首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve the efficiency, accuracy, reproducibility, throughput and proteome coverage of mass spectrometry-based quantitative approaches, both in vitro and in vivo tagging of particular amino acid residues of cellular proteins have been introduced to assist mass spectrometry for global-scale comparative studies of differentially expressed proteins/modifications between different biologically relevant cell states or cells at different pathological states. The basic features of these methods introduce pair-wise isotope signals of each individual peptide containing a particular type of tagged amino acid (amino acid-coded mass tagging) that originated from different cell states. In this review, the applications of major amino acid-coded mass tagging-based quantitative proteomics approaches, including isotope-coded affinity tag, isobaric tags for relative and absolute quantification (iTRAQ?) and stable isotope labeling by amino acids in cell culture are summarized in the context of their respective strengths/weakness in identifying those differentially expressed or post-translational modified proteins regulated by particular cellular stress on a genomic scale in a high-throughput manner. Importantly, these gel-free, in-spectra quantitative mechanisms have been further explored to identify/characterize large-scale protein–protein interactions involving various functional pathways. Taken together, the information about quantitative proteome changes, including multiple regulated proteins and their interconnected relationships, will provide an important insight into the molecular mechanisms, where novel targets for diagnosis and therapeutic intervention will be identified.  相似文献   

2.
p53-induced apoptosis plays a pivotal role in the suppression of tumorigenesis, and mutations in p53 have been found in more than 50% of human tumors. By comparing the proteome of a human colorectal cancer cell transfected with inducible p53 (DLD-1.p53) with that of the control DLD-1 cell line using amino acid-coded mass tagging (AACT)-assisted mass spectrometry, we have broadly identified proteins that are upregulated at the execution stage of the p53-mediated apoptosis. In cell culturing, the deuterium-labeled (heavy) amino acids were incorporated into the proteome of the induced DLD-1.p53 cells, whereas the DLD-1.vector cells were grown in the unlabeled medium. In high-throughput LC-ESI-MS/MS analyses, the AACT-containing peptides were paired with their unlabeled counterparts, and their relative spectral intensities, reflecting the differential protein expression, were quantified. In addition, our novel AACT-MS method utilized a number of different heavy amino acids as internal markers that significantly increased the peptide sequence coverage for both quantitation and identification purposes. As a result, we were able to identify differentially regulated protein isozymes that would be difficult to distinguish by ICAT-MS methods and to obtain a large dataset of the proteins with altered expression in the late stage of p53-induced apoptosis. The regulated proteins we identified are associated with several distinct functional categories: cell cycle arrest and p53 binding, protein chaperoning, plasma membrane dynamics, stress response, antioxidant enzymes, and anaerobic glycolysis. This result suggests that the p53-induced apoptosis involves the systematic activation of multiple pathways that are glycolysis-relevant, energy-dependent, oxidative stress-mediated, and possibly mediated through interorganelle crosstalks.  相似文献   

3.
Stable isotope labelling in combination with mass spectrometry has emerged as a powerful tool to identify and relatively quantify thousands of proteins within complex protein mixtures. Here we describe a novel method, termed isotope-coded protein label (ICPL), which is capable of high-throughput quantitative proteome profiling on a global scale. Since ICPL is based on stable isotope tagging at the frequent free amino groups of isolated intact proteins, it is applicable to any protein sample, including extracts from tissues or body fluids, and compatible to all separation methods currently employed in proteome studies. The method showed highly accurate and reproducible quantification of proteins and yielded high sequence coverage, indispensable for the detection of post-translational modifications and protein isoforms. The efficiency (e.g. accuracy, dynamic range, sensitivity, speed) of the approach is demonstrated by comparative analysis of two differentially spiked proteomes.  相似文献   

4.
The development of high-performance technology platforms for generating detailed protein expression profiles, or protein atlases, is essential. Recently, we presented a novel platform that we termed global proteome survey, where we combined the best features of affinity proteomics and mass spectrometry, to probe any proteome in a species independent manner while still using a limited set of antibodies. We used so called context-independent-motif-specific antibodies, directed against short amino acid motifs. This enabled enrichment of motif-containing peptides from a digested proteome, which then were detected and identified by mass spectrometry. In this study, we have demonstrated the quantitative capability, reproducibility, sensitivity, and coverage of the global proteome survey technology by targeting stable isotope labeling with amino acids in cell culture-labeled yeast cultures cultivated in glucose or ethanol. The data showed that a wide range of motif-containing peptides (proteins) could be detected, identified, and quantified in a highly reproducible manner. On average, each of six different motif-specific antibodies was found to target about 75 different motif-containing proteins. Furthermore, peptides originating from proteins spanning in abundance from over a million down to less than 50 copies per cell, could be targeted. It is worth noting that a significant set of peptides previously not reported in the PeptideAtlas database was among the profiled targets. The quantitative data corroborated well with the corresponding data generated after conventional strong cation exchange fractionation of the same samples. Finally, several differentially expressed proteins, with both known and unknown functions, many relevant for the central carbon metabolism, could be detected in the glucose- versus ethanol-cultivated yeast. Taken together, the study demonstrated the potential of our immunoaffinity-based mass spectrometry platform for reproducible quantitative proteomics targeting classes of motif-containing peptides.  相似文献   

