A, B, and C of strain KU, suggesting that most of the serotype-specific epitopes in the VP8 subunit are conformational and are dependent on the entire amino acid sequence of VP8.  相似文献   

17.
The appearance of virus-specific CD4(+) and/or CD8(+) T lymphocytes in peripheral blood of captive juvenile rhesus macaques (Macaca mulatta) was observed following rotavirus infection. These cell-mediated immune responses were measured following experimental or natural infection after rotavirus was isolated from stool specimens of asymptomatic animals. The virus isolated was a new strain of simian rotavirus that we named TUCH (for Tulane University and Cincinnati Children's Hospital). Restimulation of peripheral T lymphocytes by inactivated double- or triple-layered TUCH rotavirus particles containing either VP6 or VP4 and VP7 on their respective surfaces resulted in increased quantities of interleukin-6 (IL-6) and IL-12 in cell culture supernatants. Recall responses to rotavirus by CD4(+) and CD8(+) T lymphocytes were associated with accumulation of intracellular IL-6 and gamma interferon. Antigen presentation of TUCH rotavirus to lymphocytes was mediated via differentiated cultures of monocyte-derived dendritic (HLA-DR(+)) cells. This is the first report demonstrating cell-mediated immune responses to rotavirus in nonhuman primates. Further exploration of rhesus macaques in vaccine trials with human rotavirus vaccine candidates is the major objective of future studies.  相似文献   

18.
Two outer capsid rotavirus proteins, VP3 and VP7, have been found to elicit neutralizing-antibody production, but the immunogenicity of these proteins during human rotavirus infection has not been determined. The relative amounts of serum neutralizing antibody against the VP3 and VP7 proteins of the CJN strain of human rotavirus were, therefore, determined in adult subjects before and after infection with this virus. Reassortant strains of rotavirus that contained the CJN gene segment for only one of these two neutralization proteins were isolated and used for this study. The geometric mean titer of serum neutralizing antibody to a reassortant virus (CJN-M) that contained VP7 of CJN and VP3 of another human rotavirus was 12.7 times less than that of antibody to CJN before infection and 20.3 times less after infection. This indicated that most neutralizing antibody was against the VP3 rather than the VP7 protein of CJN. This result was confirmed with other reassortants between CJN and animal rotavirus strains (EDIM and rhesus rotavirus). These findings suggest that VP3 is the primary immunogen that stimulates neutralizing antibody during at least some rotavirus infections of humans.  相似文献   

19.
Group A rotavirus classification is currently based on the molecular properties of the two outer layer proteins, VP7 and VP4, and the middle layer protein, VP6. As reassortment of all the 11 rotavirus gene segments plays a key role in generating rotavirus diversity in nature, a classification system that is based on all the rotavirus gene segments is desirable for determining which genes influence rotavirus host range restriction, replication, and virulence, as well as for studying rotavirus epidemiology and evolution. Toward establishing such a classification system, gene sequences encoding VP1 to VP3, VP6, and NSP1 to NSP5 were determined for human and animal rotavirus strains belonging to different G and P genotypes in addition to those available in databases, and they were used to define phylogenetic relationships among all rotavirus genes. Based on these phylogenetic analyses, appropriate identity cutoff values were determined for each gene. For the VP4 gene, a nucleotide identity cutoff value of 80% completely correlated with the 27 established P genotypes. For the VP7 gene, a nucleotide identity cutoff value of 80% largely coincided with the established G genotypes but identified four additional distinct genotypes comprised of murine or avian rotavirus strains. Phylogenetic analyses of the VP1 to VP3, VP6, and NSP1 to NSP5 genes showed the existence of 4, 5, 6, 11, 14, 5, 7, 11, and 6 genotypes, respectively, based on nucleotide identity cutoff values of 83%, 84%, 81%, 85%, 79%, 85%, 85%, 85%, and 91%, respectively. In accordance with these data, a revised nomenclature of rotavirus strains is proposed. The novel classification system allows the identification of (i) distinct genotypes, which probably followed separate evolutionary paths; (ii) interspecies transmissions and a plethora of reassortment events; and (iii) certain gene constellations that revealed (a) a common origin between human Wa-like rotavirus strains and porcine rotavirus strains and (b) a common origin between human DS-1-like rotavirus strains and bovine rotaviruses. These close evolutionary links between human and animal rotaviruses emphasize the need for close simultaneous monitoring of rotaviruses in animals and humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号