5.
Membrane proteins play a critical role in the process of neural stem cell self-renewal and differentiation. Here, we apply the SILAC (stable isotope labeling by amino acids in cell culture) approach to quantitatively compare the membrane proteome of the self-renewing and the astroglial differentiating cells. High-resolution analysis on a linear ion trap-Orbitrap instrument (LTQ-Orbitrap) at sub-ppm mass accuracy resulted in confident identification and quantitation of more than 700 distinct membrane proteins during the astroglial differentiation. Of the 735 quantified proteins, seven cell surface proteins display significantly higher expression levels in the undifferentiated state membrane compared to astroglial differentiating membrane. One cell surface protein transferrin receptor protein 1 may serve as a new candidate for NSCs surface markers. Functional clustering of differentially expressed proteins by Ingenuity Pathway Analysis revealed that most of overexpressed membrane proteins in the astroglial differentiation neural stem cells are involved in cellular growth, nervous system development, and energy metabolic pathway. Taken together, this study increases our understanding of the underlying mechanisms that modulate complex biological processes of neural stem cell proliferation and differentiation.  相似文献   

6.
Tight regulation of protein translation drives the proteome to undergo changes under influence of extracellular or intracellular signals. Despite mass spectrometry–based proteomics being an excellent method to study differences in protein abundance in complex proteomes, analyzing minute or rapid changes in protein synthesis and abundance remains challenging. Therefore, several dedicated techniques to directly detect and quantify newly synthesized proteins have been developed, notably puromycin-based, bio-orthogonal noncanonical amino acid tagging–based, and stable isotope labeling by amino acids in cell culture–based methods, combined with mass spectrometry. These techniques have enabled the investigation of perturbations, stress, or stimuli on protein synthesis. Improvements of these methods are still necessary to overcome various remaining limitations. Recent improvements include enhanced enrichment approaches and combinations with various stable isotope labeling techniques, which allow for more accurate analysis and comparison between conditions on shorter timeframes and in more challenging systems. Here, we aim to review the current state in this field.  相似文献   

7.
By coupling two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) with amino acid-coded mass tagging (AACT), we have greatly increased the analytical throughput and sequence coverage of MS-based methods for proteome-wide quantitation. The dynamic range and reproducibility of this 2D-LC-AACT quantitative approach were evaluated by profiling the mixtures with different ratios of E. coli cells grown in either regular or AACT medium. A SQL-based high thoughput MASCOT data analysis tool was developed for proteomic data sorting and mining. We investigated the early stage of apoptosis by inducing the p53 upregulated modulator of apoptosis (PUMA) through the analyses of the relative ratios of the pairwise isotope signals that were originated from the control and labeled PUMA-induced cells. In 20-hour 2D-LC-MS/MS run, 480 proteins were conclusively identified, and more than half of them were quantified. A noteworthy change in the quantitative profile was that histones and a ubiquitin conjugate protein UBC9, which are involved in DNA double-strand break (DSB) repair were significantly down-regulated in the PUMA-overexpressing apoptotic cells, suggesting the detection of DSB in the apoptotic process. The quantitative profiling efficiency of this approach was compared with the gel-based quantitative analysis scheme.  相似文献   

8.
Cadmium (Cd(2+)) is one of well-known toxic heavy metal ions. To gain a global understanding how Cd(2+) affects cells at the molecular level, we systematically studied the cellular response of the fission yeast Schizosaccharomyces pombe to Cd(2+) using our integrated proteomic strategy of amino acid-coded mass tagging (AACT) and liquid chromatography-tandem mass spectrometry. Our proteome-wide investigation unequivocally identified 1133 S. pombe proteins. Of which, the AACT-based quantitative analysis revealed 106 up-regulated and 55 down-regulated proteins on the Cd(2+) exposure. The most prevalent functional class in the up-regulated proteins, approximately 28% of our profile, was the proteins involved in protein biosynthesis, showing a time-dependent biphasic expression pattern characteristic with rapid initial induction and later repression. Most significantly, 27 proteins functionally classified as cell rescue and defense were up-regulated for oxygen and radical detoxification, heat shock response, and other stress response. Furthermore, the large precursor sequence coverage of our AACT approach allowed us to unequivocally identify and quantitate different isozymes for glutathione S-transferase, which have close similarity in their amino acid sequence. Our quantitative dataset also showed that 80% of the up-regulated proteins found in the S. pombe response were different from those in the Saccharomyces cerevisiae response. The function of some of the key identifications was validated through biochemical assays. It is very interesting that the induction of cysteine synthase expression was not observed in our study, although it has been proven as a critical enzyme to supply free cysteines for the enhancing synthesis of Cd(2+)-sequestering molecules such as glutathione and phytochelatins in plants and some yeasts. Our quantitative proteomic result instead suggested that, as an alternative mechanism for the detoxification of Cd(2+), S. pombe produced significantly higher level of inorganic sulfide to immobilize cellular Cd(2+) as a form of CdS nanocrystallites capped with glutathione and/or phytochelatins.  相似文献   

9.
HSP90 is a central player in the folding and maturation of many proteins. More than two hundred HSP90 clients have been identified by classical biochemical techniques including important signaling proteins with high relevance to human cancer pathways. HSP90 inhibition has thus become an attractive therapeutic concept and multiple molecules are currently in clinical trials. It is therefore of fundamental biological and medical importance to identify, ideally, all HSP90 clients and HSP90 regulated proteins. To this end, we have taken a global and a chemical proteomic approach in geldanamycin treated cancer cell lines using stable isotope labeling with amino acids in cell culture and quantitative mass spectrometry. We identified >6200 proteins in four different human cell lines and ~1600 proteins showed significant regulation upon drug treatment. Gene ontology and pathway/network analysis revealed common and cell-type specific regulatory effects with strong connections to unfolded protein binding and protein kinase activity. Of the 288 identified protein kinases, 98 were geldanamycin treatment including >50 kinases not formerly known to be regulated by HSP90. Protein turn-over measurements using pulsed stable isotope labeling with amino acids in cell culture showed that protein down-regulation by HSP90 inhibition correlates with protein half-life in many cases. Protein kinases show significantly shorter half lives than other proteins highlighting both challenges and opportunities for HSP90 inhibition in cancer therapy. The proteomic responses of the HSP90 drugs geldanamycin and PU-H71 were highly similar suggesting that both drugs work by similar molecular mechanisms. Using HSP90 immunoprecipitation, we validated several kinases (AXL, DDR1, TRIO) and other signaling proteins (BIRC6, ISG15, FLII), as novel clients of HSP90. Taken together, our study broadly defines the cellular proteome response to HSP90 inhibition and provides a rich resource for further investigation relevant for the treatment of cancer.  相似文献   

10.
11.
The epimorphic regeneration of zebrafish caudal fin is rapid and complete. We have analyzed the biomechanism of zebrafish caudal fin regeneration at various time points based on differential proteomics approaches. The spectrum of proteome changes caused by regeneration were analyzed among controls (0 h) and 1, 12, 24, 48, and 72 h postamputation involving quantitative differential proteomics analysis based on two-dimensional gel electrophoresis matrix-assisted laser desorption/ionization and differential in-gel electrophoresis Orbitrap analysis. A total of 96 proteins were found differentially regulated between the control nonregenerating and regenerating tissues of different time points for having at least 1.5-fold changes. 90 proteins were identified as differentially regulated for regeneration based on differential in-gel electrophoresis analysis between the control and regenerating tissues. 35 proteins were characterized for its expression in all of the five regenerating time points against the control samples. The proteins identified and associated with regeneration were found to be directly allied with various molecular, biological, and cellular functions. Based on network pathway analysis, the identified proteome data set for regeneration was majorly associated in maintaining cellular structure and architecture. Also the proteins were found associated for the cytoskeleton remodeling pathway and cellular immune defense mechanism. The major proteins that were found differentially regulated during zebrafish caudal fin regeneration includes keratin and its 10 isoforms, cofilin 2, annexin a1, skeletal α1 actin, and structural proteins. Annexin A1 was found to be exclusively undergoing phosphorylation during regeneration. The obtained differential proteome and the direct association of the various proteins might lead to a new understanding of the regeneration mechanism.  相似文献   

12.
Embryonic stem (ES) cells are pluripotent cells isolated from mammalian preimplantation embryos. They are capable of differentiating into all cell types and therefore hold great promise in regenerative medicine. Here we show that murine ES cells can be fully SILAC (stable isotope labeling by amino acids in cell culture)-labeled when grown feeder-free during the last phase of cell culture. We fractionated the SILAC-labeled ES cell proteome by one-dimensional gel electrophoresis and by isoelectric focusing of peptides. High resolution analysis on a linear ion trap-orbitrap instrument (LTQ-Orbitrap) at sub-ppm mass accuracy resulted in confident identification and quantitation of more than 5,000 distinct proteins. This is the largest quantified proteome reported to date and contains prominent stem cell markers such as OCT4, NANOG, SOX2, and UTF1 along with the embryonic form of RAS (ERAS). We also quantified the proportion of the ES cell proteome present in cytosolic, nucleoplasmic, and membrane/chromatin fractions. We compared two different preparation approaches, cell fractionation followed by one-dimensional gel separation and in-solution digestion of total cell lysate combined with isoelectric focusing, and found comparable proteome coverage with no apparent bias for any functional protein classes for either approach. Bioinformatics analysis of the ES cell proteome revealed a broad distribution of cellular functions with overrepresentation of proteins involved in proliferation. We compared the proteome with a recently published map of chromatin states of promoters in ES cells and found excellent correlation between protein expression and the presence of active and repressive chromatin marks.  相似文献   

13.
A quantitative proteome study using the stable isotope labeling with amino acids in cell culture technique was performed on bovine kidney cells after infection with the alphaherpesvirus pseudorabies virus (PrV), the etiological agent of Aujeszky's disease. To enhance yields of proteins to be identified, raw extracts were fractionated by affinity solid-phase extraction with a combination of a cibacron blue F3G-A and a heparin matrix and with a phosphoprotein-specific matrix. After two-dimensional gel electrophoresis in different pH ranges between pH 3 and pH 10, 2,600 proteins representing 565 genes were identified by mass spectrometry and screened for virus-induced changes in relative protein levels. Four hours after infection, significant quantitative variations were found for constituents of the nuclear lamina, representatives of the heterogeneous nuclear ribonucleoproteins, proteins involved in membrane trafficking and intracellular transport, a ribosomal protein, and heat shock protein 27. Several proteins were present in multiple charge variants that were differentially affected by infection with PrV. As a common pattern for all these proteins, a mass shift in favor of the more acidic isoforms was observed, suggesting the involvement of viral or cellular kinases.  相似文献   

14.
Kim J  Shin JM  Jeon YJ  Chung HM  Chae JI 《PloS one》2012,7(5):e32350
Mesenchymal stem cells (MSCs) are one of the most attractive therapeutic resources in clinical application owing to their multipotent capability, which means that cells can differentiate into various mesenchymal tissues such as bone, cartilage, fat, tendon, muscle and marrow stroma. Depending on the cellular source, MSCs exhibit different application potentials according to their different in vivo functions, despite similar phenotypic and cytological characteristics. To understand the different molecular conditions that govern the different application or differentiation potential of each MSC according to cellular source, we generated a proteome reference map of MSCs obtained from bone marrow (BM), umbilical cord blood (CB) and peripheral blood (PB). We identified approximately 30 differentially regulated (or expressed) proteins. Most up-regulated proteins show a cytoskeletal and antioxidant or detoxification role according to their functional involvement. Additionally, these proteins are involved in the increase of cell viability, engraftment and migration in pathological conditions in vivo. In summary, we examined differentially expressed key regulatory factors of MSCs obtained from several cellular sources, demonstrated their differentially expressed proteome profiles and discussed their functional role in specific pathological conditions. With respect to the field of cell therapy, it may be particularly crucial to determine the most suitable cell sources according to target disease.  相似文献   

15.
In the TLR4 signaling pathways, we previously characterized a signal regulator, LRRFIP2, that modulates the time course-dependent changes in NF-κB activity through its dynamic interaction with the TLR adaptor protein, MyD88. However, little is known about the driving force behind the LPS-inducible dynamics between LRRFIP2 and MyD88. We have therefore designed a multiplex label-free quantitative proteomics method to investigate dynamic changes of LRRFIP2 phosphorylation upon LPS stimulation. Given our observation that LRRFIP2 binds to MyD88 through its serine-rich domain in which most of serine residues have the propensity to be phosphorylated, we used collision-activated dissociation- and electron transfer dissociation-based methods in a complementary manner to unambiguously localize phosphorylation sites in the peptides constituting the serine-rich domain. Among 23 phosphorylation sites identified and first quantified by the label-free approach and then verified by the AACT/SILAC (amino acid-coded tagging/stable isotope labeling in cell culture)-based quantitation method, phosphorylation at serine 202 showed a significant LPS-induced dynamic change during the full-course cellular response to LPS stimulation. The substitution of serine 202 with nonphosphorylated residues by site-directed mutagenesis resulted in a weakened LRRFIP2-MyD88 interaction and a concurrently reduced activity in downstream NF-κB. Taking these results together, phosphorylation at serine 202 was found to regulate the dynamics of the LRRFIP2-MyD88 interaction, which in turn modulated the strength and duration of TLR4 signaling. Strategically, we have demonstrated the importance of precise identification of the biologically relevant phosphorylation site(s) using comprehensive mass spectrometry-based quantitative proteomics approaches in guiding downstream biological characterization experiments, which could otherwise be both time- and cost-consuming for a large number of phosphorylation possibilities.  相似文献   

16.
We studied the dynamics of the proteome of influenza virus A/PR/8/34 (H1N1) infected Madin-Darby canine kidney cells up to 12 hours post infection by mass spectrometry based quantitative proteomics using the approach of stable isotope labeling by amino acids in cell culture (SILAC). We identified 1311 cell proteins and, apart from the proton channel M2, all major virus proteins. Based on their abundance two groups of virus proteins could be distinguished being in line with the function of the proteins in genesis and formation of new virions. Further, the data indicate a correlation between the amount of proteins synthesized and their previously determined copy number inside the viral particle. We employed bioinformatic approaches such as functional clustering, gene ontology, and pathway (KEGG) enrichment tests to uncover co-regulated cellular protein sets, assigned the individual subsets to their biological function, and determined their interrelation within the progression of viral infection. For the first time we are able to describe dynamic changes of the cellular and, of note, the viral proteome in a time dependent manner simultaneously. Through cluster analysis, time dependent patterns of protein abundances revealed highly dynamic up- and/or down-regulation processes. Taken together our study provides strong evidence that virus infection has a major impact on the cell status at the protein level.  相似文献   

17.
Pancreatic stellate cells (PaSC) are mediators in chronic pancreatitis and pancreatic cancer pathogenesis. Proteins regulating the biomolecular pathways involved in the conversion of activated to quiescent PaSC may have a significant influence in the development of chronic pancreatitis. We aim to compare differentially expressed proteins from an immortalized cell line of mouse PaSC in the activated and serum-starved cell states using mass spectrometry-based proteomics. PaSC cultured in media supplemented with fetal bovine serum (FBS) proliferate in the activated state, while serum starvation promotes the cellular transition to a "pseudo-quiescent" state. Using these two cell states, we performed a comparative mass spectrometry (GeLC-MS/MS) proteomic analysis. We identified over 2000 nonredundant proteins in PaSC. Qualitative and label-free quantitative analysis revealed several hundred proteins that were differentially abundant between the cell states. Proteins that were more abundant in activated PaSC included cytoskeletal proteins and ribosomal proteins, while those more abundant in pseudoquiescent PaSC included proteins involved in protein degradation-related pathways (lysosome, ubiquitin-mediated proteolysis, and the proteasome). Investigation of the role of PaSC in the pathogenesis of chronic pancreatitis using the mass spectrometry-based proteomics strategy described herein will lead to further insights into the molecular mechanisms associated with the disease.  相似文献   

18.
19.
20.
Application of Mass Spectrometry in Proteomics   总被引:6,自引:0,他引:6  
Mass spectrometry has arguably become the core technology in proteomics. The application of mass spectrometry based techniques for the qualitative and quantitative analysis of global proteome samples derived from complex mixtures has had a big impact in the understanding of cellular function. Here, we give a brief introduction to principles of mass spectrometry and instrumentation currently used in proteomics experiments. In addition, recent developments in the application of mass spectrometry in proteomics are summarised. Strategies allowing high-throughput identification of proteins from highly complex mixtures include accurate mass measurement of peptides derived from total proteome digests and multidimensional peptide separations coupled with mass spectrometry. Mass spectrometric analysis of intact proteins permits the characterisation of protein isoforms. Recent developments in stable isotope labelling techniques and chemical tagging allow the mass spectrometry based differential display and quantitation of proteins, and newly established affinity procedures enable the targeted characterisation of post-translationally modified proteins. Finally, advances in mass spectrometric imaging allow the gathering of specific information on the local molecular composition, relative abundance and spatial distribution of peptides and proteins in thin tissue sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号